mtd_nandecctest.c 7.9 KB
Newer Older
1 2
#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

3 4 5 6 7 8
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/random.h>
#include <linux/string.h>
#include <linux/bitops.h>
9
#include <linux/slab.h>
10 11
#include <linux/mtd/nand_ecc.h>

12 13 14 15 16 17 18 19 20 21
/*
 * Test the implementation for software ECC
 *
 * No actual MTD device is needed, So we don't need to warry about losing
 * important data by human error.
 *
 * This covers possible patterns of corruption which can be reliably corrected
 * or detected.
 */

22 23
#if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)

24 25 26 27 28 29
struct nand_ecc_test {
	const char *name;
	void (*prepare)(void *, void *, void *, void *, const size_t);
	int (*verify)(void *, void *, void *, const size_t);
};

30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * The reason for this __change_bit_le() instead of __change_bit() is to inject
 * bit error properly within the region which is not a multiple of
 * sizeof(unsigned long) on big-endian systems
 */
#ifdef __LITTLE_ENDIAN
#define __change_bit_le(nr, addr) __change_bit(nr, addr)
#elif defined(__BIG_ENDIAN)
#define __change_bit_le(nr, addr) \
		__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
#else
#error "Unknown byte order"
#endif

44 45
static void single_bit_error_data(void *error_data, void *correct_data,
				size_t size)
46
{
47
	unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
48

49 50 51 52
	memcpy(error_data, correct_data, size);
	__change_bit_le(offset, error_data);
}

53 54 55 56 57
static void double_bit_error_data(void *error_data, void *correct_data,
				size_t size)
{
	unsigned int offset[2];

58
	offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
59
	do {
60
		offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
61 62 63 64 65 66 67 68
	} while (offset[0] == offset[1]);

	memcpy(error_data, correct_data, size);

	__change_bit_le(offset[0], error_data);
	__change_bit_le(offset[1], error_data);
}

69 70
static unsigned int random_ecc_bit(size_t size)
{
71
	unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
72 73 74 75 76 77 78

	if (size == 256) {
		/*
		 * Don't inject a bit error into the insignificant bits (16th
		 * and 17th bit) in ECC code for 256 byte data block
		 */
		while (offset == 16 || offset == 17)
79
			offset = prandom_u32() % (3 * BITS_PER_BYTE);
80 81 82 83 84 85 86 87 88 89 90 91 92 93
	}

	return offset;
}

static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
				size_t size)
{
	unsigned int offset = random_ecc_bit(size);

	memcpy(error_ecc, correct_ecc, 3);
	__change_bit_le(offset, error_ecc);
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
				size_t size)
{
	unsigned int offset[2];

	offset[0] = random_ecc_bit(size);
	do {
		offset[1] = random_ecc_bit(size);
	} while (offset[0] == offset[1]);

	memcpy(error_ecc, correct_ecc, 3);
	__change_bit_le(offset[0], error_ecc);
	__change_bit_le(offset[1], error_ecc);
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static void no_bit_error(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

static int no_bit_error_verify(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	unsigned char calc_ecc[3];
	int ret;

	__nand_calculate_ecc(error_data, size, calc_ecc);
	ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
	if (ret == 0 && !memcmp(correct_data, error_data, size))
		return 0;

	return -EINVAL;
}

130 131 132 133 134 135 136
static void single_bit_error_in_data(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	single_bit_error_data(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

137 138 139 140 141 142 143
static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	single_bit_error_ecc(error_ecc, correct_ecc, size);
}

144 145 146 147 148 149 150 151 152 153 154 155
static int single_bit_error_correct(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	unsigned char calc_ecc[3];
	int ret;

	__nand_calculate_ecc(error_data, size, calc_ecc);
	ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
	if (ret == 1 && !memcmp(correct_data, error_data, size))
		return 0;

	return -EINVAL;
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static void double_bit_error_in_data(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	double_bit_error_data(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	single_bit_error_data(error_data, correct_data, size);
	single_bit_error_ecc(error_ecc, correct_ecc, size);
}

static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	double_bit_error_ecc(error_ecc, correct_ecc, size);
}

static int double_bit_error_detect(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	unsigned char calc_ecc[3];
	int ret;

