btf_dump.c 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)

/*
 * BTF-to-C type converter.
 *
 * Copyright (c) 2019 Facebook
 */

#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <linux/err.h>
#include <linux/btf.h>
#include "btf.h"
#include "hashmap.h"
#include "libbpf.h"
#include "libbpf_internal.h"

21 22 23
/* make sure libbpf doesn't use kernel-only integer typedefs */
#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;

static const char *pfx(int lvl)
{
	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
}

enum btf_dump_type_order_state {
	NOT_ORDERED,
	ORDERING,
	ORDERED,
};

enum btf_dump_type_emit_state {
	NOT_EMITTED,
	EMITTING,
	EMITTED,
};

/* per-type auxiliary state */
struct btf_dump_type_aux_state {
	/* topological sorting state */
	enum btf_dump_type_order_state order_state: 2;
	/* emitting state used to determine the need for forward declaration */
	enum btf_dump_type_emit_state emit_state: 2;
	/* whether forward declaration was already emitted */
	__u8 fwd_emitted: 1;
	/* whether unique non-duplicate name was already assigned */
	__u8 name_resolved: 1;
54 55
	/* whether type is referenced from any other type */
	__u8 referenced: 1;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

struct btf_dump {
	const struct btf *btf;
	const struct btf_ext *btf_ext;
	btf_dump_printf_fn_t printf_fn;
	struct btf_dump_opts opts;

	/* per-type auxiliary state */
	struct btf_dump_type_aux_state *type_states;
	/* per-type optional cached unique name, must be freed, if present */
	const char **cached_names;

	/* topo-sorted list of dependent type definitions */
	__u32 *emit_queue;
	int emit_queue_cap;
	int emit_queue_cnt;

	/*
	 * stack of type declarations (e.g., chain of modifiers, arrays,
	 * funcs, etc)
	 */
	__u32 *decl_stack;
	int decl_stack_cap;
	int decl_stack_cnt;

	/* maps struct/union/enum name to a number of name occurrences */
	struct hashmap *type_names;
	/*
	 * maps typedef identifiers and enum value names to a number of such
	 * name occurrences
	 */
	struct hashmap *ident_names;
};

static size_t str_hash_fn(const void *key, void *ctx)
{
	const char *s = key;
	size_t h = 0;

	while (*s) {
		h = h * 31 + *s;
		s++;
	}
	return h;
}

static bool str_equal_fn(const void *a, const void *b, void *ctx)
{
	return strcmp(a, b) == 0;
}

static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
{
	return btf__name_by_offset(d->btf, name_off);
}

static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
{
	va_list args;

	va_start(args, fmt);
	d->printf_fn(d->opts.ctx, fmt, args);
	va_end(args);
}

122 123
static int btf_dump_mark_referenced(struct btf_dump *d);

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
struct btf_dump *btf_dump__new(const struct btf *btf,
			       const struct btf_ext *btf_ext,
			       const struct btf_dump_opts *opts,
			       btf_dump_printf_fn_t printf_fn)
{
	struct btf_dump *d;
	int err;

	d = calloc(1, sizeof(struct btf_dump));
	if (!d)
		return ERR_PTR(-ENOMEM);

	d->btf = btf;
	d->btf_ext = btf_ext;
	d->printf_fn = printf_fn;
	d->opts.ctx = opts ? opts->ctx : NULL;

	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
	if (IS_ERR(d->type_names)) {
		err = PTR_ERR(d->type_names);
		d->type_names = NULL;
145
		goto err;
146 147 148 149 150
	}
	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
	if (IS_ERR(d->ident_names)) {
		err = PTR_ERR(d->ident_names);
		d->ident_names = NULL;
151 152 153 154 155 156 157 158 159 160 161 162 163
		goto err;
	}
	d->type_states = calloc(1 + btf__get_nr_types(d->btf),
				sizeof(d->type_states[0]));
	if (!d->type_states) {
		err = -ENOMEM;
		goto err;
	}
	d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
				 sizeof(d->cached_names[0]));
	if (!d->cached_names) {
		err = -ENOMEM;
		goto err;
164 165
	}

166 167 168 169 170 171 172 173 174
	/* VOID is special */
	d->type_states[0].order_state = ORDERED;
	d->type_states[0].emit_state = EMITTED;

	/* eagerly determine referenced types for anon enums */
	err = btf_dump_mark_referenced(d);
	if (err)
		goto err;

175
	return d;
176 177 178
err:
	btf_dump__free(d);
	return ERR_PTR(err);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
}

void btf_dump__free(struct btf_dump *d)
{
	int i, cnt;

	if (!d)
		return;

	free(d->type_states);
	if (d->cached_names) {
		/* any set cached name is owned by us and should be freed */
		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
			if (d->cached_names[i])
				free((void *)d->cached_names[i]);
		}
	}
	free(d->cached_names);
	free(d->emit_queue);
	free(d->decl_stack);
	hashmap__free(d->type_names);
	hashmap__free(d->ident_names);

	free(d);
}

static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);

