access.c 11.2 KB
Newer Older
1
#include <linux/delay.h>
L
Linus Torvalds 已提交
2 3
#include <linux/pci.h>
#include <linux/module.h>
A
Al Viro 已提交
4
#include <linux/sched.h>
5
#include <linux/slab.h>
L
Linus Torvalds 已提交
6
#include <linux/ioport.h>
7
#include <linux/wait.h>
L
Linus Torvalds 已提交
8

9 10
#include "pci.h"

L
Linus Torvalds 已提交
11 12 13 14 15
/*
 * This interrupt-safe spinlock protects all accesses to PCI
 * configuration space.
 */

16
DEFINE_RAW_SPINLOCK(pci_lock);
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 *  Wrappers for all PCI configuration access functions.  They just check
 *  alignment, do locking and call the low-level functions pointed to
 *  by pci_dev->ops.
 */

#define PCI_byte_BAD 0
#define PCI_word_BAD (pos & 1)
#define PCI_dword_BAD (pos & 3)

#define PCI_OP_READ(size,type,len) \
int pci_bus_read_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
{									\
	int res;							\
	unsigned long flags;						\
	u32 data = 0;							\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36
	raw_spin_lock_irqsave(&pci_lock, flags);			\
L
Linus Torvalds 已提交
37 38
	res = bus->ops->read(bus, devfn, pos, len, &data);		\
	*value = (type)data;						\
39
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
L
Linus Torvalds 已提交
40 41 42 43 44 45 46 47 48 49
	return res;							\
}

#define PCI_OP_WRITE(size,type,len) \
int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50
	raw_spin_lock_irqsave(&pci_lock, flags);			\
L
Linus Torvalds 已提交
51
	res = bus->ops->write(bus, devfn, pos, len, value);		\
52
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
	return res;							\
}

PCI_OP_READ(byte, u8, 1)
PCI_OP_READ(word, u16, 2)
PCI_OP_READ(dword, u32, 4)
PCI_OP_WRITE(byte, u8, 1)
PCI_OP_WRITE(word, u16, 2)
PCI_OP_WRITE(dword, u32, 4)

EXPORT_SYMBOL(pci_bus_read_config_byte);
EXPORT_SYMBOL(pci_bus_read_config_word);
EXPORT_SYMBOL(pci_bus_read_config_dword);
EXPORT_SYMBOL(pci_bus_write_config_byte);
EXPORT_SYMBOL(pci_bus_write_config_word);
EXPORT_SYMBOL(pci_bus_write_config_dword);
69

H
Huang Ying 已提交
70 71 72 73 74 75 76 77 78 79 80 81
/**
 * pci_bus_set_ops - Set raw operations of pci bus
 * @bus:	pci bus struct
 * @ops:	new raw operations
 *
 * Return previous raw operations
 */
struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
{
	struct pci_ops *old_ops;
	unsigned long flags;

82
	raw_spin_lock_irqsave(&pci_lock, flags);
H
Huang Ying 已提交
83 84
	old_ops = bus->ops;
	bus->ops = ops;
85
	raw_spin_unlock_irqrestore(&pci_lock, flags);
H
Huang Ying 已提交
86 87 88
	return old_ops;
}
EXPORT_SYMBOL(pci_bus_set_ops);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

/**
 * pci_read_vpd - Read one entry from Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to read
 * @buf:	pointer to where to store result
 *
 */
ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->read(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_read_vpd);

/**
 * pci_write_vpd - Write entry to Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
R
Randy Dunlap 已提交
110 111
 * @count:	number of bytes to write
 * @buf:	buffer containing write data
112 113 114 115 116 117 118 119 120 121
 *
 */
ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->write(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_write_vpd);

122 123 124 125 126 127 128 129
/*
 * The following routines are to prevent the user from accessing PCI config
 * space when it's unsafe to do so.  Some devices require this during BIST and
 * we're required to prevent it during D-state transitions.
 *
 * We have a bit per device to indicate it's blocked and a global wait queue
 * for callers to sleep on until devices are unblocked.
 */
130
static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
131

132
static noinline void pci_wait_cfg(struct pci_dev *dev)
133 134 135
{
	DECLARE_WAITQUEUE(wait, current);

136
	__add_wait_queue(&pci_cfg_wait, &wait);
137 138
	do {
		set_current_state(TASK_UNINTERRUPTIBLE);
139
		raw_spin_unlock_irq(&pci_lock);
140
		schedule();
141
		raw_spin_lock_irq(&pci_lock);
142 143
	} while (dev->block_cfg_access);
	__remove_wait_queue(&pci_cfg_wait, &wait);
144 145
}

