set_memory.c 56.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3
/*
 * Copyright 2002 Andi Kleen, SuSE Labs.
L
Linus Torvalds 已提交
4
 * Thanks to Ben LaHaise for precious feedback.
5
 */
L
Linus Torvalds 已提交
6
#include <linux/highmem.h>
M
Mike Rapoport 已提交
7
#include <linux/memblock.h>
8 9
#include <linux/sched.h>
#include <linux/mm.h>
10
#include <linux/interrupt.h>
11 12
#include <linux/seq_file.h>
#include <linux/debugfs.h>
13
#include <linux/pfn.h>
14
#include <linux/percpu.h>
15
#include <linux/gfp.h>
16
#include <linux/pci.h>
17
#include <linux/vmalloc.h>
18
#include <linux/libnvdimm.h>
19

20
#include <asm/e820/api.h>
L
Linus Torvalds 已提交
21 22
#include <asm/processor.h>
#include <asm/tlbflush.h>
D
Dave Jones 已提交
23
#include <asm/sections.h>
24
#include <asm/setup.h>
25
#include <linux/uaccess.h>
26
#include <asm/pgalloc.h>
T
Thomas Gleixner 已提交
27
#include <asm/proto.h>
28
#include <asm/memtype.h>
L
Laura Abbott 已提交
29
#include <asm/set_memory.h>
L
Linus Torvalds 已提交
30

31
#include "../mm_internal.h"
32

I
Ingo Molnar 已提交
33 34 35
/*
 * The current flushing context - we pass it instead of 5 arguments:
 */
T
Thomas Gleixner 已提交
36
struct cpa_data {
37
	unsigned long	*vaddr;
38
	pgd_t		*pgd;
T
Thomas Gleixner 已提交
39 40
	pgprot_t	mask_set;
	pgprot_t	mask_clr;
41
	unsigned long	numpages;
42
	unsigned long	curpage;
T
Thomas Gleixner 已提交
43
	unsigned long	pfn;
44 45
	unsigned int	flags;
	unsigned int	force_split		: 1,
46 47
			force_static_prot	: 1,
			force_flush_all		: 1;
48
	struct page	**pages;
T
Thomas Gleixner 已提交
49 50
};

51
enum cpa_warn {
52
	CPA_CONFLICT,
53 54 55 56 57 58
	CPA_PROTECT,
	CPA_DETECT,
};

static const int cpa_warn_level = CPA_PROTECT;

59 60 61 62 63 64 65 66
/*
 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 * entries change the page attribute in parallel to some other cpu
 * splitting a large page entry along with changing the attribute.
 */
static DEFINE_SPINLOCK(cpa_lock);

67 68
#define CPA_FLUSHTLB 1
#define CPA_ARRAY 2
69
#define CPA_PAGES_ARRAY 4
70
#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
71

72
#ifdef CONFIG_PROC_FS
73 74
static unsigned long direct_pages_count[PG_LEVEL_NUM];

75
void update_page_count(int level, unsigned long pages)
76 77
{
	/* Protect against CPA */
A
Andrea Arcangeli 已提交
78
	spin_lock(&pgd_lock);
79
	direct_pages_count[level] += pages;
A
Andrea Arcangeli 已提交
80
	spin_unlock(&pgd_lock);
81 82 83 84
}

static void split_page_count(int level)
{
85 86 87
	if (direct_pages_count[level] == 0)
		return;

88 89 90 91
	direct_pages_count[level]--;
	direct_pages_count[level - 1] += PTRS_PER_PTE;
}

92
void arch_report_meminfo(struct seq_file *m)
93
{
94
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
H
Hugh Dickins 已提交
95 96
			direct_pages_count[PG_LEVEL_4K] << 2);
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
97
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
H
Hugh Dickins 已提交
98 99
			direct_pages_count[PG_LEVEL_2M] << 11);
#else
100
	seq_printf(m, "DirectMap4M:    %8lu kB\n",
H
Hugh Dickins 已提交
101 102 103
			direct_pages_count[PG_LEVEL_2M] << 12);
#endif
	if (direct_gbpages)
104
		seq_printf(m, "DirectMap1G:    %8lu kB\n",
H
Hugh Dickins 已提交
105
			direct_pages_count[PG_LEVEL_1G] << 20);
106
}
107 108 109
#else
static inline void split_page_count(int level) { }
#endif
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef CONFIG_X86_CPA_STATISTICS

static unsigned long cpa_1g_checked;
static unsigned long cpa_1g_sameprot;
static unsigned long cpa_1g_preserved;
static unsigned long cpa_2m_checked;
static unsigned long cpa_2m_sameprot;
static unsigned long cpa_2m_preserved;
static unsigned long cpa_4k_install;

static inline void cpa_inc_1g_checked(void)
{
	cpa_1g_checked++;
}

static inline void cpa_inc_2m_checked(void)
{
	cpa_2m_checked++;
}

static inline void cpa_inc_4k_install(void)
{
	cpa_4k_install++;
}

static inline void cpa_inc_lp_sameprot(int level)
{
	if (level == PG_LEVEL_1G)
		cpa_1g_sameprot++;
	else
		cpa_2m_sameprot++;
}

static inline void cpa_inc_lp_preserved(int level)
{
	if (level == PG_LEVEL_1G)
		cpa_1g_preserved++;
	else
		cpa_2m_preserved++;
}

static int cpastats_show(struct seq_file *m, void *p)
{
	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
	return 0;
}

static int cpastats_open(struct inode *inode, struct file *file)
{
	return single_open(file, cpastats_show, NULL);
}

static const struct file_operations cpastats_fops = {
	.open		= cpastats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __init cpa_stats_init(void)
{
	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
			    &cpastats_fops);
	return 0;
}
late_initcall(cpa_stats_init);
#else
static inline void cpa_inc_1g_checked(void) { }
static inline void cpa_inc_2m_checked(void) { }
static inline void cpa_inc_4k_install(void) { }
static inline void cpa_inc_lp_sameprot(int level) { }
static inline void cpa_inc_lp_preserved(int level) { }
#endif


192 193 194 195 196 197 198 199 200 201 202 203
static inline int
within(unsigned long addr, unsigned long start, unsigned long end)
{
	return addr >= start && addr < end;
}

static inline int
within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
{
	return addr >= start && addr <= end;
}

T
Thomas Gleixner 已提交
204 205 206 207
#ifdef CONFIG_X86_64

static inline unsigned long highmap_start_pfn(void)
{
208
	return __pa_symbol(_text) >> PAGE_SHIFT;
T
Thomas Gleixner 已提交
209 210 211 212
}

static inline unsigned long highmap_end_pfn(void)
{
213 214
	/* Do not reference physical address outside the kernel. */
	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
T
Thomas Gleixner 已提交
215 216
}

217
static bool __cpa_pfn_in_highmap(unsigned long pfn)
I
Ingo Molnar 已提交
218
{
219 220 221 222 223
	/*
	 * Kernel text has an alias mapping at a high address, known
	 * here as "highmap".
	 */
	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
224 225
}

226 227 228
#else

static bool __cpa_pfn_in_highmap(unsigned long pfn)
229
{
230 231
	/* There is no highmap on 32-bit */
	return false;
232 233
}

234 235
#endif

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * See set_mce_nospec().
 *
 * Machine check recovery code needs to change cache mode of poisoned pages to
 * UC to avoid speculative access logging another error. But passing the
 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 * speculative access. So we cheat and flip the top bit of the address. This
 * works fine for the code that updates the page tables. But at the end of the
 * process we need to flush the TLB and cache and the non-canonical address
 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 *
 * But in the common case we already have a canonical address. This code
 * will fix the top bit if needed and is a no-op otherwise.
 */
static inline unsigned long fix_addr(unsigned long addr)
{
#ifdef CONFIG_X86_64
	return (long)(addr << 1) >> 1;
#else
	return addr;
#endif
}

259
static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
260 261 262 263 264 265 266 267 268 269 270 271 272
{
	if (cpa->flags & CPA_PAGES_ARRAY) {
		struct page *page = cpa->pages[idx];

		if (unlikely(PageHighMem(page)))
			return 0;

		return (unsigned long)page_address(page);
	}

	if (cpa->flags & CPA_ARRAY)
		return cpa->vaddr[idx];

273
	return *cpa->vaddr + idx * PAGE_SIZE;
274 275
}

T
Thomas Gleixner 已提交
276 277 278
/*
 * Flushing functions
 */
279

P
Peter Zijlstra 已提交
280
static void clflush_cache_range_opt(void *vaddr, unsigned int size)
T
Thomas Gleixner 已提交
281
{
282 283
	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
284
	void *vend = vaddr + size;
285 286 287

	if (p >= vend)
		return;
T
Thomas Gleixner 已提交
288

289
	for (; p < vend; p += clflush_size)
290
		clflushopt(p);
P
Peter Zijlstra 已提交
291
}
I
Ingo Molnar 已提交
292

