node.h 12.1 KB
Newer Older
J
Jaegeuk Kim 已提交
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * fs/f2fs/node.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
/* start node id of a node block dedicated to the given node id */
#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)

/* node block offset on the NAT area dedicated to the given start node id */
#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)

C
Chao Yu 已提交
17
/* # of pages to perform synchronous readahead before building free nids */
18 19
#define FREE_NID_PAGES	8
#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20

21
#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
C
Chao Yu 已提交
22

23 24 25
/* maximum readahead size for node during getting data blocks */
#define MAX_RA_NODE		128

26
/* control the memory footprint threshold (10MB per 1GB ram) */
J
Jaegeuk Kim 已提交
27
#define DEF_RAM_THRESHOLD	1
28

29 30
/* control dirty nats ratio threshold (default: 10% over max nid count) */
#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 32
/* control total # of nats */
#define DEF_NAT_CACHE_THRESHOLD			100000
33

34 35
/* vector size for gang look-up from nat cache that consists of radix tree */
#define NATVEC_SIZE	64
36
#define SETVEC_SIZE	32
37

38 39 40
/* return value for read_node_page */
#define LOCKED_PAGE	1

41 42 43 44 45 46 47 48
/* For flag in struct node_info */
enum {
	IS_CHECKPOINTED,	/* is it checkpointed before? */
	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
	IS_DIRTY,		/* this nat entry is dirty? */
};

49 50 51 52 53 54 55 56
/*
 * For node information
 */
struct node_info {
	nid_t nid;		/* node id */
	nid_t ino;		/* inode number of the node's owner */
	block_t	blk_addr;	/* block address of the node */
	unsigned char version;	/* version of the node */
57
	unsigned char flag;	/* for node information bits */
58 59
};

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
struct nat_entry {
	struct list_head list;	/* for clean or dirty nat list */
	struct node_info ni;	/* in-memory node information */
};

#define nat_get_nid(nat)		(nat->ni.nid)
#define nat_set_nid(nat, n)		(nat->ni.nid = n)
#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
#define nat_get_ino(nat)		(nat->ni.ino)
#define nat_set_ino(nat, i)		(nat->ni.ino = i)
#define nat_get_version(nat)		(nat->ni.version)
#define nat_set_version(nat, v)		(nat->ni.version = v)

#define inc_node_version(version)	(++version)

76 77 78 79 80 81 82 83 84 85
static inline void copy_node_info(struct node_info *dst,
						struct node_info *src)
{
	dst->nid = src->nid;
	dst->ino = src->ino;
	dst->blk_addr = src->blk_addr;
	dst->version = src->version;
	/* should not copy flag here */
}

86 87 88 89 90
static inline void set_nat_flag(struct nat_entry *ne,
				unsigned int type, bool set)
{
	unsigned char mask = 0x01 << type;
	if (set)
91
		ne->ni.flag |= mask;
92
	else
93
		ne->ni.flag &= ~mask;
94 95 96 97 98
}

static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
{
	unsigned char mask = 0x01 << type;
99
	return ne->ni.flag & mask;
100 101
}

102 103 104 105 106 107 108 109
static inline void nat_reset_flag(struct nat_entry *ne)
{
	/* these states can be set only after checkpoint was done */
	set_nat_flag(ne, IS_CHECKPOINTED, true);
	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
	set_nat_flag(ne, HAS_LAST_FSYNC, true);
}

110 111 112 113 114 115 116 117
static inline void node_info_from_raw_nat(struct node_info *ni,
						struct f2fs_nat_entry *raw_ne)
{
	ni->ino = le32_to_cpu(raw_ne->ino);
	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
	ni->version = raw_ne->version;
}

118 119 120 121 122 123 124 125
static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
						struct node_info *ni)
{
	raw_ne->ino = cpu_to_le32(ni->ino);
	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
	raw_ne->version = ni->version;
}

126 127 128
static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
{
	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
C
Chao Yu 已提交
129
					NM_I(sbi)->dirty_nats_ratio / 100;
130 131
}

132 133 134 135 136
static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
{
	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
}