/*
 * Dump BTF type in a compilable C syntax, including all the necessary
 * dependent types, necessary for compilation. If some of the dependent types
 * were already emitted as part of previous btf_dump__dump_type() invocation
 * for another type, they won't be emitted again. This API allows callers to
 * filter out BTF types according to user-defined criterias and emitted only
 * minimal subset of types, necessary to compile everything. Full struct/union
 * definitions will still be emitted, even if the only usage is through
 * pointer and could be satisfied with just a forward declaration.
 *
 * Dumping is done in two high-level passes:
 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 *   2. Emit type definitions in C syntax.
 *
 * Returns 0 on success; <0, otherwise.
 */
int btf_dump__dump_type(struct btf_dump *d, __u32 id)
{
	int err, i;

	if (id > btf__get_nr_types(d->btf))
		return -EINVAL;

	d->emit_queue_cnt = 0;
	err = btf_dump_order_type(d, id, false);
	if (err < 0)
		return err;

	for (i = 0; i < d->emit_queue_cnt; i++)
		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);

	return 0;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Mark all types that are referenced from any other type. This is used to
 * determine top-level anonymous enums that need to be emitted as an
 * independent type declarations.
 * Anonymous enums come in two flavors: either embedded in a struct's field
 * definition, in which case they have to be declared inline as part of field
 * type declaration; or as a top-level anonymous enum, typically used for
 * declaring global constants. It's impossible to distinguish between two
 * without knowning whether given enum type was referenced from other type:
 * top-level anonymous enum won't be referenced by anything, while embedded
 * one will.
 */
static int btf_dump_mark_referenced(struct btf_dump *d)
{
	int i, j, n = btf__get_nr_types(d->btf);
	const struct btf_type *t;
	__u16 vlen;

	for (i = 1; i <= n; i++) {
		t = btf__type_by_id(d->btf, i);
		vlen = btf_vlen(t);

		switch (btf_kind(t)) {
		case BTF_KIND_INT:
		case BTF_KIND_ENUM:
		case BTF_KIND_FWD:
			break;

		case BTF_KIND_VOLATILE:
		case BTF_KIND_CONST:
		case BTF_KIND_RESTRICT:
		case BTF_KIND_PTR:
		case BTF_KIND_TYPEDEF:
		case BTF_KIND_FUNC:
		case BTF_KIND_VAR:
			d->type_states[t->type].referenced = 1;
			break;

		case BTF_KIND_ARRAY: {
			const struct btf_array *a = btf_array(t);

			d->type_states[a->index_type].referenced = 1;
			d->type_states[a->type].referenced = 1;
			break;
		}
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION: {
			const struct btf_member *m = btf_members(t);

			for (j = 0; j < vlen; j++, m++)
				d->type_states[m->type].referenced = 1;
			break;
		}
		case BTF_KIND_FUNC_PROTO: {
			const struct btf_param *p = btf_params(t);

			for (j = 0; j < vlen; j++, p++)
				d->type_states[p->type].referenced = 1;
			break;
		}
		case BTF_KIND_DATASEC: {
			const struct btf_var_secinfo *v = btf_var_secinfos(t);

			for (j = 0; j < vlen; j++, v++)
				d->type_states[v->type].referenced = 1;
			break;
		}
		default:
			return -EINVAL;
		}
	}
	return 0;
}
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
{
	__u32 *new_queue;
	size_t new_cap;

	if (d->emit_queue_cnt >= d->emit_queue_cap) {
		new_cap = max(16, d->emit_queue_cap * 3 / 2);
		new_queue = realloc(d->emit_queue,
				    new_cap * sizeof(new_queue[0]));
		if (!new_queue)
			return -ENOMEM;
		d->emit_queue = new_queue;
		d->emit_queue_cap = new_cap;
	}

