fixpt31_32.c 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * Copyright 2012-15 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"
#include "include/fixed31_32.h"

static inline uint64_t abs_i64(
	int64_t arg)
{
	if (arg > 0)
		return (uint64_t)arg;
	else
		return (uint64_t)(-arg);
}

/*
 * @brief
 * result = dividend / divisor
 * *remainder = dividend % divisor
 */
static inline uint64_t complete_integer_division_u64(
	uint64_t dividend,
	uint64_t divisor,
	uint64_t *remainder)
{
	uint64_t result;

	ASSERT(divisor);

	result = div64_u64_rem(dividend, divisor, remainder);

	return result;
}


#define FRACTIONAL_PART_MASK \
59
	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
60 61

#define GET_INTEGER_PART(x) \
62
	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

#define GET_FRACTIONAL_PART(x) \
	(FRACTIONAL_PART_MASK & (x))

struct fixed31_32 dal_fixed31_32_from_fraction(
	int64_t numerator,
	int64_t denominator)
{
	struct fixed31_32 res;

	bool arg1_negative = numerator < 0;
	bool arg2_negative = denominator < 0;

	uint64_t arg1_value = arg1_negative ? -numerator : numerator;
	uint64_t arg2_value = arg2_negative ? -denominator : denominator;

	uint64_t remainder;

	/* determine integer part */

	uint64_t res_value = complete_integer_division_u64(
		arg1_value, arg2_value, &remainder);

	ASSERT(res_value <= LONG_MAX);

	/* determine fractional part */
	{
90
		uint32_t i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

		do {
			remainder <<= 1;

			res_value <<= 1;

			if (remainder >= arg2_value) {
				res_value |= 1;
				remainder -= arg2_value;
			}
		} while (--i != 0);
	}

	/* round up LSB */
	{
		uint64_t summand = (remainder << 1) >= arg2_value;

		ASSERT(res_value <= LLONG_MAX - summand);

		res_value += summand;
	}

	res.value = (int64_t)res_value;

	if (arg1_negative ^ arg2_negative)
		res.value = -res.value;

	return res;
}

121
struct fixed31_32 dal_fixed31_32_from_int_nonconst(
122 123 124 125 126 127
	int64_t arg)
{
	struct fixed31_32 res;

	ASSERT((LONG_MIN <= arg) && (arg <= LONG_MAX));

128
	res.value = arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	return res;
}

struct fixed31_32 dal_fixed31_32_shl(
	struct fixed31_32 arg,
	uint8_t shift)
{
	struct fixed31_32 res;

	ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
		((arg.value < 0) && (arg.value >= LLONG_MIN >> shift)));

	res.value = arg.value << shift;

	return res;
}

struct fixed31_32 dal_fixed31_32_add(
	struct fixed31_32 arg1,
	struct fixed31_32 arg2)
{
	struct fixed31_32 res;

	ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
		((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));

	res.value = arg1.value + arg2.value;

	return res;
}

struct fixed31_32 dal_fixed31_32_sub(
	struct fixed31_32 arg1,
	struct fixed31_32 arg2)
{
	struct fixed31_32 res;

	ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
		((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));

	res.value = arg1.value - arg2.value;

	return res;
}

struct fixed31_32 dal_fixed31_32_mul(
	struct fixed31_32 arg1,
	struct fixed31_32 arg2)
{
	struct fixed31_32 res;

	bool arg1_negative = arg1.value < 0;
	bool arg2_negative = arg2.value < 0;

	uint64_t arg1_value = arg1_negative ? -arg1.value : arg1.value;
	uint64_t arg2_value = arg2_negative ? -arg2.value : arg2.value;

	uint64_t arg1_int = GET_INTEGER_PART(arg1_value);
	uint64_t arg2_int = GET_INTEGER_PART(arg2_value);

	uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
	uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);

	uint64_t tmp;

	res.value = arg1_int * arg2_int;

	ASSERT(res.value <= LONG_MAX);

199
	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

	tmp = arg1_int * arg2_fra;

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	tmp = arg2_int * arg1_fra;

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	tmp = arg1_fra * arg2_fra;

215
	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		(tmp >= (uint64_t)dal_fixed31_32_half.value);

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	if (arg1_negative ^ arg2_negative)
		res.value = -res.value;

	return res;
}

struct fixed31_32 dal_fixed31_32_sqr(
	struct fixed31_32 arg)
{
	struct fixed31_32 res;

	uint64_t arg_value = abs_i64(arg.value);

	uint64_t arg_int = GET_INTEGER_PART(arg_value);

	uint64_t arg_fra = GET_FRACTIONAL_PART(arg_value);

	uint64_t tmp;

	res.value = arg_int * arg_int;

	ASSERT(res.value <= LONG_MAX);