P
Peter Zijlstra 已提交
293 294 295 296 297 298 299 300 301 302 303 304
/**
 * clflush_cache_range - flush a cache range with clflush
 * @vaddr:	virtual start address
 * @size:	number of bytes to flush
 *
 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 * SFENCE to avoid ordering issues.
 */
void clflush_cache_range(void *vaddr, unsigned int size)
{
	mb();
	clflush_cache_range_opt(vaddr, size);
305
	mb();
T
Thomas Gleixner 已提交
306
}
307
EXPORT_SYMBOL_GPL(clflush_cache_range);
T
Thomas Gleixner 已提交
308

309
#ifdef CONFIG_ARCH_HAS_PMEM_API
310 311 312 313 314
void arch_invalidate_pmem(void *addr, size_t size)
{
	clflush_cache_range(addr, size);
}
EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
315
#endif
316

317
static void __cpa_flush_all(void *arg)
T
Thomas Gleixner 已提交
318
{
319 320
	unsigned long cache = (unsigned long)arg;

T
Thomas Gleixner 已提交
321 322 323 324 325 326
	/*
	 * Flush all to work around Errata in early athlons regarding
	 * large page flushing.
	 */
	__flush_tlb_all();

327
	if (cache && boot_cpu_data.x86 >= 4)
T
Thomas Gleixner 已提交
328 329 330
		wbinvd();
}

331
static void cpa_flush_all(unsigned long cache)
T
Thomas Gleixner 已提交
332
{
333
	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
T
Thomas Gleixner 已提交
334

335
	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
T
Thomas Gleixner 已提交
336 337
}

338
static void __cpa_flush_tlb(void *data)
339
{
340 341
	struct cpa_data *cpa = data;
	unsigned int i;
342

343
	for (i = 0; i < cpa->numpages; i++)
344
		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
345 346
}

347
static void cpa_flush(struct cpa_data *data, int cache)
348
{
349
	struct cpa_data *cpa = data;
350
	unsigned int i;
351

352
	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
353

354 355
	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		cpa_flush_all(cache);
356
		return;
I
Ingo Molnar 已提交
357
	}
358

359
	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
360
		flush_tlb_all();
361 362
	else
		on_each_cpu(__cpa_flush_tlb, cpa, 1);
363 364

	if (!cache)
365 366
		return;

P
Peter Zijlstra 已提交
367
	mb();
368 369 370
	for (i = 0; i < cpa->numpages; i++) {
		unsigned long addr = __cpa_addr(cpa, i);
		unsigned int level;
371

372
		pte_t *pte = lookup_address(addr, &level);
373 374 375 376 377

		/*
		 * Only flush present addresses:
		 */
		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
378
			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
379
	}
P
Peter Zijlstra 已提交
380
	mb();
381 382
}

383 384 385 386 387 388 389
static bool overlaps(unsigned long r1_start, unsigned long r1_end,
		     unsigned long r2_start, unsigned long r2_end)
{
	return (r1_start <= r2_end && r1_end >= r2_start) ||
		(r2_start <= r1_end && r2_end >= r1_start);
}

390
#ifdef CONFIG_PCI_BIOS
391
/*
392 393
 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 * based config access (CONFIG_PCI_GOBIOS) support.
394
 */
395
#define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
396
#define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
397

398
static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
399
{
400
	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
401 402 403 404
		return _PAGE_NX;
	return 0;
}
#else
405
static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
406 407 408
{
	return 0;
}
409
#endif
410

411 412 413 414 415
/*
 * The .rodata section needs to be read-only. Using the pfn catches all
 * aliases.  This also includes __ro_after_init, so do not enforce until
 * kernel_set_to_readonly is true.
 */
416
static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
417
{
418 419 420 421 422 423 424
	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));

	/*
	 * Note: __end_rodata is at page aligned and not inclusive, so
	 * subtract 1 to get the last enforced PFN in the rodata area.
	 */
	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
425

426
	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
427 428 429 430 431 432 433 434 435 436 437 438
		return _PAGE_RW;
	return 0;
}

/*
 * Protect kernel text against becoming non executable by forbidding
 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 * out of which the kernel actually executes.  Do not protect the low
 * mapping.
 *
 * This does not cover __inittext since that is gone after boot.
 */
439
static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
440
{
441 442 443 444
	unsigned long t_end = (unsigned long)_etext - 1;
	unsigned long t_start = (unsigned long)_text;

	if (overlaps(start, end, t_start, t_end))
445 446 447
		return _PAGE_NX;
	return 0;
}
448

449
#if defined(CONFIG_X86_64)
450 451 452 453 454 455 456 457 458
/*
 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 * kernel text mappings for the large page aligned text, rodata sections
 * will be always read-only. For the kernel identity mappings covering the
 * holes caused by this alignment can be anything that user asks.
 *
 * This will preserve the large page mappings for kernel text/data at no
 * extra cost.
 */
459 460
static pgprotval_t protect_kernel_text_ro(unsigned long start,
					  unsigned long end)
461
{
462 463
	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
	unsigned long t_start = (unsigned long)_text;
464 465
	unsigned int level;

466
	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
467
		return 0;
468
	/*
469 470 471
	 * Don't enforce the !RW mapping for the kernel text mapping, if
	 * the current mapping is already using small page mapping.  No
	 * need to work hard to preserve large page mappings in this case.
472
	 *
473 474 475 476 477 478
	 * This also fixes the Linux Xen paravirt guest boot failure caused
	 * by unexpected read-only mappings for kernel identity
	 * mappings. In this paravirt guest case, the kernel text mapping
	 * and the kernel identity mapping share the same page-table pages,
	 * so the protections for kernel text and identity mappings have to
	 * be the same.
479
	 */
480
	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
481 482 483 484
		return _PAGE_RW;
	return 0;
}
#else
485 486
static pgprotval_t protect_kernel_text_ro(unsigned long start,
					  unsigned long end)
487 488 489
{
	return 0;
}
490 491
#endif

492 493 494 495 496 497 498 499 500 501
static inline bool conflicts(pgprot_t prot, pgprotval_t val)
{
	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
}

static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
				  unsigned long start, unsigned long end,
				  unsigned long pfn, const char *txt)
{
	static const char *lvltxt[] = {
502
		[CPA_CONFLICT]	= "conflict",
503 504 505 506 507 508 509 510 511 512 513 514
		[CPA_PROTECT]	= "protect",
		[CPA_DETECT]	= "detect",
	};

	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
		return;

	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
		(unsigned long long)val);
}

515 516 517 518 519 520
/*
 * Certain areas of memory on x86 require very specific protection flags,
 * for example the BIOS area or kernel text. Callers don't always get this
 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 * checks and fixes these known static required protection bits.
 */
521
static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
522
					  unsigned long pfn, unsigned long npg,
523
					  unsigned long lpsize, int warnlvl)
524
{
525
	pgprotval_t forbidden, res;
526
	unsigned long end;
527

528 529 530 531 532 533 534
	/*
	 * There is no point in checking RW/NX conflicts when the requested
	 * mapping is setting the page !PRESENT.
	 */
	if (!(pgprot_val(prot) & _PAGE_PRESENT))
		return prot;

535
	/* Operate on the virtual address */
536
	end = start + npg * PAGE_SIZE - 1;
537 538 539 540 541

	res = protect_kernel_text(start, end);
	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
	forbidden = res;

542 543 544 545 546 547 548 549 550 551 552
	/*
	 * Special case to preserve a large page. If the change spawns the
	 * full large page mapping then there is no point to split it
	 * up. Happens with ftrace and is going to be removed once ftrace
	 * switched to text_poke().
	 */
	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
		res = protect_kernel_text_ro(start, end);
		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
		forbidden |= res;
	}
553 554

	/* Check the PFN directly */
555 556 557 558 559 560 561
	res = protect_pci_bios(pfn, pfn + npg - 1);
	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
	forbidden |= res;

	res = protect_rodata(pfn, pfn + npg - 1);
	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
	forbidden |= res;
I
Ingo Molnar 已提交
562

563
	return __pgprot(pgprot_val(prot) & ~forbidden);
I
Ingo Molnar 已提交
564 565
}

566 567 568 569 570 571
/*
 * Lookup the page table entry for a virtual address in a specific pgd.
 * Return a pointer to the entry and the level of the mapping.
 */
pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
			     unsigned int *level)
572
{
573
	p4d_t *p4d;
L
Linus Torvalds 已提交
574 575
	pud_t *pud;
	pmd_t *pmd;
576