	d->emit_queue[d->emit_queue_cnt++] = id;
	return 0;
}

/*
 * Determine order of emitting dependent types and specified type to satisfy
 * C compilation rules.  This is done through topological sorting with an
 * additional complication which comes from C rules. The main idea for C is
 * that if some type is "embedded" into a struct/union, it's size needs to be
 * known at the time of definition of containing type. E.g., for:
 *
 *	struct A {};
 *	struct B { struct A x; }
 *
 * struct A *HAS* to be defined before struct B, because it's "embedded",
 * i.e., it is part of struct B layout. But in the following case:
 *
 *	struct A;
 *	struct B { struct A *x; }
 *	struct A {};
 *
 * it's enough to just have a forward declaration of struct A at the time of
 * struct B definition, as struct B has a pointer to struct A, so the size of
 * field x is known without knowing struct A size: it's sizeof(void *).
 *
 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 *
 *	struct A {}; // if this was forward-declaration: compilation error
 *	struct B {
 *		struct { // anonymous struct
 *			struct A y;
 *		} *x;
 *	};
 *
 * In this case, struct B's field x is a pointer, so it's size is known
 * regardless of the size of (anonymous) struct it points to. But because this
 * struct is anonymous and thus defined inline inside struct B, *and* it
 * embeds struct A, compiler requires full definition of struct A to be known
 * before struct B can be defined. This creates a transitive dependency
 * between struct A and struct B. If struct A was forward-declared before
 * struct B definition and fully defined after struct B definition, that would
 * trigger compilation error.
 *
 * All this means that while we are doing topological sorting on BTF type
 * graph, we need to determine relationships between different types (graph
 * nodes):
 *   - weak link (relationship) between X and Y, if Y *CAN* be
 *   forward-declared at the point of X definition;
 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 *
 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 * Weak/strong relationship is determined recursively during DFS traversal and
 * is returned as a result from btf_dump_order_type().
 *
 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 * but it is not guaranteeing that no extraneous forward declarations will be
 * emitted.
 *
 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 * entire graph path, so depending where from one came to that BTF type, it
 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 * once they are processed, there is no need to do it again, so they are
 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 * in any case, once those are processed, no need to do it again, as the
 * result won't change.
 *
 * Returns:
 *   - 1, if type is part of strong link (so there is strong topological
 *   ordering requirements);
 *   - 0, if type is part of weak link (so can be satisfied through forward
 *   declaration);
 *   - <0, on error (e.g., unsatisfiable type loop detected).
 */
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
{
	/*
	 * Order state is used to detect strong link cycles, but only for BTF
	 * kinds that are or could be an independent definition (i.e.,
	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
	 * func_protos, modifiers are just means to get to these definitions.
	 * Int/void don't need definitions, they are assumed to be always
	 * properly defined.  We also ignore datasec, var, and funcs for now.
	 * So for all non-defining kinds, we never even set ordering state,
	 * for defining kinds we set ORDERING and subsequently ORDERED if it
	 * forms a strong link.
	 */
	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
	const struct btf_type *t;
423
	__u16 vlen;
424 425 426 427 428 429 430 431 432 433
	int err, i;

	/* return true, letting typedefs know that it's ok to be emitted */
	if (tstate->order_state == ORDERED)
		return 1;

	t = btf__type_by_id(d->btf, id);

	if (tstate->order_state == ORDERING) {
		/* type loop, but resolvable through fwd declaration */
434
		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
435
			return 0;
436
		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
437 438 439
		return -ELOOP;
	}

440
	switch (btf_kind(t)) {
441 442 443 444 445 446 447 448 449
	case BTF_KIND_INT:
		tstate->order_state = ORDERED;
		return 0;

	case BTF_KIND_PTR:
		err = btf_dump_order_type(d, t->type, true);
		tstate->order_state = ORDERED;
		return err;

450 451
	case BTF_KIND_ARRAY:
		return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
452 453 454

	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION: {
455
		const struct btf_member *m = btf_members(t);
456 457 458 459 460 461 462 463 464 465
		/*
		 * struct/union is part of strong link, only if it's embedded
		 * (so no ptr in a path) or it's anonymous (so has to be
		 * defined inline, even if declared through ptr)
		 */
		if (through_ptr && t->name_off != 0)
			return 0;

		tstate->order_state = ORDERING;

466
		vlen = btf_vlen(t);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		for (i = 0; i < vlen; i++, m++) {
			err = btf_dump_order_type(d, m->type, false);
			if (err < 0)
				return err;
		}

		if (t->name_off != 0) {
			err = btf_dump_add_emit_queue_id(d, id);
			if (err < 0)
				return err;
		}

		tstate->order_state = ORDERED;
		return 1;
	}
	case BTF_KIND_ENUM:
	case BTF_KIND_FWD:
484 485 486 487 488 489
		/*
		 * non-anonymous or non-referenced enums are top-level
		 * declarations and should be emitted. Same logic can be
		 * applied to FWDs, it won't hurt anyways.
		 */
		if (t->name_off != 0 || !tstate->referenced) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
			err = btf_dump_add_emit_queue_id(d, id);
			if (err)
				return err;
		}
		tstate->order_state = ORDERED;
		return 1;

	case BTF_KIND_TYPEDEF: {
		int is_strong;

		is_strong = btf_dump_order_type(d, t->type, through_ptr);
		if (is_strong < 0)
			return is_strong;

		/* typedef is similar to struct/union w.r.t. fwd-decls */
		if (through_ptr && !is_strong)
			return 0;

		/* typedef is always a named definition */
		err = btf_dump_add_emit_queue_id(d, id);
		if (err)
			return err;

		d->type_states[id].order_state = ORDERED;
		return 1;
	}
	case BTF_KIND_VOLATILE:
	case BTF_KIND_CONST:
	case BTF_KIND_RESTRICT:
		return btf_dump_order_type(d, t->type, through_ptr);

	case BTF_KIND_FUNC_PROTO: {
522
		const struct btf_param *p = btf_params(t);
523 524 525 526 527 528 529
		bool is_strong;

		err = btf_dump_order_type(d, t->type, through_ptr);
		if (err < 0)
			return err;
		is_strong = err > 0;