G
Greg Thelen 已提交
146
/* Returns 0 on success, negative values indicate error. */
147 148 149 150 151 152
#define PCI_USER_READ_CONFIG(size,type)					\
int pci_user_read_config_##size						\
	(struct pci_dev *dev, int pos, type *val)			\
{									\
	int ret = 0;							\
	u32 data = -1;							\
G
Greg Thelen 已提交
153 154
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
155
	raw_spin_lock_irq(&pci_lock);				\
156 157
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
158
	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
159
					pos, sizeof(type), &data);	\
160
	raw_spin_unlock_irq(&pci_lock);				\
161
	*val = (type)data;						\
G
Greg Thelen 已提交
162 163
	if (ret > 0)							\
		ret = -EINVAL;						\
164 165 166
	return ret;							\
}

G
Greg Thelen 已提交
167
/* Returns 0 on success, negative values indicate error. */
168 169 170 171 172
#define PCI_USER_WRITE_CONFIG(size,type)				\
int pci_user_write_config_##size					\
	(struct pci_dev *dev, int pos, type val)			\
{									\
	int ret = -EIO;							\
G
Greg Thelen 已提交
173 174
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
175
	raw_spin_lock_irq(&pci_lock);				\
176 177
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
178
	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
179
					pos, sizeof(type), val);	\
180
	raw_spin_unlock_irq(&pci_lock);				\
G
Greg Thelen 已提交
181 182
	if (ret > 0)							\
		ret = -EINVAL;						\
183 184 185 186 187 188 189 190 191 192
	return ret;							\
}

PCI_USER_READ_CONFIG(byte, u8)
PCI_USER_READ_CONFIG(word, u16)
PCI_USER_READ_CONFIG(dword, u32)
PCI_USER_WRITE_CONFIG(byte, u8)
PCI_USER_WRITE_CONFIG(word, u16)
PCI_USER_WRITE_CONFIG(dword, u32)

193 194 195 196 197 198
/* VPD access through PCI 2.2+ VPD capability */

#define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)

struct pci_vpd_pci22 {
	struct pci_vpd base;
199 200
	struct mutex lock;
	u16	flag;
201
	bool	busy;
202
	u8	cap;
203 204
};

205 206 207 208 209
/*
 * Wait for last operation to complete.
 * This code has to spin since there is no other notification from the PCI
 * hardware. Since the VPD is often implemented by serial attachment to an
 * EEPROM, it may take many milliseconds to complete.
G
Greg Thelen 已提交
210 211
 *
 * Returns 0 on success, negative values indicate error.
212
 */
213 214 215 216
static int pci_vpd_pci22_wait(struct pci_dev *dev)
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
217 218
	unsigned long timeout = jiffies + HZ/20 + 2;
	u16 status;
219 220 221 222 223 224
	int ret;

	if (!vpd->busy)
		return 0;

	for (;;) {
225
		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
226
						&status);
G
Greg Thelen 已提交
227
		if (ret < 0)
228
			return ret;
229 230

		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
231 232 233
			vpd->busy = false;
			return 0;
		}
234

235 236 237 238 239
		if (time_after(jiffies, timeout)) {
			dev_printk(KERN_DEBUG, &dev->dev,
				   "vpd r/w failed.  This is likely a firmware "
				   "bug on this device.  Contact the card "
				   "vendor for a firmware update.");
240
			return -ETIMEDOUT;
241
		}
242 243 244 245
		if (fatal_signal_pending(current))
			return -EINTR;
		if (!cond_resched())
			udelay(10);
246 247 248
	}
}

249 250
static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count,
				  void *arg)
251 252 253
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
254 255 256
	int ret;
	loff_t end = pos + count;
	u8 *buf = arg;
257

258
	if (pos < 0 || pos > vpd->base.len || end > vpd->base.len)
259 260
		return -EINVAL;

261 262 263
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;

264 265 266
	ret = pci_vpd_pci22_wait(dev);
	if (ret < 0)
		goto out;
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	while (pos < end) {
		u32 val;
		unsigned int i, skip;

		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos & ~3);
		if (ret < 0)
			break;
		vpd->busy = true;
		vpd->flag = PCI_VPD_ADDR_F;
		ret = pci_vpd_pci22_wait(dev);
		if (ret < 0)
			break;

		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
		if (ret < 0)
			break;

		skip = pos & 3;
		for (i = 0;  i < sizeof(u32); i++) {
			if (i >= skip) {
				*buf++ = val;
				if (++pos == end)
					break;
			}
			val >>= 8;
		}
	}
296
out:
297
	mutex_unlock(&vpd->lock);
298
	return ret ? ret : count;
299 300
}

301 302
static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count,
				   const void *arg)
303 304 305
{
	struct pci_vpd_pci22 *vpd =
		container_of(dev->vpd, struct pci_vpd_pci22, base);
306 307
	const u8 *buf = arg;
	loff_t end = pos + count;
308
	int ret = 0;
309