T
Thomas Gleixner 已提交
577 578
	*level = PG_LEVEL_NONE;

L
Linus Torvalds 已提交
579 580
	if (pgd_none(*pgd))
		return NULL;
I
Ingo Molnar 已提交
581

582 583 584 585 586 587 588 589 590
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d))
		return NULL;

	*level = PG_LEVEL_512G;
	if (p4d_large(*p4d) || !p4d_present(*p4d))
		return (pte_t *)p4d;

	pud = pud_offset(p4d, address);
L
Linus Torvalds 已提交
591 592
	if (pud_none(*pud))
		return NULL;
593 594 595 596 597

	*level = PG_LEVEL_1G;
	if (pud_large(*pud) || !pud_present(*pud))
		return (pte_t *)pud;

L
Linus Torvalds 已提交
598 599 600
	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd))
		return NULL;
T
Thomas Gleixner 已提交
601 602

	*level = PG_LEVEL_2M;
T
Thomas Gleixner 已提交
603
	if (pmd_large(*pmd) || !pmd_present(*pmd))
L
Linus Torvalds 已提交
604 605
		return (pte_t *)pmd;

T
Thomas Gleixner 已提交
606
	*level = PG_LEVEL_4K;
I
Ingo Molnar 已提交
607

608 609
	return pte_offset_kernel(pmd, address);
}
610 611 612 613 614 615 616 617 618 619 620

/*
 * Lookup the page table entry for a virtual address. Return a pointer
 * to the entry and the level of the mapping.
 *
 * Note: We return pud and pmd either when the entry is marked large
 * or when the present bit is not set. Otherwise we would return a
 * pointer to a nonexisting mapping.
 */
pte_t *lookup_address(unsigned long address, unsigned int *level)
{
621
	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
622
}
623
EXPORT_SYMBOL_GPL(lookup_address);
624

625 626 627 628 629 630 631 632 633 634 635
/*
 * Lookup the page table entry for a virtual address in a given mm. Return a
 * pointer to the entry and the level of the mapping.
 */
pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
			    unsigned int *level)
{
	return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
}
EXPORT_SYMBOL_GPL(lookup_address_in_mm);

636 637 638
static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
				  unsigned int *level)
{
639
	if (cpa->pgd)
640
		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
641 642
					       address, level);

643
	return lookup_address(address, level);
644 645
}

646 647 648 649 650 651 652
/*
 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 * or NULL if not present.
 */
pmd_t *lookup_pmd_address(unsigned long address)
{
	pgd_t *pgd;
653
	p4d_t *p4d;
654 655 656 657 658 659
	pud_t *pud;

	pgd = pgd_offset_k(address);
	if (pgd_none(*pgd))
		return NULL;

660 661 662 663 664
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
		return NULL;

	pud = pud_offset(p4d, address);
665 666 667 668 669 670
	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
		return NULL;

	return pmd_offset(pud, address);
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * This is necessary because __pa() does not work on some
 * kinds of memory, like vmalloc() or the alloc_remap()
 * areas on 32-bit NUMA systems.  The percpu areas can
 * end up in this kind of memory, for instance.
 *
 * This could be optimized, but it is only intended to be
 * used at inititalization time, and keeping it
 * unoptimized should increase the testing coverage for
 * the more obscure platforms.
 */
phys_addr_t slow_virt_to_phys(void *__virt_addr)
{
	unsigned long virt_addr = (unsigned long)__virt_addr;
685 686
	phys_addr_t phys_addr;
	unsigned long offset;
687 688 689 690 691
	enum pg_level level;
	pte_t *pte;

	pte = lookup_address(virt_addr, &level);
	BUG_ON(!pte);
692

693 694 695 696 697
	/*
	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
	 * make 32-PAE kernel work correctly.
	 */
698 699
	switch (level) {
	case PG_LEVEL_1G:
700
		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
701 702 703
		offset = virt_addr & ~PUD_PAGE_MASK;
		break;
	case PG_LEVEL_2M:
704
		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
705 706 707
		offset = virt_addr & ~PMD_PAGE_MASK;
		break;
	default:
708
		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
709 710 711 712
		offset = virt_addr & ~PAGE_MASK;
	}

	return (phys_addr_t)(phys_addr | offset);
713 714 715
}
EXPORT_SYMBOL_GPL(slow_virt_to_phys);

I
Ingo Molnar 已提交
716 717 718
/*
 * Set the new pmd in all the pgds we know about:
 */
I
Ingo Molnar 已提交
719
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
720 721 722
{
	/* change init_mm */
	set_pte_atomic(kpte, pte);
723
#ifdef CONFIG_X86_32
724
	if (!SHARED_KERNEL_PMD) {
725 726
		struct page *page;

727
		list_for_each_entry(page, &pgd_list, lru) {
728
			pgd_t *pgd;
729
			p4d_t *p4d;
730 731 732 733
			pud_t *pud;
			pmd_t *pmd;

			pgd = (pgd_t *)page_address(page) + pgd_index(address);
734 735
			p4d = p4d_offset(pgd, address);
			pud = pud_offset(p4d, address);
736 737 738
			pmd = pmd_offset(pud, address);
			set_pte_atomic((pte_t *)pmd, pte);
		}
L
Linus Torvalds 已提交
739
	}
740
#endif
L
Linus Torvalds 已提交
741 742
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
{
	/*
	 * _PAGE_GLOBAL means "global page" for present PTEs.
	 * But, it is also used to indicate _PAGE_PROTNONE
	 * for non-present PTEs.
	 *
	 * This ensures that a _PAGE_GLOBAL PTE going from
	 * present to non-present is not confused as
	 * _PAGE_PROTNONE.
	 */
	if (!(pgprot_val(prot) & _PAGE_PRESENT))
		pgprot_val(prot) &= ~_PAGE_GLOBAL;

	return prot;
}

760 761
static int __should_split_large_page(pte_t *kpte, unsigned long address,
				     struct cpa_data *cpa)
762
{
763
	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
764
	pgprot_t old_prot, new_prot, req_prot, chk_prot;
765
	pte_t new_pte, *tmp;
766
	enum pg_level level;
767 768 769 770 771

	/*
	 * Check for races, another CPU might have split this page
	 * up already:
	 */
772
	tmp = _lookup_address_cpa(cpa, address, &level);
773
	if (tmp != kpte)
774
		return 1;
775 776 777

	switch (level) {
	case PG_LEVEL_2M:
778 779
		old_prot = pmd_pgprot(*(pmd_t *)kpte);
		old_pfn = pmd_pfn(*(pmd_t *)kpte);
780
		cpa_inc_2m_checked();
781
		break;
782
	case PG_LEVEL_1G:
783 784
		old_prot = pud_pgprot(*(pud_t *)kpte);
		old_pfn = pud_pfn(*(pud_t *)kpte);
785
		cpa_inc_1g_checked();
786
		break;
787
	default:
788
		return -EINVAL;
789 790
	}

791 792 793
	psize = page_level_size(level);
	pmask = page_level_mask(level);

794 795 796 797
	/*
	 * Calculate the number of pages, which fit into this large
	 * page starting at address:
	 */
798 799
	lpaddr = (address + psize) & pmask;
	numpages = (lpaddr - address) >> PAGE_SHIFT;
800 801
	if (numpages < cpa->numpages)
		cpa->numpages = numpages;
802 803 804

	/*
	 * We are safe now. Check whether the new pgprot is the same:
805 806
	 * Convert protection attributes to 4k-format, as cpa->mask* are set
	 * up accordingly.
807
	 */
808

809
	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
810
	req_prot = pgprot_large_2_4k(old_prot);
811

812 813
	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
T
Thomas Gleixner 已提交
814

815 816 817 818 819 820
	/*
	 * req_prot is in format of 4k pages. It must be converted to large
	 * page format: the caching mode includes the PAT bit located at
	 * different bit positions in the two formats.
	 */
	req_prot = pgprot_4k_2_large(req_prot);
821
	req_prot = pgprot_clear_protnone_bits(req_prot);
822
	if (pgprot_val(req_prot) & _PAGE_PRESENT)
823
		pgprot_val(req_prot) |= _PAGE_PSE;
824

T
Thomas Gleixner 已提交
825
	/*
826 827
	 * old_pfn points to the large page base pfn. So we need to add the
	 * offset of the virtual address:
T
Thomas Gleixner 已提交
828
	 */
829
	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
T
Thomas Gleixner 已提交
830 831
	cpa->pfn = pfn;

832 833 834 835 836 837
	/*
	 * Calculate the large page base address and the number of 4K pages
	 * in the large page
	 */
	lpaddr = address & pmask;
	numpages = psize >> PAGE_SHIFT;
838