530
		vlen = btf_vlen(t);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		for (i = 0; i < vlen; i++, p++) {
			err = btf_dump_order_type(d, p->type, through_ptr);
			if (err < 0)
				return err;
			if (err > 0)
				is_strong = true;
		}
		return is_strong;
	}
	case BTF_KIND_FUNC:
	case BTF_KIND_VAR:
	case BTF_KIND_DATASEC:
		d->type_states[id].order_state = ORDERED;
		return 0;

	default:
		return -EINVAL;
	}
}

static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
				     const struct btf_type *t);
static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
				     const struct btf_type *t, int lvl);

static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
				   const struct btf_type *t);
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
				   const struct btf_type *t, int lvl);

static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
				  const struct btf_type *t);

static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
				      const struct btf_type *t, int lvl);

/* a local view into a shared stack */
struct id_stack {
	const __u32 *ids;
	int cnt;
};

static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
				    const char *fname, int lvl);
static void btf_dump_emit_type_chain(struct btf_dump *d,
				     struct id_stack *decl_stack,
				     const char *fname, int lvl);

static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
				 const char *orig_name);

static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
{
	const struct btf_type *t = btf__type_by_id(d->btf, id);

	/* __builtin_va_list is a compiler built-in, which causes compilation
	 * errors, when compiling w/ different compiler, then used to compile
	 * original code (e.g., GCC to compile kernel, Clang to use generated
	 * C header from BTF). As it is built-in, it should be already defined
	 * properly internally in compiler.
	 */
	if (t->name_off == 0)
		return false;
	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
}

/*
 * Emit C-syntax definitions of types from chains of BTF types.
 *
 * High-level handling of determining necessary forward declarations are handled
 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 * declarations/definitions in C syntax  are handled by a combo of
 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 *
 * We also keep track of "containing struct/union type ID" to determine when
 * we reference it from inside and thus can avoid emitting unnecessary forward
 * declaration.
 *
 * This algorithm is designed in such a way, that even if some error occurs
 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 * that doesn't comply to C rules completely), algorithm will try to proceed
 * and produce as much meaningful output as possible.
 */
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
{
	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
	bool top_level_def = cont_id == 0;
	const struct btf_type *t;
	__u16 kind;

	if (tstate->emit_state == EMITTED)
		return;

	t = btf__type_by_id(d->btf, id);
628
	kind = btf_kind(t);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	if (tstate->emit_state == EMITTING) {
		if (tstate->fwd_emitted)
			return;

		switch (kind) {
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION:
			/*
			 * if we are referencing a struct/union that we are
			 * part of - then no need for fwd declaration
			 */
			if (id == cont_id)
				return;
			if (t->name_off == 0) {
644 645
				pr_warn("anonymous struct/union loop, id:[%u]\n",
					id);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
				return;
			}
			btf_dump_emit_struct_fwd(d, id, t);
			btf_dump_printf(d, ";\n\n");
			tstate->fwd_emitted = 1;
			break;
		case BTF_KIND_TYPEDEF:
			/*
			 * for typedef fwd_emitted means typedef definition
			 * was emitted, but it can be used only for "weak"
			 * references through pointer only, not for embedding
			 */
			if (!btf_dump_is_blacklisted(d, id)) {
				btf_dump_emit_typedef_def(d, id, t, 0);
				btf_dump_printf(d, ";\n\n");
661
			}
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
			tstate->fwd_emitted = 1;
			break;
		default:
			break;
		}

		return;
	}

	switch (kind) {
	case BTF_KIND_INT:
		tstate->emit_state = EMITTED;
		break;
	case BTF_KIND_ENUM:
		if (top_level_def) {
			btf_dump_emit_enum_def(d, id, t, 0);
			btf_dump_printf(d, ";\n\n");
		}
		tstate->emit_state = EMITTED;
		break;
	case BTF_KIND_PTR:
	case BTF_KIND_VOLATILE:
	case BTF_KIND_CONST:
	case BTF_KIND_RESTRICT:
		btf_dump_emit_type(d, t->type, cont_id);
		break;
688 689
	case BTF_KIND_ARRAY:
		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		break;
	case BTF_KIND_FWD:
		btf_dump_emit_fwd_def(d, id, t);
		btf_dump_printf(d, ";\n\n");
		tstate->emit_state = EMITTED;
		break;
	case BTF_KIND_TYPEDEF:
		tstate->emit_state = EMITTING;
		btf_dump_emit_type(d, t->type, id);
		/*
		 * typedef can server as both definition and forward
		 * declaration; at this stage someone depends on
		 * typedef as a forward declaration (refers to it
		 * through pointer), so unless we already did it,
		 * emit typedef as a forward declaration
		 */
		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
			btf_dump_emit_typedef_def(d, id, t, 0);
			btf_dump_printf(d, ";\n\n");
		}
		tstate->emit_state = EMITTED;
		break;
	case BTF_KIND_STRUCT:
	case BTF_KIND_UNION:
		tstate->emit_state = EMITTING;
		/* if it's a top-level struct/union definition or struct/union
		 * is anonymous, then in C we'll be emitting all fields and
		 * their types (as opposed to just `struct X`), so we need to
		 * make sure that all types, referenced from struct/union
		 * members have necessary forward-declarations, where
		 * applicable
		 */
		if (top_level_def || t->name_off == 0) {
723 724
			const struct btf_member *m = btf_members(t);
			__u16 vlen = btf_vlen(t);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
			int i, new_cont_id;

