igb_main.c 152.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
A
Alexander Duyck 已提交
66 67
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_setup_rctl(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
95 96
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
97
static void igb_set_rx_mode(struct net_device *);
98 99 100
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
101 102 103 104 105
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
					   struct net_device *,
					   struct igb_ring *);
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *);
106 107 108 109 110 111 112 113
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_rx(int irq, void *);
static irqreturn_t igb_msix_tx(int irq, void *);
114
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
115 116 117
static void igb_update_rx_dca(struct igb_ring *);
static void igb_update_tx_dca(struct igb_ring *);
static void igb_setup_dca(struct igb_adapter *);
118
#endif /* CONFIG_IGB_DCA */
119
static bool igb_clean_tx_irq(struct igb_ring *);
120
static int igb_poll(struct napi_struct *, int);
121 122
static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
123 124 125 126 127 128 129
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
130 131 132
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
133
static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
134 135 136
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137

E
Eric Dumazet 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
{
	u32 reg_data;

	reg_data = rd32(E1000_VMOLR(vfn));
	reg_data |= E1000_VMOLR_BAM |	 /* Accept broadcast */
	            E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
	            E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
	            E1000_VMOLR_AUPE |   /* Accept untagged packets */
	            E1000_VMOLR_STRVLAN; /* Strip vlan tags */
	wr32(E1000_VMOLR(vfn), reg_data);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                 int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

157 158 159 160 161 162
	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

E
Eric Dumazet 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
{
	u32 reg_data;

	reg_data = rd32(E1000_RAH(entry));
	reg_data &= ~E1000_RAH_POOL_MASK;
	reg_data |= E1000_RAH_POOL_1 << pool;;
	wr32(E1000_RAH(entry), reg_data);
}

181
#ifdef CONFIG_PM
182
static int igb_suspend(struct pci_dev *, pm_message_t);
183 184 185
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
186
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
187 188 189 190 191 192 193
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
194 195 196 197
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
198
#ifdef CONFIG_PCI_IOV
199 200 201 202 203 204
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

231 232
static int global_quad_port_a; /* global quad port a indication */

233 234 235 236 237
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/**
 * Scale the NIC clock cycle by a large factor so that
 * relatively small clock corrections can be added or
 * substracted at each clock tick. The drawbacks of a
 * large factor are a) that the clock register overflows
 * more quickly (not such a big deal) and b) that the
 * increment per tick has to fit into 24 bits.
 *
 * Note that
 *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
 *             IGB_TSYNC_SCALE
 *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
 *
 * The base scale factor is intentionally a power of two
 * so that the division in %struct timecounter can be done with
 * a shift.
 */
#define IGB_TSYNC_SHIFT (19)
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)

/**
 * The duration of one clock cycle of the NIC.
 *
 * @todo This hard-coded value is part of the specification and might change
 * in future hardware revisions. Add revision check.
 */
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16

#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
#endif

/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
	u64 stamp;

	stamp =  rd32(E1000_SYSTIML);
	stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;

	return stamp;
}

286 287 288 289 290 291 292 293 294 295
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
312 313
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
314 315 316 317 318 319
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
320 321
#endif

322 323 324 325 326 327 328 329 330 331 332
/**
 * igb_desc_unused - calculate if we have unused descriptors
 **/
static int igb_desc_unused(struct igb_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

347 348
	global_quad_port_a = 0;

349
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
350 351
	dca_register_notify(&dca_notifier);
#endif
352 353

	ret = pci_register_driver(&igb_driver);
354 355 356 357 358 359 360 361 362 363 364 365 366
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
367
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
368 369
	dca_unregister_notify(&dca_notifier);
#endif
370 371 372 373 374
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

375 376 377 378 379 380 381 382 383 384 385
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i;
386
	unsigned int rbase_offset = adapter->vfs_allocated_count;
387 388 389 390 391 392 393 394 395