245
	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
246 247 248 249 250 251 252 253 254 255 256 257 258

	tmp = arg_int * arg_fra;

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	tmp = arg_fra * arg_fra;

259
	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
		(tmp >= (uint64_t)dal_fixed31_32_half.value);

	ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));

	res.value += tmp;

	return res;
}

struct fixed31_32 dal_fixed31_32_recip(
	struct fixed31_32 arg)
{
	/*
	 * @note
	 * Good idea to use Newton's method
	 */

	ASSERT(arg.value);

	return dal_fixed31_32_from_fraction(
		dal_fixed31_32_one.value,
		arg.value);
}

struct fixed31_32 dal_fixed31_32_sinc(
	struct fixed31_32 arg)
{
	struct fixed31_32 square;

	struct fixed31_32 res = dal_fixed31_32_one;

	int32_t n = 27;

	struct fixed31_32 arg_norm = arg;

	if (dal_fixed31_32_le(
		dal_fixed31_32_two_pi,
		dal_fixed31_32_abs(arg))) {
		arg_norm = dal_fixed31_32_sub(
			arg_norm,
			dal_fixed31_32_mul_int(
				dal_fixed31_32_two_pi,
				(int32_t)div64_s64(
					arg_norm.value,
					dal_fixed31_32_two_pi.value)));
	}

	square = dal_fixed31_32_sqr(arg_norm);

	do {
		res = dal_fixed31_32_sub(
			dal_fixed31_32_one,
			dal_fixed31_32_div_int(
				dal_fixed31_32_mul(
					square,
					res),
				n * (n - 1)));

		n -= 2;
	} while (n > 2);

	if (arg.value != arg_norm.value)
		res = dal_fixed31_32_div(
			dal_fixed31_32_mul(res, arg_norm),
			arg);

	return res;
}

struct fixed31_32 dal_fixed31_32_sin(
	struct fixed31_32 arg)
{
	return dal_fixed31_32_mul(
		arg,
		dal_fixed31_32_sinc(arg));
}

struct fixed31_32 dal_fixed31_32_cos(
	struct fixed31_32 arg)
{
	/* TODO implement argument normalization */

	const struct fixed31_32 square = dal_fixed31_32_sqr(arg);

	struct fixed31_32 res = dal_fixed31_32_one;

	int32_t n = 26;

	do {
		res = dal_fixed31_32_sub(
			dal_fixed31_32_one,
			dal_fixed31_32_div_int(
				dal_fixed31_32_mul(
					square,
					res),
				n * (n - 1)));

		n -= 2;
	} while (n != 0);

	return res;
}

/*
 * @brief
 * result = exp(arg),
 * where abs(arg) < 1
 *
 * Calculated as Taylor series.
 */
static struct fixed31_32 fixed31_32_exp_from_taylor_series(
	struct fixed31_32 arg)
{
	uint32_t n = 9;

	struct fixed31_32 res = dal_fixed31_32_from_fraction(
		n + 2,
		n + 1);
	/* TODO find correct res */

	ASSERT(dal_fixed31_32_lt(arg, dal_fixed31_32_one));

	do
		res = dal_fixed31_32_add(
			dal_fixed31_32_one,
			dal_fixed31_32_div_int(
				dal_fixed31_32_mul(
					arg,
					res),
				n));
	while (--n != 1);

	return dal_fixed31_32_add(
		dal_fixed31_32_one,
		dal_fixed31_32_mul(
			arg,
			res));
}

struct fixed31_32 dal_fixed31_32_exp(
	struct fixed31_32 arg)
{
	/*
	 * @brief
	 * Main equation is:
	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
	 * where m = round(x / ln(2)), r = x - m * ln(2)
	 */

	if (dal_fixed31_32_le(
		dal_fixed31_32_ln2_div_2,
		dal_fixed31_32_abs(arg))) {
		int32_t m = dal_fixed31_32_round(
			dal_fixed31_32_div(
				arg,
				dal_fixed31_32_ln2));

		struct fixed31_32 r = dal_fixed31_32_sub(
			arg,
			dal_fixed31_32_mul_int(
				dal_fixed31_32_ln2,
				m));

		ASSERT(m != 0);

		ASSERT(dal_fixed31_32_lt(
			dal_fixed31_32_abs(r),
			dal_fixed31_32_one));

		if (m > 0)
			return dal_fixed31_32_shl(
				fixed31_32_exp_from_taylor_series(r),
				(uint8_t)m);
		else
			return dal_fixed31_32_div_int(
				fixed31_32_exp_from_taylor_series(r),
				1LL << -m);
	} else if (arg.value != 0)
		return fixed31_32_exp_from_taylor_series(arg);
	else
		return dal_fixed31_32_one;
}

struct fixed31_32 dal_fixed31_32_log(
	struct fixed31_32 arg)
{
	struct fixed31_32 res = dal_fixed31_32_neg(dal_fixed31_32_one);
	/* TODO improve 1st estimation */

	struct fixed31_32 error;