	__nand_calculate_ecc(error_data, size, calc_ecc);
	ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);

	return (ret == -1) ? 0 : -EINVAL;
}

191
static const struct nand_ecc_test nand_ecc_test[] = {
192 193 194 195 196
	{
		.name = "no-bit-error",
		.prepare = no_bit_error,
		.verify = no_bit_error_verify,
	},
197 198 199 200 201
	{
		.name = "single-bit-error-in-data-correct",
		.prepare = single_bit_error_in_data,
		.verify = single_bit_error_correct,
	},
202 203 204 205 206
	{
		.name = "single-bit-error-in-ecc-correct",
		.prepare = single_bit_error_in_ecc,
		.verify = single_bit_error_correct,
	},
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	{
		.name = "double-bit-error-in-data-detect",
		.prepare = double_bit_error_in_data,
		.verify = double_bit_error_detect,
	},
	{
		.name = "single-bit-error-in-data-and-ecc-detect",
		.prepare = single_bit_error_in_data_and_ecc,
		.verify = double_bit_error_detect,
	},
	{
		.name = "double-bit-error-in-ecc-detect",
		.prepare = double_bit_error_in_ecc,
		.verify = double_bit_error_detect,
	},
222 223
};

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
			void *correct_ecc, const size_t size)
{
	pr_info("hexdump of error data:\n");
	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
			error_data, size, false);
	print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
			DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);

	pr_info("hexdump of correct data:\n");
	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
			correct_data, size, false);
	print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
			DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
}

240
static int nand_ecc_test_run(const size_t size)
241
{
242
	int i;
243 244 245 246 247
	int err = 0;
	void *error_data;
	void *error_ecc;
	void *correct_data;
	void *correct_ecc;
248

249 250 251 252 253 254 255 256 257
	error_data = kmalloc(size, GFP_KERNEL);
	error_ecc = kmalloc(3, GFP_KERNEL);
	correct_data = kmalloc(size, GFP_KERNEL);
	correct_ecc = kmalloc(3, GFP_KERNEL);

	if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
		err = -ENOMEM;
		goto error;
	}
258

259 260
	get_random_bytes(correct_data, size);
	__nand_calculate_ecc(correct_data, size, correct_ecc);
261 262 263 264 265 266 267 268

	for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
		nand_ecc_test[i].prepare(error_data, error_ecc,
				correct_data, correct_ecc, size);
		err = nand_ecc_test[i].verify(error_data, error_ecc,
						correct_data, size);

		if (err) {
269
			pr_err("not ok - %s-%zd\n",
270 271 272 273 274
				nand_ecc_test[i].name, size);
			dump_data_ecc(error_data, error_ecc,
				correct_data, correct_ecc, size);
			break;
		}
275
		pr_info("ok - %s-%zd\n",
276
			nand_ecc_test[i].name, size);
277
	}
278 279 280 281 282 283 284
error:
	kfree(error_data);
	kfree(error_ecc);
	kfree(correct_data);
	kfree(correct_ecc);

	return err;
285 286 287 288
}

#else

289
static int nand_ecc_test_run(const size_t size)
290 291 292 293 294 295 296 297
{
	return 0;
}

#endif

static int __init ecc_test_init(void)
{
298
	int err;
299

300
	err = nand_ecc_test_run(256);
301 302 303
	if (err)
		return err;

304
	return nand_ecc_test_run(512);
305 306 307 308 309 310 311 312 313 314 315 316
}

static void __exit ecc_test_exit(void)
{
}

module_init(ecc_test_init);
module_exit(ecc_test_exit);

MODULE_DESCRIPTION("NAND ECC function test module");
MODULE_AUTHOR("Akinobu Mita");
MODULE_LICENSE("GPL");
新手
引导
客服 返回
顶部