839 840 841 842 843 844
	/*
	 * Sanity check that the existing mapping is correct versus the static
	 * protections. static_protections() guards against !PRESENT, so no
	 * extra conditional required here.
	 */
	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
845
				      psize, CPA_CONFLICT);
846 847 848 849 850 851 852 853 854 855

	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
		/*
		 * Split the large page and tell the split code to
		 * enforce static protections.
		 */
		cpa->force_static_prot = 1;
		return 1;
	}

856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/*
	 * Optimization: If the requested pgprot is the same as the current
	 * pgprot, then the large page can be preserved and no updates are
	 * required independent of alignment and length of the requested
	 * range. The above already established that the current pgprot is
	 * correct, which in consequence makes the requested pgprot correct
	 * as well if it is the same. The static protection scan below will
	 * not come to a different conclusion.
	 */
	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
		cpa_inc_lp_sameprot(level);
		return 0;
	}

870
	/*
871
	 * If the requested range does not cover the full page, split it up
872
	 */
873 874
	if (address != lpaddr || cpa->numpages != numpages)
		return 1;
875 876

	/*
877 878
	 * Check whether the requested pgprot is conflicting with a static
	 * protection requirement in the large page.
879
	 */
880
	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
881
				      psize, CPA_DETECT);
882 883

	/*
884 885 886 887 888 889 890
	 * If there is a conflict, split the large page.
	 *
	 * There used to be a 4k wise evaluation trying really hard to
	 * preserve the large pages, but experimentation has shown, that this
	 * does not help at all. There might be corner cases which would
	 * preserve one large page occasionally, but it's really not worth the
	 * extra code and cycles for the common case.
891
	 */
892
	if (pgprot_val(req_prot) != pgprot_val(new_prot))
893 894 895 896 897 898
		return 1;

	/* All checks passed. Update the large page mapping. */
	new_pte = pfn_pte(old_pfn, new_prot);
	__set_pmd_pte(kpte, address, new_pte);
	cpa->flags |= CPA_FLUSHTLB;
899
	cpa_inc_lp_preserved(level);
900 901 902 903 904 905 906 907 908 909
	return 0;
}

static int should_split_large_page(pte_t *kpte, unsigned long address,
				   struct cpa_data *cpa)
{
	int do_split;

	if (cpa->force_split)
		return 1;
910

911 912
	spin_lock(&pgd_lock);
	do_split = __should_split_large_page(kpte, address, cpa);
A
Andrea Arcangeli 已提交
913
	spin_unlock(&pgd_lock);
I
Ingo Molnar 已提交
914

I
Ingo Molnar 已提交
915
	return do_split;
916 917
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
			  pgprot_t ref_prot, unsigned long address,
			  unsigned long size)
{
	unsigned int npg = PFN_DOWN(size);
	pgprot_t prot;

	/*
	 * If should_split_large_page() discovered an inconsistent mapping,
	 * remove the invalid protection in the split mapping.
	 */
	if (!cpa->force_static_prot)
		goto set;

932 933
	/* Hand in lpsize = 0 to enforce the protection mechanism */
	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

	if (pgprot_val(prot) == pgprot_val(ref_prot))
		goto set;

	/*
	 * If this is splitting a PMD, fix it up. PUD splits cannot be
	 * fixed trivially as that would require to rescan the newly
	 * installed PMD mappings after returning from split_large_page()
	 * so an eventual further split can allocate the necessary PTE
	 * pages. Warn for now and revisit it in case this actually
	 * happens.
	 */
	if (size == PAGE_SIZE)
		ref_prot = prot;
	else
		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
set:
	set_pte(pte, pfn_pte(pfn, ref_prot));
}

954
static int
955 956
__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
		   struct page *base)
957
{
958
	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
959
	pte_t *pbase = (pte_t *)page_address(base);
I
Ingo Molnar 已提交
960 961
	unsigned int i, level;
	pgprot_t ref_prot;
962
	pte_t *tmp;
963

A
Andrea Arcangeli 已提交
964
	spin_lock(&pgd_lock);
965 966 967 968
	/*
	 * Check for races, another CPU might have split this page
	 * up for us already:
	 */
969
	tmp = _lookup_address_cpa(cpa, address, &level);
970 971 972 973
	if (tmp != kpte) {
		spin_unlock(&pgd_lock);
		return 1;
	}
974

975
	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
976

977 978 979
	switch (level) {
	case PG_LEVEL_2M:
		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
980 981 982 983
		/*
		 * Clear PSE (aka _PAGE_PAT) and move
		 * PAT bit to correct position.
		 */
984
		ref_prot = pgprot_large_2_4k(ref_prot);
985
		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
986 987
		lpaddr = address & PMD_MASK;
		lpinc = PAGE_SIZE;
988
		break;
989

990 991 992
	case PG_LEVEL_1G:
		ref_prot = pud_pgprot(*(pud_t *)kpte);
		ref_pfn = pud_pfn(*(pud_t *)kpte);
993
		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
994 995
		lpaddr = address & PUD_MASK;
		lpinc = PMD_SIZE;
996
		/*
997
		 * Clear the PSE flags if the PRESENT flag is not set
998 999 1000
		 * otherwise pmd_present/pmd_huge will return true
		 * even on a non present pmd.
		 */
1001
		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1002
			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1003 1004 1005 1006 1007
		break;

	default:
		spin_unlock(&pgd_lock);
		return 1;
1008 1009
	}

1010
	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1011

1012 1013 1014
	/*
	 * Get the target pfn from the original entry:
	 */
1015
	pfn = ref_pfn;
1016 1017
	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1018

1019 1020 1021 1022 1023 1024
	if (virt_addr_valid(address)) {
		unsigned long pfn = PFN_DOWN(__pa(address));

		if (pfn_range_is_mapped(pfn, pfn + 1))
			split_page_count(level);
	}
1025

1026
	/*
1027
	 * Install the new, split up pagetable.
1028
	 *
1029 1030 1031
	 * We use the standard kernel pagetable protections for the new
	 * pagetable protections, the actual ptes set above control the
	 * primary protection behavior:
1032
	 */
1033
	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1034 1035

	/*
1036 1037
	 * Do a global flush tlb after splitting the large page
	 * and before we do the actual change page attribute in the PTE.
1038
	 *
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	 * Without this, we violate the TLB application note, that says:
	 * "The TLBs may contain both ordinary and large-page
	 *  translations for a 4-KByte range of linear addresses. This
	 *  may occur if software modifies the paging structures so that
	 *  the page size used for the address range changes. If the two
	 *  translations differ with respect to page frame or attributes
	 *  (e.g., permissions), processor behavior is undefined and may
	 *  be implementation-specific."
	 *
	 * We do this global tlb flush inside the cpa_lock, so that we
	 * don't allow any other cpu, with stale tlb entries change the
	 * page attribute in parallel, that also falls into the
	 * just split large page entry.
1052
	 */
1053
	flush_tlb_all();
1054
	spin_unlock(&pgd_lock);
1055

1056 1057
	return 0;
}
1058

1059 1060
static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
			    unsigned long address)
1061 1062 1063
{
	struct page *base;

1064
	if (!debug_pagealloc_enabled())
1065
		spin_unlock(&cpa_lock);
1066
	base = alloc_pages(GFP_KERNEL, 0);
1067
	if (!debug_pagealloc_enabled())
1068 1069 1070 1071
		spin_lock(&cpa_lock);
	if (!base)
		return -ENOMEM;

1072
	if (__split_large_page(cpa, kpte, address, base))
S
Suresh Siddha 已提交
1073
		__free_page(base);
1074 1075 1076 1077

	return 0;
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static bool try_to_free_pte_page(pte_t *pte)
{
	int i;

	for (i = 0; i < PTRS_PER_PTE; i++)
		if (!pte_none(pte[i]))
			return false;

	free_page((unsigned long)pte);
	return true;
}

static bool try_to_free_pmd_page(pmd_t *pmd)
{
	int i;

	for (i = 0; i < PTRS_PER_PMD; i++)
		if (!pmd_none(pmd[i]))
			return false;

	free_page((unsigned long)pmd);
	return true;
}

static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
{
	pte_t *pte = pte_offset_kernel(pmd, start);

	while (start < end) {
		set_pte(pte, __pte(0));

		start += PAGE_SIZE;
		pte++;
	}

	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
		pmd_clear(pmd);
		return true;
	}
	return false;
}

static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
			      unsigned long start, unsigned long end)
{
	if (unmap_pte_range(pmd, start, end))
		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
			pud_clear(pud);
}

static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
{
	pmd_t *pmd = pmd_offset(pud, start);