			new_cont_id = t->name_off == 0 ? cont_id : id;
			for (i = 0; i < vlen; i++, m++)
				btf_dump_emit_type(d, m->type, new_cont_id);
		} else if (!tstate->fwd_emitted && id != cont_id) {
			btf_dump_emit_struct_fwd(d, id, t);
			btf_dump_printf(d, ";\n\n");
			tstate->fwd_emitted = 1;
		}

		if (top_level_def) {
			btf_dump_emit_struct_def(d, id, t, 0);
			btf_dump_printf(d, ";\n\n");
			tstate->emit_state = EMITTED;
		} else {
			tstate->emit_state = NOT_EMITTED;
		}
		break;
	case BTF_KIND_FUNC_PROTO: {
745 746
		const struct btf_param *p = btf_params(t);
		__u16 vlen = btf_vlen(t);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		int i;

		btf_dump_emit_type(d, t->type, cont_id);
		for (i = 0; i < vlen; i++, p++)
			btf_dump_emit_type(d, p->type, cont_id);

		break;
	}
	default:
		break;
	}
}

static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
				 const struct btf_type *t)
{
	const struct btf_member *m;
	int align, i, bit_sz;
	__u16 vlen;

767
	align = btf__align_of(btf, id);
768
	/* size of a non-packed struct has to be a multiple of its alignment*/
769
	if (align && t->size % align)
770 771
		return true;

772 773
	m = btf_members(t);
	vlen = btf_vlen(t);
774 775
	/* all non-bitfield fields have to be naturally aligned */
	for (i = 0; i < vlen; i++, m++) {
776
		align = btf__align_of(btf, m->type);
777
		bit_sz = btf_member_bitfield_size(t, i);
778
		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
			return true;
	}

	/*
	 * if original struct was marked as packed, but its layout is
	 * naturally aligned, we'll detect that it's not packed
	 */
	return false;
}

static int chip_away_bits(int total, int at_most)
{
	return total % at_most ? : at_most;
}

static void btf_dump_emit_bit_padding(const struct btf_dump *d,
				      int cur_off, int m_off, int m_bit_sz,
				      int align, int lvl)
{
	int off_diff = m_off - cur_off;
	int ptr_bits = sizeof(void *) * 8;

	if (off_diff <= 0)
		/* no gap */
		return;
	if (m_bit_sz == 0 && off_diff < align * 8)
		/* natural padding will take care of a gap */
		return;

	while (off_diff > 0) {
		const char *pad_type;
		int pad_bits;

		if (ptr_bits > 32 && off_diff > 32) {
			pad_type = "long";
			pad_bits = chip_away_bits(off_diff, ptr_bits);
		} else if (off_diff > 16) {
			pad_type = "int";
			pad_bits = chip_away_bits(off_diff, 32);
		} else if (off_diff > 8) {
			pad_type = "short";
			pad_bits = chip_away_bits(off_diff, 16);
		} else {
			pad_type = "char";
			pad_bits = chip_away_bits(off_diff, 8);
		}
		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
		off_diff -= pad_bits;
	}
}

static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
				     const struct btf_type *t)
{
	btf_dump_printf(d, "%s %s",
834
			btf_is_struct(t) ? "struct" : "union",
835 836 837 838 839 840 841 842
			btf_dump_type_name(d, id));
}

static void btf_dump_emit_struct_def(struct btf_dump *d,
				     __u32 id,
				     const struct btf_type *t,
				     int lvl)
{
843 844
	const struct btf_member *m = btf_members(t);
	bool is_struct = btf_is_struct(t);
845
	int align, i, packed, off = 0;
846
	__u16 vlen = btf_vlen(t);
847 848 849 850 851 852 853 854 855 856 857 858 859

	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;

	btf_dump_printf(d, "%s%s%s {",
			is_struct ? "struct" : "union",
			t->name_off ? " " : "",
			btf_dump_type_name(d, id));

	for (i = 0; i < vlen; i++, m++) {
		const char *fname;
		int m_off, m_sz;

		fname = btf_name_of(d, m->name_off);
860 861
		m_sz = btf_member_bitfield_size(t, i);
		m_off = btf_member_bit_offset(t, i);
862
		align = packed ? 1 : btf__align_of(d->btf, m->type);
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);

		if (m_sz) {
			btf_dump_printf(d, ": %d", m_sz);
			off = m_off + m_sz;
		} else {
			m_sz = max(0, btf__resolve_size(d->btf, m->type));
			off = m_off + m_sz * 8;
		}
		btf_dump_printf(d, ";");
	}