137
enum mem_type {
138
	FREE_NIDS,	/* indicates the free nid list */
139
	NAT_ENTRIES,	/* indicates the cached nat entry */
140
	DIRTY_DENTS,	/* indicates dirty dentry pages */
141
	INO_ENTRIES,	/* indicates inode entries */
142
	EXTENT_CACHE,	/* indicates extent cache */
143
	BASE_CHECK,	/* check kernel status */
144 145
};

146
struct nat_entry_set {
147
	struct list_head set_list;	/* link with other nat sets */
148
	struct list_head entry_list;	/* link with dirty nat entries */
149
	nid_t set;			/* set number*/
150 151 152
	unsigned int entry_cnt;		/* the # of nat entries in set */
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * For free nid mangement
 */
enum nid_state {
	NID_NEW,	/* newly added to free nid list */
	NID_ALLOC	/* it is allocated */
};

struct free_nid {
	struct list_head list;	/* for free node id list */
	nid_t nid;		/* node id */
	int state;		/* in use or not: NID_NEW or NID_ALLOC */
};

J
Jaegeuk Kim 已提交
167
static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 169 170 171 172
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
	struct free_nid *fnid;

	spin_lock(&nm_i->free_nid_list_lock);
173 174
	if (nm_i->fcnt <= 0) {
		spin_unlock(&nm_i->free_nid_list_lock);
J
Jaegeuk Kim 已提交
175
		return;
176
	}
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
	*nid = fnid->nid;
	spin_unlock(&nm_i->free_nid_list_lock);
}

/*
 * inline functions
 */
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
}

static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
	pgoff_t block_off;
	pgoff_t block_addr;
	int seg_off;

	block_off = NAT_BLOCK_OFFSET(start);
	seg_off = block_off >> sbi->log_blocks_per_seg;

	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
		(seg_off << sbi->log_blocks_per_seg << 1) +
203
		(block_off & (sbi->blocks_per_seg - 1)));
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
		block_addr += sbi->blocks_per_seg;

	return block_addr;
}

static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);

	block_addr -= nm_i->nat_blkaddr;
	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
		block_addr -= sbi->blocks_per_seg;
	else
		block_addr += sbi->blocks_per_seg;

	return block_addr + nm_i->nat_blkaddr;
}

static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
{
	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);

229
	f2fs_change_bit(block_off, nm_i->nat_bitmap);
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline nid_t ino_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.ino);
}

static inline nid_t nid_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.nid);
}

static inline unsigned int ofs_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	unsigned flag = le32_to_cpu(rn->footer.flag);
	return flag >> OFFSET_BIT_SHIFT;
}

static inline __u64 cpver_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le64_to_cpu(rn->footer.cp_ver);
}

static inline block_t next_blkaddr_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.next_blkaddr);
}

263 264 265
static inline void fill_node_footer(struct page *page, nid_t nid,
				nid_t ino, unsigned int ofs, bool reset)
{
266
	struct f2fs_node *rn = F2FS_NODE(page);
267 268
	unsigned int old_flag = 0;

269 270
	if (reset)
		memset(rn, 0, sizeof(*rn));
271 272 273
	else
		old_flag = le32_to_cpu(rn->footer.flag);

274 275
	rn->footer.nid = cpu_to_le32(nid);
	rn->footer.ino = cpu_to_le32(ino);
276 277 278 279

	/* should remain old flag bits such as COLD_BIT_SHIFT */
	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
					(old_flag & OFFSET_BIT_MASK));
280 281 282 283
}

static inline void copy_node_footer(struct page *dst, struct page *src)
{
284 285
	struct f2fs_node *src_rn = F2FS_NODE(src);
	struct f2fs_node *dst_rn = F2FS_NODE(dst);
286 287 288 289 290
	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
}

static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
{
291
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
292
	struct f2fs_node *rn = F2FS_NODE(page);
293 294
	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
	__u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
295

296
	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
297 298 299 300 301
		__u64 crc = le32_to_cpu(*((__le32 *)
				((unsigned char *)ckpt + crc_offset)));
		cp_ver |= (crc << 32);
	}
	rn->footer.cp_ver = cpu_to_le64(cp_ver);
302
	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
303 304
}