	/*
	 * Not on a 2MB page boundary?
	 */
	if (start & (PMD_SIZE - 1)) {
		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
		unsigned long pre_end = min_t(unsigned long, end, next_page);

		__unmap_pmd_range(pud, pmd, start, pre_end);

		start = pre_end;
		pmd++;
	}

	/*
	 * Try to unmap in 2M chunks.
	 */
	while (end - start >= PMD_SIZE) {
		if (pmd_large(*pmd))
			pmd_clear(pmd);
		else
			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);

		start += PMD_SIZE;
		pmd++;
	}

	/*
	 * 4K leftovers?
	 */
	if (start < end)
		return __unmap_pmd_range(pud, pmd, start, end);

	/*
	 * Try again to free the PMD page if haven't succeeded above.
	 */
	if (!pud_none(*pud))
		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
			pud_clear(pud);
}
1171

1172
static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1173
{
1174
	pud_t *pud = pud_offset(p4d, start);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	/*
	 * Not on a GB page boundary?
	 */
	if (start & (PUD_SIZE - 1)) {
		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
		unsigned long pre_end	= min_t(unsigned long, end, next_page);

		unmap_pmd_range(pud, start, pre_end);

		start = pre_end;
		pud++;
	}

	/*
	 * Try to unmap in 1G chunks?
	 */
	while (end - start >= PUD_SIZE) {

		if (pud_large(*pud))
			pud_clear(pud);
		else
			unmap_pmd_range(pud, start, start + PUD_SIZE);

		start += PUD_SIZE;
		pud++;
	}

	/*
	 * 2M leftovers?
	 */
	if (start < end)
		unmap_pmd_range(pud, start, end);

	/*
	 * No need to try to free the PUD page because we'll free it in
	 * populate_pgd's error path
	 */
}

1215 1216
static int alloc_pte_page(pmd_t *pmd)
{
1217
	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1218 1219 1220 1221 1222 1223 1224
	if (!pte)
		return -1;

	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	return 0;
}

1225 1226
static int alloc_pmd_page(pud_t *pud)
{
1227
	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1228 1229 1230 1231 1232 1233 1234
	if (!pmd)
		return -1;

	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	return 0;
}

1235 1236 1237 1238 1239 1240 1241 1242
static void populate_pte(struct cpa_data *cpa,
			 unsigned long start, unsigned long end,
			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, start);

1243
	pgprot = pgprot_clear_protnone_bits(pgprot);
1244 1245

	while (num_pages-- && start < end) {
1246
		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1247 1248

		start	 += PAGE_SIZE;
1249
		cpa->pfn++;
1250 1251 1252
		pte++;
	}
}
1253

1254 1255 1256
static long populate_pmd(struct cpa_data *cpa,
			 unsigned long start, unsigned long end,
			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1257
{
1258
	long cur_pages = 0;
1259
	pmd_t *pmd;
1260
	pgprot_t pmd_pgprot;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

	/*
	 * Not on a 2M boundary?
	 */
	if (start & (PMD_SIZE - 1)) {
		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;

		pre_end   = min_t(unsigned long, pre_end, next_page);
		cur_pages = (pre_end - start) >> PAGE_SHIFT;
		cur_pages = min_t(unsigned int, num_pages, cur_pages);

		/*
		 * Need a PTE page?
		 */
		pmd = pmd_offset(pud, start);
		if (pmd_none(*pmd))
			if (alloc_pte_page(pmd))
				return -1;

		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);

		start = pre_end;
	}

	/*
	 * We mapped them all?
	 */
	if (num_pages == cur_pages)
		return cur_pages;

1292 1293
	pmd_pgprot = pgprot_4k_2_large(pgprot);

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	while (end - start >= PMD_SIZE) {

		/*
		 * We cannot use a 1G page so allocate a PMD page if needed.
		 */
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		pmd = pmd_offset(pud, start);

1305 1306
		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
					canon_pgprot(pmd_pgprot))));
1307 1308

		start	  += PMD_SIZE;
1309
		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		cur_pages += PMD_SIZE >> PAGE_SHIFT;
	}

	/*
	 * Map trailing 4K pages.
	 */
	if (start < end) {
		pmd = pmd_offset(pud, start);
		if (pmd_none(*pmd))
			if (alloc_pte_page(pmd))
				return -1;

		populate_pte(cpa, start, end, num_pages - cur_pages,
			     pmd, pgprot);
	}
	return num_pages;
}
1327

1328 1329
static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
			pgprot_t pgprot)
1330 1331 1332
{
	pud_t *pud;
	unsigned long end;
1333
	long cur_pages = 0;
1334
	pgprot_t pud_pgprot;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	end = start + (cpa->numpages << PAGE_SHIFT);

	/*
	 * Not on a Gb page boundary? => map everything up to it with
	 * smaller pages.
	 */
	if (start & (PUD_SIZE - 1)) {
		unsigned long pre_end;
		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;

		pre_end   = min_t(unsigned long, end, next_page);
		cur_pages = (pre_end - start) >> PAGE_SHIFT;
		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);

1350
		pud = pud_offset(p4d, start);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

		/*
		 * Need a PMD page?
		 */
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
					 pud, pgprot);
		if (cur_pages < 0)
			return cur_pages;

		start = pre_end;
	}

	/* We mapped them all? */
	if (cpa->numpages == cur_pages)
		return cur_pages;

1371
	pud = pud_offset(p4d, start);
1372
	pud_pgprot = pgprot_4k_2_large(pgprot);
1373 1374 1375 1376

	/*
	 * Map everything starting from the Gb boundary, possibly with 1G pages
	 */
1377
	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1378 1379
		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
				   canon_pgprot(pud_pgprot))));
1380 1381

		start	  += PUD_SIZE;
1382
		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1383 1384 1385 1386 1387 1388
		cur_pages += PUD_SIZE >> PAGE_SHIFT;
		pud++;
	}

	/* Map trailing leftover */
	if (start < end) {
1389
		long tmp;
1390

1391
		pud = pud_offset(p4d, start);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
				   pud, pgprot);
		if (tmp < 0)
			return cur_pages;

		cur_pages += tmp;
	}
	return cur_pages;
}
1405 1406 1407 1408 1409 1410 1411 1412 1413

/*
 * Restrictions for kernel page table do not necessarily apply when mapping in
 * an alternate PGD.
 */
static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
{
	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
	pud_t *pud = NULL;	/* shut up gcc */
1414
	p4d_t *p4d;
1415
	pgd_t *pgd_entry;
1416
	long ret;
1417 1418 1419

	pgd_entry = cpa->pgd + pgd_index(addr);

1420
	if (pgd_none(*pgd_entry)) {
1421
		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1422 1423 1424 1425 1426 1427
		if (!p4d)
			return -1;

		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
	}

1428 1429 1430
	/*
	 * Allocate a PUD page and hand it down for mapping.
	 */
1431 1432
	p4d = p4d_offset(pgd_entry, addr);
	if (p4d_none(*p4d)) {
1433
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1434 1435
		if (!pud)
			return -1;
1436

1437
		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1438 1439 1440 1441 1442
	}

	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);

1443
	ret = populate_pud(cpa, addr, p4d, pgprot);
1444
	if (ret < 0) {
1445 1446 1447 1448 1449
		/*
		 * Leave the PUD page in place in case some other CPU or thread
		 * already found it, but remove any useless entries we just
		 * added to it.
		 */
1450
		unmap_pud_range(p4d, addr,
1451
				addr + (cpa->numpages << PAGE_SHIFT));
1452
		return ret;
1453
	}
1454

1455 1456 1457 1458
	cpa->numpages = ret;
	return 0;
}

1459 1460 1461
static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
			       int primary)
{
1462 1463 1464 1465 1466 1467
	if (cpa->pgd) {
		/*
		 * Right now, we only execute this code path when mapping
		 * the EFI virtual memory map regions, no other users
		 * provide a ->pgd value. This may change in the future.
		 */
1468
		return populate_pgd(cpa, vaddr);
1469
	}
1470

1471 1472 1473
	/*
	 * Ignore all non primary paths.
	 */
1474 1475
	if (!primary) {
		cpa->numpages = 1;
1476
		return 0;
1477
	}
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	/*
	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
	 * to have holes.
	 * Also set numpages to '1' indicating that we processed cpa req for
	 * one virtual address page and its pfn. TBD: numpages can be set based
	 * on the initial value and the level returned by lookup_address().
	 */
	if (within(vaddr, PAGE_OFFSET,
		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
		cpa->numpages = 1;
		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
		return 0;
1491 1492 1493 1494