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		for (i = 0; i < adapter->num_rx_queues; i++)
396 397
			adapter->rx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
398
		for (i = 0; i < adapter->num_tx_queues; i++)
399 400
			adapter->tx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
401 402 403 404 405 406 407 408 409 410 411
		break;
	case e1000_82575:
	default:
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = i;
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].reg_idx = i;
		break;
	}
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		return -ENOMEM;

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->rx_ring) {
		kfree(adapter->tx_ring);
		return -ENOMEM;
	}

435 436
	adapter->rx_ring->buddy = adapter->tx_ring;

437 438
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
439
		ring->count = adapter->tx_ring_count;
440 441 442
		ring->adapter = adapter;
		ring->queue_index = i;
	}
443 444
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
445
		ring->count = adapter->rx_ring_count;
446
		ring->adapter = adapter;
P
PJ Waskiewicz 已提交
447
		ring->queue_index = i;
448 449
		ring->itr_register = E1000_ITR;

P
PJ Waskiewicz 已提交
450
		/* set a default napi handler for each rx_ring */
451
		netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
452
	}
453 454

	igb_cache_ring_register(adapter);
455 456 457
	return 0;
}

A
Alexander Duyck 已提交
458 459 460 461 462 463 464
static void igb_free_queues(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		netif_napi_del(&adapter->rx_ring[i].napi);

465 466 467
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;

A
Alexander Duyck 已提交
468 469 470 471
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
}

472 473 474 475 476 477
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
			      int tx_queue, int msix_vector)
{
	u32 msixbm = 0;
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
478 479 480 481
	u32 ivar, index;

	switch (hw->mac.type) {
	case e1000_82575:
482 483 484 485 486 487 488 489 490 491 492 493 494 495
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
		if (rx_queue > IGB_N0_QUEUE) {
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
			adapter->rx_ring[rx_queue].eims_value = msixbm;
		}
		if (tx_queue > IGB_N0_QUEUE) {
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
			adapter->tx_ring[tx_queue].eims_value =
				  E1000_EICR_TX_QUEUE0 << tx_queue;
		}
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
A
Alexander Duyck 已提交
496 497
		break;
	case e1000_82576:
498
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
499 500 501 502
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
503
			index = (rx_queue >> 1) + adapter->vfs_allocated_count;
A
Alexander Duyck 已提交
504
			ivar = array_rd32(E1000_IVAR0, index);
505
			if (rx_queue & 0x1) {
A
Alexander Duyck 已提交
506 507 508
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
509 510 511 512
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
A
Alexander Duyck 已提交
513 514 515 516 517
			}
			adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
518
			index = (tx_queue >> 1) + adapter->vfs_allocated_count;
A
Alexander Duyck 已提交
519
			ivar = array_rd32(E1000_IVAR0, index);
520
			if (tx_queue & 0x1) {
A
Alexander Duyck 已提交
521 522 523
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
524 525 526 527
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
A
Alexander Duyck 已提交
528 529 530 531 532 533 534 535 536
			}
			adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
			array_wr32(E1000_IVAR0, index, ivar);
		}
		break;
	default:
		BUG();
		break;
	}
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;
A
Alexander Duyck 已提交
552 553 554 555
	if (hw->mac.type == e1000_82576)
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
556
				   E1000_GPIE_PBA | E1000_GPIE_EIAME |
A
Alexander Duyck 已提交
557
 				   E1000_GPIE_NSICR);
558 559 560 561 562 563

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = &adapter->tx_ring[i];
		igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
		adapter->eims_enable_mask |= tx_ring->eims_value;
		if (tx_ring->itr_val)
564
			writel(tx_ring->itr_val,
565 566 567 568 569 570 571
			       hw->hw_addr + tx_ring->itr_register);
		else
			writel(1, hw->hw_addr + tx_ring->itr_register);
	}