878 879
	/* pad at the end, if necessary */
	if (is_struct) {
880
		align = packed ? 1 : btf__align_of(d->btf, id);
881 882 883 884
		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
					  lvl + 1);
	}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	if (vlen)
		btf_dump_printf(d, "\n");
	btf_dump_printf(d, "%s}", pfx(lvl));
	if (packed)
		btf_dump_printf(d, " __attribute__((packed))");
}

static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
				   const struct btf_type *t)
{
	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
}

static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
				   const struct btf_type *t,
				   int lvl)
{
902 903
	const struct btf_enum *v = btf_enum(t);
	__u16 vlen = btf_vlen(t);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	const char *name;
	size_t dup_cnt;
	int i;

	btf_dump_printf(d, "enum%s%s",
			t->name_off ? " " : "",
			btf_dump_type_name(d, id));

	if (vlen) {
		btf_dump_printf(d, " {");
		for (i = 0; i < vlen; i++, v++) {
			name = btf_name_of(d, v->name_off);
			/* enumerators share namespace with typedef idents */
			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
			if (dup_cnt > 1) {
919
				btf_dump_printf(d, "\n%s%s___%zu = %u,",
920
						pfx(lvl + 1), name, dup_cnt,
921
						(__u32)v->val);
922
			} else {
923
				btf_dump_printf(d, "\n%s%s = %u,",
924
						pfx(lvl + 1), name,
925
						(__u32)v->val);
926 927 928 929 930 931 932 933 934 935 936
			}
		}
		btf_dump_printf(d, "\n%s}", pfx(lvl));
	}
}

static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
				  const struct btf_type *t)
{
	const char *name = btf_dump_type_name(d, id);

937
	if (btf_kflag(t))
938 939 940 941 942 943 944 945 946 947
		btf_dump_printf(d, "union %s", name);
	else
		btf_dump_printf(d, "struct %s", name);
}

static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
				     const struct btf_type *t, int lvl)
{
	const char *name = btf_dump_ident_name(d, id);

948 949 950 951 952 953 954 955 956 957 958
	/*
	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
	 * pointing to VOID. This generates warnings from btf_dump() and
	 * results in uncompilable header file, so we are fixing it up here
	 * with valid typedef into __builtin_va_list.
	 */
	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
		return;
	}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	btf_dump_printf(d, "typedef ");
	btf_dump_emit_type_decl(d, t->type, name, lvl);
}

static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
{
	__u32 *new_stack;
	size_t new_cap;

	if (d->decl_stack_cnt >= d->decl_stack_cap) {
		new_cap = max(16, d->decl_stack_cap * 3 / 2);
		new_stack = realloc(d->decl_stack,
				    new_cap * sizeof(new_stack[0]));
		if (!new_stack)
			return -ENOMEM;
		d->decl_stack = new_stack;
		d->decl_stack_cap = new_cap;
	}

	d->decl_stack[d->decl_stack_cnt++] = id;

	return 0;
}

/*
 * Emit type declaration (e.g., field type declaration in a struct or argument
 * declaration in function prototype) in correct C syntax.
 *
 * For most types it's trivial, but there are few quirky type declaration
 * cases worth mentioning:
 *   - function prototypes (especially nesting of function prototypes);
 *   - arrays;
 *   - const/volatile/restrict for pointers vs other types.
 *
 * For a good discussion of *PARSING* C syntax (as a human), see
 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
 * Ch.3 "Unscrambling Declarations in C".
 *
 * It won't help with BTF to C conversion much, though, as it's an opposite
 * problem. So we came up with this algorithm in reverse to van der Linden's
 * parsing algorithm. It goes from structured BTF representation of type
 * declaration to a valid compilable C syntax.
 *
 * For instance, consider this C typedef:
 *	typedef const int * const * arr[10] arr_t;
 * It will be represented in BTF with this chain of BTF types:
 *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
 *
 * Notice how [const] modifier always goes before type it modifies in BTF type
 * graph, but in C syntax, const/volatile/restrict modifiers are written to
 * the right of pointers, but to the left of other types. There are also other
 * quirks, like function pointers, arrays of them, functions returning other
 * functions, etc.
 *
 * We handle that by pushing all the types to a stack, until we hit "terminal"
 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
 * top of a stack, modifiers are handled differently. Array/function pointers
 * have also wildly different syntax and how nesting of them are done. See
 * code for authoritative definition.
 *
 * To avoid allocating new stack for each independent chain of BTF types, we
 * share one bigger stack, with each chain working only on its own local view
 * of a stack frame. Some care is required to "pop" stack frames after
 * processing type declaration chain.
 */
1024 1025 1026 1027 1028 1029 1030 1031 1032
int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
			     const struct btf_dump_emit_type_decl_opts *opts)
{
	const char *fname;
	int lvl;

	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
		return -EINVAL;