	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
		/* Faults in the highmap are OK, so do not warn: */
		return -EFAULT;
1495 1496 1497 1498 1499 1500 1501 1502 1503
	} else {
		WARN(1, KERN_WARNING "CPA: called for zero pte. "
			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
			*cpa->vaddr);

		return -EFAULT;
	}
}

T
Thomas Gleixner 已提交
1504
static int __change_page_attr(struct cpa_data *cpa, int primary)
1505
{
1506
	unsigned long address;
1507 1508
	int do_split, err;
	unsigned int level;
T
Thomas Gleixner 已提交
1509
	pte_t *kpte, old_pte;
L
Linus Torvalds 已提交
1510

1511
	address = __cpa_addr(cpa, cpa->curpage);
1512
repeat:
1513
	kpte = _lookup_address_cpa(cpa, address, &level);
L
Linus Torvalds 已提交
1514
	if (!kpte)
1515
		return __cpa_process_fault(cpa, address, primary);
T
Thomas Gleixner 已提交
1516 1517

	old_pte = *kpte;
1518
	if (pte_none(old_pte))
1519
		return __cpa_process_fault(cpa, address, primary);
1520

T
Thomas Gleixner 已提交
1521
	if (level == PG_LEVEL_4K) {
T
Thomas Gleixner 已提交
1522
		pte_t new_pte;
1523
		pgprot_t new_prot = pte_pgprot(old_pte);
T
Thomas Gleixner 已提交
1524
		unsigned long pfn = pte_pfn(old_pte);
I
Ingo Molnar 已提交
1525

T
Thomas Gleixner 已提交
1526 1527
		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
I
Ingo Molnar 已提交
1528

1529
		cpa_inc_4k_install();
1530 1531
		/* Hand in lpsize = 0 to enforce the protection mechanism */
		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1532
					      CPA_PROTECT);
I
Ingo Molnar 已提交
1533

1534
		new_prot = pgprot_clear_protnone_bits(new_prot);
1535

1536 1537 1538 1539 1540
		/*
		 * We need to keep the pfn from the existing PTE,
		 * after all we're only going to change it's attributes
		 * not the memory it points to
		 */
1541
		new_pte = pfn_pte(pfn, new_prot);
T
Thomas Gleixner 已提交
1542
		cpa->pfn = pfn;
1543 1544 1545 1546 1547
		/*
		 * Do we really change anything ?
		 */
		if (pte_val(old_pte) != pte_val(new_pte)) {
			set_pte_atomic(kpte, new_pte);
1548
			cpa->flags |= CPA_FLUSHTLB;
1549
		}
1550
		cpa->numpages = 1;
1551
		return 0;
L
Linus Torvalds 已提交
1552
	}
1553 1554 1555 1556 1557

	/*
	 * Check, whether we can keep the large page intact
	 * and just change the pte:
	 */
1558
	do_split = should_split_large_page(kpte, address, cpa);
1559 1560
	/*
	 * When the range fits into the existing large page,
1561
	 * return. cp->numpages and cpa->tlbflush have been updated in
1562 1563
	 * try_large_page:
	 */
I
Ingo Molnar 已提交
1564 1565
	if (do_split <= 0)
		return do_split;
1566 1567 1568 1569

	/*
	 * We have to split the large page:
	 */
1570
	err = split_large_page(cpa, kpte, address);
1571
	if (!err)
I
Ingo Molnar 已提交
1572
		goto repeat;
I
Ingo Molnar 已提交
1573

I
Ingo Molnar 已提交
1574
	return err;
1575
}
L
Linus Torvalds 已提交
1576

T
Thomas Gleixner 已提交
1577 1578 1579
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);

static int cpa_process_alias(struct cpa_data *cpa)
L
Linus Torvalds 已提交
1580
{
T
Thomas Gleixner 已提交
1581
	struct cpa_data alias_cpa;
T
Tejun Heo 已提交
1582
	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1583
	unsigned long vaddr;
T
Tejun Heo 已提交
1584
	int ret;
1585

1586
	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
T
Thomas Gleixner 已提交
1587
		return 0;
1588

1589 1590 1591 1592
	/*
	 * No need to redo, when the primary call touched the direct
	 * mapping already:
	 */
1593
	vaddr = __cpa_addr(cpa, cpa->curpage);
1594
	if (!(within(vaddr, PAGE_OFFSET,
1595
		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1596

1597
		alias_cpa = *cpa;
T
Tejun Heo 已提交
1598
		alias_cpa.vaddr = &laddr;
1599
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1600
		alias_cpa.curpage = 0;
1601

1602 1603
		cpa->force_flush_all = 1;

1604
		ret = __change_page_attr_set_clr(&alias_cpa, 0);
T
Tejun Heo 已提交
1605 1606
		if (ret)
			return ret;
1607
	}
1608 1609

#ifdef CONFIG_X86_64
A
Arjan van de Ven 已提交
1610
	/*
T
Tejun Heo 已提交
1611 1612
	 * If the primary call didn't touch the high mapping already
	 * and the physical address is inside the kernel map, we need
1613
	 * to touch the high mapped kernel as well:
A
Arjan van de Ven 已提交
1614
	 */
T
Tejun Heo 已提交
1615
	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1616
	    __cpa_pfn_in_highmap(cpa->pfn)) {
T
Tejun Heo 已提交
1617 1618 1619 1620 1621
		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
					       __START_KERNEL_map - phys_base;
		alias_cpa = *cpa;
		alias_cpa.vaddr = &temp_cpa_vaddr;
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1622
		alias_cpa.curpage = 0;
T
Thomas Gleixner 已提交
1623

1624
		cpa->force_flush_all = 1;
T
Tejun Heo 已提交
1625 1626 1627 1628 1629 1630
		/*
		 * The high mapping range is imprecise, so ignore the
		 * return value.
		 */
		__change_page_attr_set_clr(&alias_cpa, 0);
	}
A
Arjan van de Ven 已提交
1631
#endif
T
Tejun Heo 已提交
1632 1633

	return 0;
L
Linus Torvalds 已提交
1634 1635
}

T
Thomas Gleixner 已提交
1636
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1637
{
1638
	unsigned long numpages = cpa->numpages;
1639 1640
	unsigned long rempages = numpages;
	int ret = 0;
1641

1642
	while (rempages) {
1643 1644 1645 1646
		/*
		 * Store the remaining nr of pages for the large page
		 * preservation check.
		 */
1647
		cpa->numpages = rempages;
1648
		/* for array changes, we can't use large page */
1649
		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1650
			cpa->numpages = 1;
T
Thomas Gleixner 已提交
1651

1652
		if (!debug_pagealloc_enabled())
1653
			spin_lock(&cpa_lock);
T
Thomas Gleixner 已提交
1654
		ret = __change_page_attr(cpa, checkalias);
1655
		if (!debug_pagealloc_enabled())
1656
			spin_unlock(&cpa_lock);
1657
		if (ret)
1658
			goto out;
1659

T
Thomas Gleixner 已提交
1660 1661 1662
		if (checkalias) {
			ret = cpa_process_alias(cpa);
			if (ret)
1663
				goto out;
T
Thomas Gleixner 已提交
1664 1665
		}

1666 1667 1668 1669 1670
		/*
		 * Adjust the number of pages with the result of the
		 * CPA operation. Either a large page has been
		 * preserved or a single page update happened.
		 */
1671 1672
		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
		rempages -= cpa->numpages;
1673
		cpa->curpage += cpa->numpages;
1674
	}
1675 1676 1677 1678 1679

out:
	/* Restore the original numpages */
	cpa->numpages = numpages;
	return ret;
1680 1681
}

1682
static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1683
				    pgprot_t mask_set, pgprot_t mask_clr,
1684 1685
				    int force_split, int in_flag,
				    struct page **pages)
1686
{
T
Thomas Gleixner 已提交
1687
	struct cpa_data cpa;
1688
	int ret, cache, checkalias;
1689

1690 1691
	memset(&cpa, 0, sizeof(cpa));

1692
	/*
1693 1694
	 * Check, if we are requested to set a not supported
	 * feature.  Clearing non-supported features is OK.
1695 1696
	 */
	mask_set = canon_pgprot(mask_set);
1697

1698
	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1699 1700
		return 0;

1701
	/* Ensure we are PAGE_SIZE aligned */
1702
	if (in_flag & CPA_ARRAY) {
1703 1704 1705 1706 1707 1708 1709
		int i;
		for (i = 0; i < numpages; i++) {
			if (addr[i] & ~PAGE_MASK) {
				addr[i] &= PAGE_MASK;
				WARN_ON_ONCE(1);
			}
		}
1710 1711 1712
	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
		/*
		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
I
Ingo Molnar 已提交
1713
		 * No need to check in that case
1714 1715 1716 1717 1718 1719 1720 1721
		 */
		if (*addr & ~PAGE_MASK) {
			*addr &= PAGE_MASK;
			/*
			 * People should not be passing in unaligned addresses:
			 */
			WARN_ON_ONCE(1);
		}
1722 1723
	}