	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = &adapter->rx_ring[i];
572
		rx_ring->buddy = NULL;
573 574 575
		igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
		adapter->eims_enable_mask |= rx_ring->eims_value;
		if (rx_ring->itr_val)
576
			writel(rx_ring->itr_val,
577 578 579 580 581 582 583
			       hw->hw_addr + rx_ring->itr_register);
		else
			writel(1, hw->hw_addr + rx_ring->itr_register);
	}


	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
584 585
	switch (hw->mac.type) {
	case e1000_82575:
586 587 588 589 590 591 592 593 594 595 596 597 598
		array_wr32(E1000_MSIXBM(0), vector++,
				      E1000_EIMS_OTHER);

		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
		adapter->eims_enable_mask |= E1000_EIMS_OTHER;
P
PJ Waskiewicz 已提交
599
		adapter->eims_other = E1000_EIMS_OTHER;
600

A
Alexander Duyck 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613
		break;

	case e1000_82576:
		tmp = (vector++ | E1000_IVAR_VALID) << 8;
		wr32(E1000_IVAR_MISC, tmp);

		adapter->eims_enable_mask = (1 << (vector)) - 1;
		adapter->eims_other = 1 << (vector - 1);
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i, err = 0, vector = 0;

	vector = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
632
		sprintf(ring->name, "%s-tx-%d", netdev->name, i);
633 634 635 636 637 638
		err = request_irq(adapter->msix_entries[vector].vector,
				  &igb_msix_tx, 0, ring->name,
				  &(adapter->tx_ring[i]));
		if (err)
			goto out;
		ring->itr_register = E1000_EITR(0) + (vector << 2);
639
		ring->itr_val = 976; /* ~4000 ints/sec */
640 641 642 643 644
		vector++;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
		if (strlen(netdev->name) < (IFNAMSIZ - 5))
645
			sprintf(ring->name, "%s-rx-%d", netdev->name, i);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		else
			memcpy(ring->name, netdev->name, IFNAMSIZ);
		err = request_irq(adapter->msix_entries[vector].vector,
				  &igb_msix_rx, 0, ring->name,
				  &(adapter->rx_ring[i]));
		if (err)
			goto out;
		ring->itr_register = E1000_EITR(0) + (vector << 2);
		ring->itr_val = adapter->itr;
		vector++;
	}

	err = request_irq(adapter->msix_entries[vector].vector,
			  &igb_msix_other, 0, netdev->name, netdev);
	if (err)
		goto out;

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
675
	} else if (adapter->flags & IGB_FLAG_HAS_MSI)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		pci_disable_msi(adapter->pdev);
	return;
}


/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

692 693 694 695 696
	/* Number of supported queues. */
	/* Having more queues than CPUs doesn't make sense. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

697 698 699 700 701 702 703 704 705 706 707 708 709
	numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
710
		goto out;
711 712 713 714 715

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
731
	adapter->num_rx_queues = 1;
732
	adapter->num_tx_queues = 1;
733
	if (!pci_enable_msi(adapter->pdev))
734
		adapter->flags |= IGB_FLAG_HAS_MSI;
735
out:
736
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
737
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	return;
}

/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
755
		if (!err)
756 757 758 759
			goto request_done;
		/* fall back to MSI */
		igb_reset_interrupt_capability(adapter);
		if (!pci_enable_msi(adapter->pdev))
760
			adapter->flags |= IGB_FLAG_HAS_MSI;
761 762 763 764
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
		adapter->num_rx_queues = 1;
		igb_alloc_queues(adapter);
P
PJ Waskiewicz 已提交
765
	} else {
A
Alexander Duyck 已提交
766 767 768 769 770 771 772 773 774 775 776
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
			     (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
777
	}
P
PJ Waskiewicz 已提交
778

779
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
780 781 782 783 784 785
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
				  netdev->name, netdev);
		if (!err)
			goto request_done;
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
786
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
787 788 789 790 791
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
			  netdev->name, netdev);