1033
	fname = OPTS_GET(opts, field_name, "");
1034 1035 1036 1037 1038
	lvl = OPTS_GET(opts, indent_level, 0);
	btf_dump_emit_type_decl(d, id, fname, lvl);
	return 0;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
				    const char *fname, int lvl)
{
	struct id_stack decl_stack;
	const struct btf_type *t;
	int err, stack_start;

	stack_start = d->decl_stack_cnt;
	for (;;) {
		err = btf_dump_push_decl_stack_id(d, id);
		if (err < 0) {
			/*
			 * if we don't have enough memory for entire type decl
			 * chain, restore stack, emit warning, and try to
			 * proceed nevertheless
			 */
1055
			pr_warn("not enough memory for decl stack:%d", err);
1056 1057 1058 1059 1060 1061 1062 1063 1064
			d->decl_stack_cnt = stack_start;
			return;
		}

		/* VOID */
		if (id == 0)
			break;

		t = btf__type_by_id(d->btf, id);
1065
		switch (btf_kind(t)) {
1066 1067 1068 1069 1070 1071 1072
		case BTF_KIND_PTR:
		case BTF_KIND_VOLATILE:
		case BTF_KIND_CONST:
		case BTF_KIND_RESTRICT:
		case BTF_KIND_FUNC_PROTO:
			id = t->type;
			break;
1073 1074
		case BTF_KIND_ARRAY:
			id = btf_array(t)->type;
1075 1076 1077 1078 1079 1080 1081 1082 1083
			break;
		case BTF_KIND_INT:
		case BTF_KIND_ENUM:
		case BTF_KIND_FWD:
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION:
		case BTF_KIND_TYPEDEF:
			goto done;
		default:
1084 1085
			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
				btf_kind(t), id);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
			goto done;
		}
	}
done:
	/*
	 * We might be inside a chain of declarations (e.g., array of function
	 * pointers returning anonymous (so inlined) structs, having another
	 * array field). Each of those needs its own "stack frame" to handle
	 * emitting of declarations. Those stack frames are non-overlapping
	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
	 * handle this set of nested stacks, we create a view corresponding to
	 * our own "stack frame" and work with it as an independent stack.
	 * We'll need to clean up after emit_type_chain() returns, though.
	 */
	decl_stack.ids = d->decl_stack + stack_start;
	decl_stack.cnt = d->decl_stack_cnt - stack_start;
	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
	/*
	 * emit_type_chain() guarantees that it will pop its entire decl_stack
	 * frame before returning. But it works with a read-only view into
	 * decl_stack, so it doesn't actually pop anything from the
	 * perspective of shared btf_dump->decl_stack, per se. We need to
	 * reset decl_stack state to how it was before us to avoid it growing
	 * all the time.
	 */
	d->decl_stack_cnt = stack_start;
}

static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
{
	const struct btf_type *t;
	__u32 id;

	while (decl_stack->cnt) {
		id = decl_stack->ids[decl_stack->cnt - 1];
		t = btf__type_by_id(d->btf, id);

1123
		switch (btf_kind(t)) {
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		case BTF_KIND_VOLATILE:
			btf_dump_printf(d, "volatile ");
			break;
		case BTF_KIND_CONST:
			btf_dump_printf(d, "const ");
			break;
		case BTF_KIND_RESTRICT:
			btf_dump_printf(d, "restrict ");
			break;
		default:
			return;
		}
		decl_stack->cnt--;
	}
}

static void btf_dump_emit_name(const struct btf_dump *d,
			       const char *name, bool last_was_ptr)
{
	bool separate = name[0] && !last_was_ptr;

	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
}

static void btf_dump_emit_type_chain(struct btf_dump *d,
				     struct id_stack *decls,
				     const char *fname, int lvl)
{
	/*
	 * last_was_ptr is used to determine if we need to separate pointer
	 * asterisk (*) from previous part of type signature with space, so
	 * that we get `int ***`, instead of `int * * *`. We default to true
	 * for cases where we have single pointer in a chain. E.g., in ptr ->
	 * func_proto case. func_proto will start a new emit_type_chain call
	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
	 * don't want to prepend space for that last pointer.
	 */
	bool last_was_ptr = true;
	const struct btf_type *t;
	const char *name;
	__u16 kind;
	__u32 id;

	while (decls->cnt) {
		id = decls->ids[--decls->cnt];
		if (id == 0) {
			/* VOID is a special snowflake */
			btf_dump_emit_mods(d, decls);
			btf_dump_printf(d, "void");
			last_was_ptr = false;
			continue;
		}

		t = btf__type_by_id(d->btf, id);
1178
		kind = btf_kind(t);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