1724 1725 1726
	/* Must avoid aliasing mappings in the highmem code */
	kmap_flush_unused();

N
Nick Piggin 已提交
1727 1728
	vm_unmap_aliases();

T
Thomas Gleixner 已提交
1729
	cpa.vaddr = addr;
1730
	cpa.pages = pages;
T
Thomas Gleixner 已提交
1731 1732 1733
	cpa.numpages = numpages;
	cpa.mask_set = mask_set;
	cpa.mask_clr = mask_clr;
1734 1735
	cpa.flags = 0;
	cpa.curpage = 0;
1736
	cpa.force_split = force_split;
T
Thomas Gleixner 已提交
1737

1738 1739
	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
		cpa.flags |= in_flag;
1740

1741 1742
	/* No alias checking for _NX bit modifications */
	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1743 1744 1745
	/* Has caller explicitly disabled alias checking? */
	if (in_flag & CPA_NO_CHECK_ALIAS)
		checkalias = 0;
1746 1747

	ret = __change_page_attr_set_clr(&cpa, checkalias);
1748

1749 1750 1751
	/*
	 * Check whether we really changed something:
	 */
1752
	if (!(cpa.flags & CPA_FLUSHTLB))
1753
		goto out;
1754

1755 1756 1757 1758
	/*
	 * No need to flush, when we did not set any of the caching
	 * attributes:
	 */
1759
	cache = !!pgprot2cachemode(mask_set);
1760

1761
	/*
1762
	 * On error; flush everything to be sure.
1763
	 */
1764
	if (ret) {
1765
		cpa_flush_all(cache);
1766 1767 1768
		goto out;
	}

1769
	cpa_flush(&cpa, cache);
1770
out:
1771 1772 1773
	return ret;
}

1774 1775
static inline int change_page_attr_set(unsigned long *addr, int numpages,
				       pgprot_t mask, int array)
1776
{
1777
	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1778
		(array ? CPA_ARRAY : 0), NULL);
1779 1780
}

1781 1782
static inline int change_page_attr_clear(unsigned long *addr, int numpages,
					 pgprot_t mask, int array)
1783
{
1784
	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1785
		(array ? CPA_ARRAY : 0), NULL);
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static inline int cpa_set_pages_array(struct page **pages, int numpages,
				       pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
		CPA_PAGES_ARRAY, pages);
}

static inline int cpa_clear_pages_array(struct page **pages, int numpages,
					 pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
		CPA_PAGES_ARRAY, pages);
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/*
 * _set_memory_prot is an internal helper for callers that have been passed
 * a pgprot_t value from upper layers and a reservation has already been taken.
 * If you want to set the pgprot to a specific page protocol, use the
 * set_memory_xx() functions.
 */
int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
{
	return change_page_attr_set_clr(&addr, numpages, prot,
					__pgprot(~pgprot_val(prot)), 0, 0,
					NULL);
}

1815
int _set_memory_uc(unsigned long addr, int numpages)
1816
{
1817
	/*
C
Christoph Hellwig 已提交
1818
	 * for now UC MINUS. see comments in ioremap()
1819 1820 1821
	 * If you really need strong UC use ioremap_uc(), but note
	 * that you cannot override IO areas with set_memory_*() as
	 * these helpers cannot work with IO memory.
1822
	 */
1823
	return change_page_attr_set(&addr, numpages,
1824 1825
				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
				    0);
1826
}
1827 1828 1829

int set_memory_uc(unsigned long addr, int numpages)
{
1830 1831
	int ret;

1832
	/*
C
Christoph Hellwig 已提交
1833
	 * for now UC MINUS. see comments in ioremap()
1834
	 */
1835
	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1836
			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1837 1838 1839 1840 1841 1842 1843 1844
	if (ret)
		goto out_err;

	ret = _set_memory_uc(addr, numpages);
	if (ret)
		goto out_free;

	return 0;
1845

1846
out_free:
1847
	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1848 1849
out_err:
	return ret;
1850
}
1851 1852
EXPORT_SYMBOL(set_memory_uc);

1853 1854
int _set_memory_wc(unsigned long addr, int numpages)
{
1855
	int ret;
1856

1857
	ret = change_page_attr_set(&addr, numpages,
1858 1859
				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
				   0);
1860
	if (!ret) {
1861 1862
		ret = change_page_attr_set_clr(&addr, numpages,
					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1863 1864
					       __pgprot(_PAGE_CACHE_MASK),
					       0, 0, NULL);
1865 1866
	}
	return ret;
1867 1868 1869 1870
}

int set_memory_wc(unsigned long addr, int numpages)
{
1871 1872
	int ret;

1873
	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1874
		_PAGE_CACHE_MODE_WC, NULL);
1875
	if (ret)
1876
		return ret;
1877

1878 1879
	ret = _set_memory_wc(addr, numpages);
	if (ret)
1880
		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1881 1882

	return ret;
1883 1884 1885
}
EXPORT_SYMBOL(set_memory_wc);

1886 1887 1888 1889 1890 1891
int _set_memory_wt(unsigned long addr, int numpages)
{
	return change_page_attr_set(&addr, numpages,
				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
}

1892
int _set_memory_wb(unsigned long addr, int numpages)
1893
{
1894
	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1895 1896
	return change_page_attr_clear(&addr, numpages,
				      __pgprot(_PAGE_CACHE_MASK), 0);
1897
}
1898 1899 1900

int set_memory_wb(unsigned long addr, int numpages)
{
1901 1902 1903 1904 1905 1906
	int ret;

	ret = _set_memory_wb(addr, numpages);
	if (ret)
		return ret;

1907
	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1908
	return 0;
1909
}
1910 1911 1912 1913
EXPORT_SYMBOL(set_memory_wb);

int set_memory_x(unsigned long addr, int numpages)
{
1914 1915 1916
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

1917
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1918 1919 1920 1921
}

int set_memory_nx(unsigned long addr, int numpages)
{
1922 1923 1924
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

1925
	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1926 1927 1928 1929
}

int set_memory_ro(unsigned long addr, int numpages)
{
1930
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1931 1932 1933 1934
}

int set_memory_rw(unsigned long addr, int numpages)
{
1935
	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1936
}
I
Ingo Molnar 已提交
1937 1938 1939

int set_memory_np(unsigned long addr, int numpages)
{
1940
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
I
Ingo Molnar 已提交
1941
}
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951
int set_memory_np_noalias(unsigned long addr, int numpages)
{
	int cpa_flags = CPA_NO_CHECK_ALIAS;

	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
					__pgprot(_PAGE_PRESENT), 0,
					cpa_flags, NULL);
}

1952 1953
int set_memory_4k(unsigned long addr, int numpages)
{
1954
	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1955
					__pgprot(0), 1, 0, NULL);
1956 1957
}

1958 1959 1960 1961 1962 1963
int set_memory_nonglobal(unsigned long addr, int numpages)
{
	return change_page_attr_clear(&addr, numpages,
				      __pgprot(_PAGE_GLOBAL), 0);
}

1964 1965 1966 1967 1968 1969
int set_memory_global(unsigned long addr, int numpages)
{
	return change_page_attr_set(&addr, numpages,
				    __pgprot(_PAGE_GLOBAL), 0);
}

1970 1971 1972 1973 1974
static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
{
	struct cpa_data cpa;
	int ret;

1975 1976
	/* Nothing to do if memory encryption is not active */
	if (!mem_encrypt_active())
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		return 0;

	/* Should not be working on unaligned addresses */
	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
		addr &= PAGE_MASK;

	memset(&cpa, 0, sizeof(cpa));
	cpa.vaddr = &addr;
	cpa.numpages = numpages;
	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
	cpa.pgd = init_mm.pgd;

	/* Must avoid aliasing mappings in the highmem code */
	kmap_flush_unused();
	vm_unmap_aliases();

	/*
	 * Before changing the encryption attribute, we need to flush caches.
	 */
1997
	cpa_flush(&cpa, 1);
1998 1999 2000 2001

	ret = __change_page_attr_set_clr(&cpa, 1);

	/*
2002 2003 2004 2005 2006
	 * After changing the encryption attribute, we need to flush TLBs again
	 * in case any speculative TLB caching occurred (but no need to flush
	 * caches again).  We could just use cpa_flush_all(), but in case TLB
	 * flushing gets optimized in the cpa_flush() path use the same logic
	 * as above.
2007
	 */
2008
	cpa_flush(&cpa, 0);
2009 2010 2011 2012 2013 2014 2015 2016

	return ret;
}

int set_memory_encrypted(unsigned long addr, int numpages)
{
	return __set_memory_enc_dec(addr, numpages, true);
}
2017
EXPORT_SYMBOL_GPL(set_memory_encrypted);
2018 2019 2020 2021 2022

int set_memory_decrypted(unsigned long addr, int numpages)
{
	return __set_memory_enc_dec(addr, numpages, false);
}
2023
EXPORT_SYMBOL_GPL(set_memory_decrypted);
2024