A
Andy Gospodarek 已提交
792
	if (err)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	if (adapter->msix_entries) {
		int vector = 0, i;

		for (i = 0; i < adapter->num_tx_queues; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				&(adapter->tx_ring[i]));
		for (i = 0; i < adapter->num_rx_queues; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				&(adapter->rx_ring[i]));

		free_irq(adapter->msix_entries[vector++].vector, netdev);
		return;
	}

	free_irq(adapter->pdev->irq, netdev);
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
830 831 832 833 834
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
835
	}
P
PJ Waskiewicz 已提交
836 837

	wr32(E1000_IAM, 0);
838 839 840 841 842 843 844 845 846 847 848 849 850 851
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
852 853 854 855
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
856
		wr32(E1000_EIMS, adapter->eims_enable_mask);
857 858 859 860
		if (adapter->vfs_allocated_count)
			wr32(E1000_MBVFIMR, 0xFF);
		wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
		                 E1000_IMS_DOUTSYNC));
P
PJ Waskiewicz 已提交
861 862 863 864
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
	if (adapter->vlgrp) {
		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
			if (adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
				igb_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;

			if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
					(vid != old_vid) &&
			    !vlan_group_get_device(adapter->vlgrp, old_vid))
				igb_vlan_rx_kill_vid(netdev, old_vid);
		} else
			adapter->mng_vlan_id = vid;
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
941
	igb_set_rx_mode(netdev);
942 943 944 945 946 947

	igb_restore_vlan(adapter);

	igb_configure_tx(adapter);
	igb_setup_rctl(adapter);
	igb_configure_rx(adapter);
948 949 950

	igb_rx_fifo_flush_82575(&adapter->hw);

951
	/* call igb_desc_unused which always leaves
952 953 954 955
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
956
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

P
PJ Waskiewicz 已提交
979 980 981
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_enable(&adapter->rx_ring[i].napi);
	if (adapter->msix_entries)
982 983
		igb_configure_msix(adapter);

984
	igb_vmm_control(adapter);
985 986 987
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

988 989 990 991
	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

992 993
	netif_tx_start_all_queues(adapter->netdev);

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	/* Fire a link change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1015
	netif_tx_stop_all_queues(netdev);
1016 1017 1018 1019 1020 1021 1022 1023 1024

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

P
PJ Waskiewicz 已提交
1025 1026
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_disable(&adapter->rx_ring[i].napi);
1027 1028 1029 1030 1031 1032 1033 1034

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1035 1036 1037 1038

	/* record the stats before reset*/
	igb_update_stats(adapter);

1039 1040 1041
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1042 1043
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1044 1045
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1046 1047 1048 1049 1050
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1066 1067
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1068 1069 1070 1071 1072 1073
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1074 1075
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
1076
		pba = E1000_PBA_64K;
1077 1078 1079 1080 1081
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1082
	}
1083

A
Alexander Duyck 已提交
1084 1085
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1103
				sizeof(union e1000_adv_tx_desc) -
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1124
		wr32(E1000_PBA, pba);
1125 1126 1127 1128 1129 1130 1131 1132 1133
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1134
			((pba << 10) - 2 * adapter->max_frame_size));
1135

A
Alexander Duyck 已提交
1136 1137 1138 1139 1140 1141 1142
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1143 1144
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1145
	fc->current_mode = fc->requested_mode;
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].clear_to_send = false;

		/* ping all the active vfs to let them know we are going down */
			igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	/* Allow time for pending master requests to run */
	adapter->hw.mac.ops.reset_hw(&adapter->hw);
	wr32(E1000_WUC, 0);

	if (adapter->hw.mac.ops.init_hw(&adapter->hw))
		dev_err(&adapter->pdev->dev, "Hardware Error\n");

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	igb_reset_adaptive(&adapter->hw);
1174
	igb_get_phy_info(&adapter->hw);
1175 1176
}