305
static inline bool is_recoverable_dnode(struct page *page)
306
{
307 308 309
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
	__u64 cp_ver = cur_cp_version(ckpt);
310

311
	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
312 313 314 315 316
		__u64 crc = le32_to_cpu(*((__le32 *)
				((unsigned char *)ckpt + crc_offset)));
		cp_ver |= (crc << 32);
	}
	return cpu_to_le64(cp_ver) == cpver_of_node(page);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

/*
 * f2fs assigns the following node offsets described as (num).
 * N = NIDS_PER_BLOCK
 *
 *  Inode block (0)
 *    |- direct node (1)
 *    |- direct node (2)
 *    |- indirect node (3)
 *    |            `- direct node (4 => 4 + N - 1)
 *    |- indirect node (4 + N)
 *    |            `- direct node (5 + N => 5 + 2N - 1)
 *    `- double indirect node (5 + 2N)
 *                 `- indirect node (6 + 2N)
C
Chao Yu 已提交
332 333 334 335 336 337 338
 *                       `- direct node
 *                 ......
 *                 `- indirect node ((6 + 2N) + x(N + 1))
 *                       `- direct node
 *                 ......
 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 *                       `- direct node
339 340 341 342
 */
static inline bool IS_DNODE(struct page *node_page)
{
	unsigned int ofs = ofs_of_node(node_page);
343

344
	if (f2fs_has_xattr_block(ofs))
345 346
		return false;

347 348 349 350 351
	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
			ofs == 5 + 2 * NIDS_PER_BLOCK)
		return false;
	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
		ofs -= 6 + 2 * NIDS_PER_BLOCK;
Z
Zhihui Zhang 已提交
352
		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
353 354 355 356 357
			return false;
	}
	return true;
}

358
static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
359
{
360
	struct f2fs_node *rn = F2FS_NODE(p);
361

362
	f2fs_wait_on_page_writeback(p, NODE, true);
363 364 365 366 367

	if (i)
		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
	else
		rn->in.nid[off] = cpu_to_le32(nid);
368
	return set_page_dirty(p);
369 370 371 372
}

static inline nid_t get_nid(struct page *p, int off, bool i)
{
373 374
	struct f2fs_node *rn = F2FS_NODE(p);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	if (i)
		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
	return le32_to_cpu(rn->in.nid[off]);
}

/*
 * Coldness identification:
 *  - Mark cold files in f2fs_inode_info
 *  - Mark cold node blocks in their node footer
 *  - Mark cold data pages in page cache
 */
static inline int is_cold_data(struct page *page)
{
	return PageChecked(page);
}

static inline void set_cold_data(struct page *page)
{
	SetPageChecked(page);
}

static inline void clear_cold_data(struct page *page)
{
	ClearPageChecked(page);
}

401
static inline int is_node(struct page *page, int type)
402
{
403
	struct f2fs_node *rn = F2FS_NODE(page);
404
	return le32_to_cpu(rn->footer.flag) & (1 << type);
405 406
}

407 408 409
#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static inline int is_inline_node(struct page *page)
{
	return PageChecked(page);
}

static inline void set_inline_node(struct page *page)
{
	SetPageChecked(page);
}

static inline void clear_inline_node(struct page *page)
{
	ClearPageChecked(page);
}

426 427
static inline void set_cold_node(struct inode *inode, struct page *page)
{
428
	struct f2fs_node *rn = F2FS_NODE(page);
429 430 431 432 433 434 435 436 437
	unsigned int flag = le32_to_cpu(rn->footer.flag);

	if (S_ISDIR(inode->i_mode))
		flag &= ~(0x1 << COLD_BIT_SHIFT);
	else
		flag |= (0x1 << COLD_BIT_SHIFT);
	rn->footer.flag = cpu_to_le32(flag);
}

438
static inline void set_mark(struct page *page, int mark, int type)
439
{
440
	struct f2fs_node *rn = F2FS_NODE(page);
441 442
	unsigned int flag = le32_to_cpu(rn->footer.flag);
	if (mark)
443
		flag |= (0x1 << type);
444
	else
445
		flag &= ~(0x1 << type);
446 447
	rn->footer.flag = cpu_to_le32(flag);
}
448 449
#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)