	ASSERT(arg.value > 0);
	/* TODO if arg is negative, return NaN */
	/* TODO if arg is zero, return -INF */

	do {
		struct fixed31_32 res1 = dal_fixed31_32_add(
			dal_fixed31_32_sub(
				res,
				dal_fixed31_32_one),
			dal_fixed31_32_div(
				arg,
				dal_fixed31_32_exp(res)));

		error = dal_fixed31_32_sub(
			res,
			res1);

		res = res1;
		/* TODO determine max_allowed_error based on quality of exp() */
	} while (abs_i64(error.value) > 100ULL);

	return res;
}

struct fixed31_32 dal_fixed31_32_pow(
	struct fixed31_32 arg1,
	struct fixed31_32 arg2)
{
	return dal_fixed31_32_exp(
		dal_fixed31_32_mul(
			dal_fixed31_32_log(arg1),
			arg2));
}

int32_t dal_fixed31_32_floor(
	struct fixed31_32 arg)
{
	uint64_t arg_value = abs_i64(arg.value);

	if (arg.value >= 0)
		return (int32_t)GET_INTEGER_PART(arg_value);
	else
		return -(int32_t)GET_INTEGER_PART(arg_value);
}

int32_t dal_fixed31_32_round(
	struct fixed31_32 arg)
{
	uint64_t arg_value = abs_i64(arg.value);

	const int64_t summand = dal_fixed31_32_half.value;

	ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);

	arg_value += summand;

	if (arg.value >= 0)
		return (int32_t)GET_INTEGER_PART(arg_value);
	else
		return -(int32_t)GET_INTEGER_PART(arg_value);
}

int32_t dal_fixed31_32_ceil(
	struct fixed31_32 arg)
{
	uint64_t arg_value = abs_i64(arg.value);

	const int64_t summand = dal_fixed31_32_one.value -
		dal_fixed31_32_epsilon.value;

	ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);

	arg_value += summand;

	if (arg.value >= 0)
		return (int32_t)GET_INTEGER_PART(arg_value);
	else
		return -(int32_t)GET_INTEGER_PART(arg_value);
}

/* this function is a generic helper to translate fixed point value to
 * specified integer format that will consist of integer_bits integer part and
 * fractional_bits fractional part. For example it is used in
 * dal_fixed31_32_u2d19 to receive 2 bits integer part and 19 bits fractional
 * part in 32 bits. It is used in hw programming (scaler)
 */

static inline uint32_t ux_dy(
	int64_t value,
	uint32_t integer_bits,
	uint32_t fractional_bits)
{
	/* 1. create mask of integer part */
	uint32_t result = (1 << integer_bits) - 1;
	/* 2. mask out fractional part */
	uint32_t fractional_part = FRACTIONAL_PART_MASK & value;
	/* 3. shrink fixed point integer part to be of integer_bits width*/
	result &= GET_INTEGER_PART(value);
	/* 4. make space for fractional part to be filled in after integer */
	result <<= fractional_bits;
	/* 5. shrink fixed point fractional part to of fractional_bits width*/
552
	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
553 554 555 556
	/* 6. merge the result */
	return result | fractional_part;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static inline uint32_t clamp_ux_dy(
	int64_t value,
	uint32_t integer_bits,
	uint32_t fractional_bits,
	uint32_t min_clamp)
{
	uint32_t truncated_val = ux_dy(value, integer_bits, fractional_bits);

	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
		return (1 << (integer_bits + fractional_bits)) - 1;
	else if (truncated_val > min_clamp)
		return truncated_val;
	else
		return min_clamp;
}

573 574 575 576 577 578 579 580 581 582 583
uint32_t dal_fixed31_32_u2d19(
	struct fixed31_32 arg)
{
	return ux_dy(arg.value, 2, 19);
}

uint32_t dal_fixed31_32_u0d19(
	struct fixed31_32 arg)
{
	return ux_dy(arg.value, 0, 19);
}
584

585
uint32_t dal_fixed31_32_clamp_u0d14(
586 587
	struct fixed31_32 arg)
{
588
	return clamp_ux_dy(arg.value, 0, 14, 1);
589 590
}

591
uint32_t dal_fixed31_32_clamp_u0d10(
592 593
	struct fixed31_32 arg)
{
594
	return clamp_ux_dy(arg.value, 0, 10, 1);
595
}
596 597 598 599 600 601 602 603 604

int32_t dal_fixed31_32_s4d19(
	struct fixed31_32 arg)
{
	if (arg.value < 0)
		return -(int32_t)ux_dy(dal_fixed31_32_abs(arg).value, 4, 19);
	else
		return ux_dy(arg.value, 4, 19);
}