S
Stephen Hemminger 已提交
1177 1178 1179
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1180
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1181
	.ndo_get_stats		= igb_get_stats,
1182 1183
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1216
	int err, pci_using_dac;
1217
	u16 eeprom_data = 0;
1218 1219 1220
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1221
	err = pci_enable_device_mem(pdev);
1222 1223 1224 1225
	if (err)
		return err;

	pci_using_dac = 0;
1226
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1227
	if (!err) {
1228
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1229 1230 1231
		if (!err)
			pci_using_dac = 1;
	} else {
1232
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1233
		if (err) {
1234
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1235 1236 1237 1238 1239 1240 1241 1242
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1243 1244 1245
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1246 1247 1248
	if (err)
		goto err_pci_reg;

1249 1250 1251 1252 1253 1254
	err = pci_enable_pcie_error_reporting(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
		        "0x%x\n", err);
		/* non-fatal, continue */
	}
1255

1256
	pci_set_master(pdev);
1257
	pci_save_state(pdev);
1258 1259

	err = -ENOMEM;
1260 1261
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1279 1280
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1281 1282
		goto err_ioremap;

S
Stephen Hemminger 已提交
1283
	netdev->netdev_ops = &igb_netdev_ops;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* setup the private structure */
	hw->back = adapter;
	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1308
		goto err_sw_init;
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318
#ifdef CONFIG_PCI_IOV
	/* since iov functionality isn't critical to base device function we
	 * can accept failure.  If it fails we don't allow iov to be enabled */
	if (hw->mac.type == e1000_82576) {
		/* 82576 supports a maximum of 7 VFs in addition to the PF */
		unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
		int i;
		unsigned char mac_addr[ETH_ALEN];

1319
		if (num_vfs) {
1320 1321 1322
			adapter->vf_data = kcalloc(num_vfs,
						sizeof(struct vf_data_storage),
						GFP_KERNEL);
1323 1324 1325 1326
			if (!adapter->vf_data) {
				dev_err(&pdev->dev,
				        "Could not allocate VF private data - "
					"IOV enable failed\n");
1327
			} else {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				err = pci_enable_sriov(pdev, num_vfs);
				if (!err) {
					adapter->vfs_allocated_count = num_vfs;
					dev_info(&pdev->dev,
					         "%d vfs allocated\n",
					         num_vfs);
					for (i = 0;
					     i < adapter->vfs_allocated_count;
					     i++) {
						random_ether_addr(mac_addr);
						igb_set_vf_mac(adapter, i,
						               mac_addr);
					}
				} else {
					kfree(adapter->vf_data);
					adapter->vf_data = NULL;
				}
1345 1346 1347 1348 1349
			}
		}
	}

#endif
1350
	/* setup the private structure */
1351 1352 1353 1354 1355 1356
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

1357 1358 1359 1360 1361
	/* set flags */
	switch (hw->mac.type) {
	case e1000_82575:
		adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
		break;
1362
	case e1000_82576:
1363 1364 1365 1366
	default:
		break;
	}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1382
			   NETIF_F_IP_CSUM |
1383 1384 1385 1386
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1387
	netdev->features |= NETIF_F_IPV6_CSUM;
1388 1389
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1390

H
Herbert Xu 已提交
1391
	netdev->features |= NETIF_F_GRO;
1392

1393 1394
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1395
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1396
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1397 1398
	netdev->vlan_features |= NETIF_F_SG;

1399 1400 1401
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1402 1403 1404
	if (adapter->hw.mac.type == e1000_82576)
		netdev->features |= NETIF_F_SCTP_CSUM;

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1431 1432 1433 1434
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1435 1436 1437 1438

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1439
	/* Initialize link properties that are user-changeable */
1440 1441 1442 1443
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1444 1445
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1446

A
Alexander Duyck 已提交
1447
	adapter->itr_setting = IGB_DEFAULT_ITR;
1448 1449 1450 1451 1452 1453 1454 1455
	adapter->itr = IGB_START_ITR;

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1456
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1457
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1458 1459
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1472 1473
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1474 1475 1476 1477 1478
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1489 1490 1491 1492
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1493
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1507 1508 1509
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1510
#ifdef CONFIG_IGB_DCA
1511
	if (dca_add_requester(&pdev->dev) == 0) {
1512
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1513 1514 1515 1516 1517
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}
#endif