310
	if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len)
311 312
		return -EINVAL;

313 314
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;
315

316 317 318
	ret = pci_vpd_pci22_wait(dev);
	if (ret < 0)
		goto out;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	while (pos < end) {
		u32 val;

		val = *buf++;
		val |= *buf++ << 8;
		val |= *buf++ << 16;
		val |= *buf++ << 24;

		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
		if (ret < 0)
			break;
		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos | PCI_VPD_ADDR_F);
		if (ret < 0)
			break;

		vpd->busy = true;
		vpd->flag = 0;
		ret = pci_vpd_pci22_wait(dev);
339 340
		if (ret < 0)
			break;
341 342 343

		pos += sizeof(u32);
	}
344
out:
345
	mutex_unlock(&vpd->lock);
346
	return ret ? ret : count;
347 348 349 350 351 352 353
}

static void pci_vpd_pci22_release(struct pci_dev *dev)
{
	kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
}

354
static const struct pci_vpd_ops pci_vpd_pci22_ops = {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	.read = pci_vpd_pci22_read,
	.write = pci_vpd_pci22_write,
	.release = pci_vpd_pci22_release,
};

int pci_vpd_pci22_init(struct pci_dev *dev)
{
	struct pci_vpd_pci22 *vpd;
	u8 cap;

	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
	if (!cap)
		return -ENODEV;
	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
	if (!vpd)
		return -ENOMEM;

372
	vpd->base.len = PCI_VPD_PCI22_SIZE;
373
	vpd->base.ops = &pci_vpd_pci22_ops;
374
	mutex_init(&vpd->lock);
375 376 377 378 379 380
	vpd->cap = cap;
	vpd->busy = false;
	dev->vpd = &vpd->base;
	return 0;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/**
 * pci_vpd_truncate - Set available Vital Product Data size
 * @dev:	pci device struct
 * @size:	available memory in bytes
 *
 * Adjust size of available VPD area.
 */
int pci_vpd_truncate(struct pci_dev *dev, size_t size)
{
	if (!dev->vpd)
		return -EINVAL;

	/* limited by the access method */
	if (size > dev->vpd->len)
		return -EINVAL;

	dev->vpd->len = size;
398 399
	if (dev->vpd->attr)
		dev->vpd->attr->size = size;
400 401 402 403 404

	return 0;
}
EXPORT_SYMBOL(pci_vpd_truncate);

405
/**
406
 * pci_cfg_access_lock - Lock PCI config reads/writes
407 408
 * @dev:	pci device struct
 *
409 410 411
 * When access is locked, any userspace reads or writes to config
 * space and concurrent lock requests will sleep until access is
 * allowed via pci_cfg_access_unlocked again.
412
 */
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
void pci_cfg_access_lock(struct pci_dev *dev)
{
	might_sleep();

	raw_spin_lock_irq(&pci_lock);
	if (dev->block_cfg_access)
		pci_wait_cfg(dev);
	dev->block_cfg_access = 1;
	raw_spin_unlock_irq(&pci_lock);
}
EXPORT_SYMBOL_GPL(pci_cfg_access_lock);

/**
 * pci_cfg_access_trylock - try to lock PCI config reads/writes
 * @dev:	pci device struct
 *
 * Same as pci_cfg_access_lock, but will return 0 if access is
 * already locked, 1 otherwise. This function can be used from
 * atomic contexts.
 */
bool pci_cfg_access_trylock(struct pci_dev *dev)
434 435
{
	unsigned long flags;
436
	bool locked = true;
437

438
	raw_spin_lock_irqsave(&pci_lock, flags);
439 440 441 442
	if (dev->block_cfg_access)
		locked = false;
	else
		dev->block_cfg_access = 1;
443
	raw_spin_unlock_irqrestore(&pci_lock, flags);
444

445
	return locked;
446
}
447
EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
448 449

/**
450
 * pci_cfg_access_unlock - Unlock PCI config reads/writes
451 452
 * @dev:	pci device struct
 *
453
 * This function allows PCI config accesses to resume.
454
 */
455
void pci_cfg_access_unlock(struct pci_dev *dev)
456 457 458
{
	unsigned long flags;

459
	raw_spin_lock_irqsave(&pci_lock, flags);
460 461 462

	/* This indicates a problem in the caller, but we don't need
	 * to kill them, unlike a double-block above. */
463
	WARN_ON(!dev->block_cfg_access);
464

465 466
	dev->block_cfg_access = 0;
	wake_up_all(&pci_cfg_wait);
467
	raw_spin_unlock_irqrestore(&pci_lock, flags);
468
}
469
EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);