2025 2026 2027 2028
int set_pages_uc(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2029
	return set_memory_uc(addr, numpages);
2030 2031 2032
}
EXPORT_SYMBOL(set_pages_uc);

2033
static int _set_pages_array(struct page **pages, int numpages,
2034
		enum page_cache_mode new_type)
2035 2036 2037
{
	unsigned long start;
	unsigned long end;
2038
	enum page_cache_mode set_type;
2039 2040
	int i;
	int free_idx;
2041
	int ret;
2042

2043
	for (i = 0; i < numpages; i++) {
2044 2045 2046
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2047
		end = start + PAGE_SIZE;
2048
		if (memtype_reserve(start, end, new_type, NULL))
2049 2050 2051
			goto err_out;
	}

2052 2053 2054 2055
	/* If WC, set to UC- first and then WC */
	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
				_PAGE_CACHE_MODE_UC_MINUS : new_type;

2056
	ret = cpa_set_pages_array(pages, numpages,
2057
				  cachemode2pgprot(set_type));
2058
	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2059
		ret = change_page_attr_set_clr(NULL, numpages,
2060 2061
					       cachemode2pgprot(
						_PAGE_CACHE_MODE_WC),
2062 2063 2064 2065 2066
					       __pgprot(_PAGE_CACHE_MASK),
					       0, CPA_PAGES_ARRAY, pages);
	if (ret)
		goto err_out;
	return 0; /* Success */
2067 2068 2069
err_out:
	free_idx = i;
	for (i = 0; i < free_idx; i++) {
2070 2071 2072
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2073
		end = start + PAGE_SIZE;
2074
		memtype_free(start, end);
2075 2076 2077
	}
	return -EINVAL;
}
2078

2079
int set_pages_array_uc(struct page **pages, int numpages)
2080
{
2081
	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2082
}
2083 2084
EXPORT_SYMBOL(set_pages_array_uc);

2085
int set_pages_array_wc(struct page **pages, int numpages)
2086
{
2087
	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2088 2089 2090
}
EXPORT_SYMBOL(set_pages_array_wc);

2091
int set_pages_array_wt(struct page **pages, int numpages)
2092
{
2093
	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2094 2095 2096
}
EXPORT_SYMBOL_GPL(set_pages_array_wt);

2097 2098 2099 2100
int set_pages_wb(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2101
	return set_memory_wb(addr, numpages);
2102 2103 2104
}
EXPORT_SYMBOL(set_pages_wb);

2105
int set_pages_array_wb(struct page **pages, int numpages)
2106 2107 2108 2109 2110 2111
{
	int retval;
	unsigned long start;
	unsigned long end;
	int i;

2112
	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2113
	retval = cpa_clear_pages_array(pages, numpages,
2114
			__pgprot(_PAGE_CACHE_MASK));
2115 2116
	if (retval)
		return retval;
2117

2118
	for (i = 0; i < numpages; i++) {
2119 2120 2121
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2122
		end = start + PAGE_SIZE;
2123
		memtype_free(start, end);
2124 2125
	}

2126
	return 0;
2127 2128 2129
}
EXPORT_SYMBOL(set_pages_array_wb);

2130 2131 2132 2133
int set_pages_ro(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2134
	return set_memory_ro(addr, numpages);
2135 2136 2137 2138 2139
}

int set_pages_rw(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);
2140

T
Thomas Gleixner 已提交
2141
	return set_memory_rw(addr, numpages);
I
Ingo Molnar 已提交
2142 2143
}

I
Ingo Molnar 已提交
2144 2145
static int __set_pages_p(struct page *page, int numpages)
{
2146 2147
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
2148
				.pgd = NULL,
T
Thomas Gleixner 已提交
2149 2150
				.numpages = numpages,
				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2151 2152
				.mask_clr = __pgprot(0),
				.flags = 0};
2153

2154 2155 2156 2157 2158 2159 2160
	/*
	 * No alias checking needed for setting present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
I
Ingo Molnar 已提交
2161 2162 2163 2164
}

static int __set_pages_np(struct page *page, int numpages)
{
2165 2166
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
2167
				.pgd = NULL,
T
Thomas Gleixner 已提交
2168 2169
				.numpages = numpages,
				.mask_set = __pgprot(0),
2170 2171
				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
				.flags = 0};
2172

2173 2174 2175 2176 2177 2178 2179
	/*
	 * No alias checking needed for setting not present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
I
Ingo Molnar 已提交
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
int set_direct_map_invalid_noflush(struct page *page)
{
	return __set_pages_np(page, 1);
}

int set_direct_map_default_noflush(struct page *page)
{
	return __set_pages_p(page, 1);
}

2192
void __kernel_map_pages(struct page *page, int numpages, int enable)
L
Linus Torvalds 已提交
2193 2194 2195
{
	if (PageHighMem(page))
		return;
2196
	if (!enable) {
2197 2198
		debug_check_no_locks_freed(page_address(page),
					   numpages * PAGE_SIZE);
2199
	}
2200

2201
	/*
I
Ingo Molnar 已提交
2202
	 * The return value is ignored as the calls cannot fail.
2203 2204
	 * Large pages for identity mappings are not used at boot time
	 * and hence no memory allocations during large page split.
L
Linus Torvalds 已提交
2205
	 */
I
Ingo Molnar 已提交
2206 2207 2208 2209
	if (enable)
		__set_pages_p(page, numpages);
	else
		__set_pages_np(page, numpages);
2210 2211

	/*
2212
	 * We should perform an IPI and flush all tlbs,
2213 2214 2215
	 * but that can deadlock->flush only current cpu.
	 * Preemption needs to be disabled around __flush_tlb_all() due to
	 * CR3 reload in __native_flush_tlb().
L
Linus Torvalds 已提交
2216
	 */
2217
	preempt_disable();
L
Linus Torvalds 已提交
2218
	__flush_tlb_all();
2219
	preempt_enable();
2220 2221

	arch_flush_lazy_mmu_mode();
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
#ifdef CONFIG_HIBERNATION
bool kernel_page_present(struct page *page)
{
	unsigned int level;
	pte_t *pte;

	if (PageHighMem(page))
		return false;

	pte = lookup_address((unsigned long)page_address(page), &level);
	return (pte_val(*pte) & _PAGE_PRESENT);
}
#endif /* CONFIG_HIBERNATION */

2238 2239
int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
				   unsigned numpages, unsigned long page_flags)
2240 2241 2242 2243 2244 2245 2246 2247 2248
{
	int retval = -EINVAL;

	struct cpa_data cpa = {
		.vaddr = &address,
		.pfn = pfn,
		.pgd = pgd,
		.numpages = numpages,
		.mask_set = __pgprot(0),
2249
		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2250 2251 2252
		.flags = 0,
	};

2253 2254
	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");

2255 2256 2257
	if (!(__supported_pte_mask & _PAGE_NX))
		goto out;

2258 2259 2260
	if (!(page_flags & _PAGE_ENC))
		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);

2261 2262 2263 2264 2265 2266 2267 2268 2269
	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);

	retval = __change_page_attr_set_clr(&cpa, 0);
	__flush_tlb_all();

out:
	return retval;
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/*
 * __flush_tlb_all() flushes mappings only on current CPU and hence this
 * function shouldn't be used in an SMP environment. Presently, it's used only
 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
 */
int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
				     unsigned long numpages)
{
	int retval;

	/*
	 * The typical sequence for unmapping is to find a pte through
	 * lookup_address_in_pgd() (ideally, it should never return NULL because
	 * the address is already mapped) and change it's protections. As pfn is
	 * the *target* of a mapping, it's not useful while unmapping.
	 */
	struct cpa_data cpa = {
		.vaddr		= &address,
		.pfn		= 0,
		.pgd		= pgd,
		.numpages	= numpages,
		.mask_set	= __pgprot(0),
		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
		.flags		= 0,
	};

	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");

	retval = __change_page_attr_set_clr(&cpa, 0);
	__flush_tlb_all();

	return retval;
}

2304 2305 2306 2307 2308
/*
 * The testcases use internal knowledge of the implementation that shouldn't
 * be exposed to the rest of the kernel. Include these directly here.
 */
#ifdef CONFIG_CPA_DEBUG
2309
#include "cpa-test.c"
2310
#endif