P
Patrick Ohly 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	/*
	 * Initialize hardware timer: we keep it running just in case
	 * that some program needs it later on.
	 */
	memset(&adapter->cycles, 0, sizeof(adapter->cycles));
	adapter->cycles.read = igb_read_clock;
	adapter->cycles.mask = CLOCKSOURCE_MASK(64);
	adapter->cycles.mult = 1;
	adapter->cycles.shift = IGB_TSYNC_SHIFT;
	wr32(E1000_TIMINCA,
	     (1<<24) |
	     IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
#if 0
	/*
	 * Avoid rollover while we initialize by resetting the time counter.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0x00000000);
#else
	/*
	 * Set registers so that rollover occurs soon to test this.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0xFF800000);
#endif
	wrfl();
	timecounter_init(&adapter->clock,
			 &adapter->cycles,
			 ktime_to_ns(ktime_get_real()));

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * Synchronize our NIC clock against system wall clock. NIC
	 * time stamp reading requires ~3us per sample, each sample
	 * was pretty stable even under load => only require 10
	 * samples for each offset comparison.
	 */
	memset(&adapter->compare, 0, sizeof(adapter->compare));
	adapter->compare.source = &adapter->clock;
	adapter->compare.target = ktime_get_real;
	adapter->compare.num_samples = 10;
	timecompare_update(&adapter->compare, 0);

P
Patrick Ohly 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
#ifdef DEBUG
	{
		char buffer[160];
		printk(KERN_DEBUG
			"igb: %s: hw %p initialized timer\n",
			igb_get_time_str(adapter, buffer),
			&adapter->hw);
	}
#endif

1570 1571
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1572
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1573 1574 1575
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1576 1577 1578 1579
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1580
		 netdev->dev_addr);
1581 1582 1583 1584 1585 1586 1587 1588

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1589
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1590 1591 1592 1593 1594 1595 1596 1597
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1598
		igb_reset_phy(hw);
1599 1600 1601 1602

	if (hw->flash_address)
		iounmap(hw->flash_address);

A
Alexander Duyck 已提交
1603
	igb_free_queues(adapter);
1604 1605 1606 1607 1608
err_sw_init:
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1609 1610
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1630
	struct e1000_hw *hw = &adapter->hw;
1631
	int err;
1632 1633 1634 1635 1636 1637 1638 1639 1640

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1641
#ifdef CONFIG_IGB_DCA
1642
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1643 1644
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1645
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1646
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1647 1648 1649
	}
#endif

1650 1651 1652 1653 1654 1655
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1656 1657
	if (!igb_check_reset_block(&adapter->hw))
		igb_reset_phy(&adapter->hw);
1658 1659 1660

	igb_reset_interrupt_capability(adapter);

A
Alexander Duyck 已提交
1661
	igb_free_queues(adapter);
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1677 1678 1679
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1680 1681
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1682 1683 1684

	free_netdev(netdev);

1685 1686 1687 1688
	err = pci_disable_pcie_error_reporting(pdev);
	if (err)
		dev_err(&pdev->dev,
		        "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	pci_disable_device(pdev);
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1709 1710
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1711 1712 1713 1714 1715
	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
	adapter->rx_ps_hdr_size = 0; /* disable packet split */
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1716 1717
	/* This call may decrease the number of queues depending on
	 * interrupt mode. */
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	igb_set_interrupt_capability(adapter);

	if (igb_alloc_queues(adapter)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1755 1756
	netif_carrier_off(netdev);

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		igb_update_mng_vlan(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

1780
	igb_vmm_control(adapter);
1781 1782 1783
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1784 1785 1786 1787 1788 1789 1790
	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

P
PJ Waskiewicz 已提交
1791 1792
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_enable(&adapter->rx_ring[i].napi);
1793 1794 1795

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1796 1797 1798

	igb_irq_enable(adapter);