		switch (kind) {
		case BTF_KIND_INT:
			btf_dump_emit_mods(d, decls);
			name = btf_name_of(d, t->name_off);
			btf_dump_printf(d, "%s", name);
			break;
		case BTF_KIND_STRUCT:
		case BTF_KIND_UNION:
			btf_dump_emit_mods(d, decls);
			/* inline anonymous struct/union */
			if (t->name_off == 0)
				btf_dump_emit_struct_def(d, id, t, lvl);
			else
				btf_dump_emit_struct_fwd(d, id, t);
			break;
		case BTF_KIND_ENUM:
			btf_dump_emit_mods(d, decls);
			/* inline anonymous enum */
			if (t->name_off == 0)
				btf_dump_emit_enum_def(d, id, t, lvl);
			else
				btf_dump_emit_enum_fwd(d, id, t);
			break;
		case BTF_KIND_FWD:
			btf_dump_emit_mods(d, decls);
			btf_dump_emit_fwd_def(d, id, t);
			break;
		case BTF_KIND_TYPEDEF:
			btf_dump_emit_mods(d, decls);
			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
			break;
		case BTF_KIND_PTR:
			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
			break;
		case BTF_KIND_VOLATILE:
			btf_dump_printf(d, " volatile");
			break;
		case BTF_KIND_CONST:
			btf_dump_printf(d, " const");
			break;
		case BTF_KIND_RESTRICT:
			btf_dump_printf(d, " restrict");
			break;
		case BTF_KIND_ARRAY: {
1224
			const struct btf_array *a = btf_array(t);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
			const struct btf_type *next_t;
			__u32 next_id;
			bool multidim;
			/*
			 * GCC has a bug
			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
			 * which causes it to emit extra const/volatile
			 * modifiers for an array, if array's element type has
			 * const/volatile modifiers. Clang doesn't do that.
			 * In general, it doesn't seem very meaningful to have
			 * a const/volatile modifier for array, so we are
			 * going to silently skip them here.
			 */
			while (decls->cnt) {
				next_id = decls->ids[decls->cnt - 1];
1240 1241
				next_t = btf__type_by_id(d->btf, next_id);
				if (btf_is_mod(next_t))
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
					decls->cnt--;
				else
					break;
			}

			if (decls->cnt == 0) {
				btf_dump_emit_name(d, fname, last_was_ptr);
				btf_dump_printf(d, "[%u]", a->nelems);
				return;
			}

1253
			next_id = decls->ids[decls->cnt - 1];
1254
			next_t = btf__type_by_id(d->btf, next_id);
1255
			multidim = btf_is_array(next_t);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			/* we need space if we have named non-pointer */
			if (fname[0] && !last_was_ptr)
				btf_dump_printf(d, " ");
			/* no parentheses for multi-dimensional array */
			if (!multidim)
				btf_dump_printf(d, "(");
			btf_dump_emit_type_chain(d, decls, fname, lvl);
			if (!multidim)
				btf_dump_printf(d, ")");
			btf_dump_printf(d, "[%u]", a->nelems);
			return;
		}
		case BTF_KIND_FUNC_PROTO: {
1269 1270
			const struct btf_param *p = btf_params(t);
			__u16 vlen = btf_vlen(t);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
			int i;

			btf_dump_emit_mods(d, decls);
			if (decls->cnt) {
				btf_dump_printf(d, " (");
				btf_dump_emit_type_chain(d, decls, fname, lvl);
				btf_dump_printf(d, ")");
			} else {
				btf_dump_emit_name(d, fname, last_was_ptr);
			}
			btf_dump_printf(d, "(");
			/*
			 * Clang for BPF target generates func_proto with no
			 * args as a func_proto with a single void arg (e.g.,
			 * `int (*f)(void)` vs just `int (*f)()`). We are
			 * going to pretend there are no args for such case.
			 */
			if (vlen == 1 && p->type == 0) {
				btf_dump_printf(d, ")");
				return;
			}

			for (i = 0; i < vlen; i++, p++) {
				if (i > 0)
					btf_dump_printf(d, ", ");

				/* last arg of type void is vararg */
				if (i == vlen - 1 && p->type == 0) {
					btf_dump_printf(d, "...");
					break;
				}

				name = btf_name_of(d, p->name_off);
				btf_dump_emit_type_decl(d, p->type, name, lvl);
			}

			btf_dump_printf(d, ")");
			return;
		}
		default:
1311 1312
			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
				kind, id);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
			return;
		}

		last_was_ptr = kind == BTF_KIND_PTR;
	}

	btf_dump_emit_name(d, fname, last_was_ptr);
}

/* return number of duplicates (occurrences) of a given name */
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
				 const char *orig_name)
{
	size_t dup_cnt = 0;

	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
	dup_cnt++;
	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);

	return dup_cnt;
}

static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
					 struct hashmap *name_map)
{
	struct btf_dump_type_aux_state *s = &d->type_states[id];
	const struct btf_type *t = btf__type_by_id(d->btf, id);
	const char *orig_name = btf_name_of(d, t->name_off);
	const char **cached_name = &d->cached_names[id];
	size_t dup_cnt;

	if (t->name_off == 0)
		return "";

	if (s->name_resolved)
		return *cached_name ? *cached_name : orig_name;

	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
	if (dup_cnt > 1) {
		const size_t max_len = 256;
		char new_name[max_len];

		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
		*cached_name = strdup(new_name);
	}

	s->name_resolved = 1;
	return *cached_name ? *cached_name : orig_name;
}

static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
{
	return btf_dump_resolve_name(d, id, d->type_names);
}

static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
{
	return btf_dump_resolve_name(d, id, d->ident_names);
}