1799 1800
	netif_tx_start_all_queues(netdev);

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	/* Fire a link status change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	/* kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it) */
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
int igb_setup_tx_resources(struct igb_adapter *adapter,
			   struct igb_ring *tx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
1872
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->adapter = adapter;
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
	dev_err(&adapter->pdev->dev,
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;
1903
	int r_idx;
1904 1905 1906 1907 1908 1909 1910

	for (i = 0; i < adapter->num_tx_queues; i++) {
		err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
1911
				igb_free_tx_resources(&adapter->tx_ring[i]);
1912 1913 1914 1915
			break;
		}
	}

1916 1917 1918
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
		r_idx = i % adapter->num_tx_queues;
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1919
	}
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	return err;
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
A
Alexander Duyck 已提交
1931
	u64 tdba;
1932 1933 1934
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;
	u32 txdctl, txctrl;
1935
	int i, j;
1936 1937

	for (i = 0; i < adapter->num_tx_queues; i++) {
1938
		struct igb_ring *ring = &adapter->tx_ring[i];
1939 1940
		j = ring->reg_idx;
		wr32(E1000_TDLEN(j),
1941
		     ring->count * sizeof(union e1000_adv_tx_desc));
1942
		tdba = ring->dma;
1943
		wr32(E1000_TDBAL(j),
1944
		     tdba & 0x00000000ffffffffULL);
1945
		wr32(E1000_TDBAH(j), tdba >> 32);
1946

1947 1948
		ring->head = E1000_TDH(j);
		ring->tail = E1000_TDT(j);
1949 1950
		writel(0, hw->hw_addr + ring->tail);
		writel(0, hw->hw_addr + ring->head);
1951
		txdctl = rd32(E1000_TXDCTL(j));
1952
		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1953
		wr32(E1000_TXDCTL(j), txdctl);
1954 1955 1956 1957 1958

		/* Turn off Relaxed Ordering on head write-backs.  The
		 * writebacks MUST be delivered in order or it will
		 * completely screw up our bookeeping.
		 */
1959
		txctrl = rd32(E1000_DCA_TXCTRL(j));
1960
		txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1961
		wr32(E1000_DCA_TXCTRL(j), txctrl);
1962 1963
	}

1964 1965 1966
	/* disable queue 0 to prevent tail bump w/o re-configuration */
	if (adapter->vfs_allocated_count)
		wr32(E1000_TXDCTL(0), 0);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int igb_setup_rx_resources(struct igb_adapter *adapter,
			   struct igb_ring *rx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	rx_ring->adapter = adapter;

	return 0;

err:
	vfree(rx_ring->buffer_info);
	dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
		err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2047
				igb_free_rx_resources(&adapter->rx_ring[i]);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
			break;
		}
	}

	return err;
}

/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
static void igb_setup_rctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u32 srrctl = 0;
2064
	int i;
2065 2066 2067 2068

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2069
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2070

2071
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2072
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2073

2074 2075 2076 2077
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2078
	 */
2079
	rctl |= E1000_RCTL_SECRC;
2080

2081
	/*
2082
	 * disable store bad packets and clear size bits.
2083
	 */
2084
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2085

2086
	/* enable LPE when to prevent packets larger than max_frame_size */
2087
		rctl |= E1000_RCTL_LPE;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

	/* Setup buffer sizes */
	switch (adapter->rx_buffer_len) {
	case IGB_RXBUFFER_256:
		rctl |= E1000_RCTL_SZ_256;
		break;
	case IGB_RXBUFFER_512:
		rctl |= E1000_RCTL_SZ_512;
		break;
	default:
		srrctl = ALIGN(adapter->rx_buffer_len, 1024)
		         >> E1000_SRRCTL_BSIZEPKT_SHIFT;
		break;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	}

	/* 82575 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 */
	/* allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames */
2112
	if (adapter->netdev->mtu > ETH_DATA_LEN) {
2113
		adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2114
		srrctl |= adapter->rx_ps_hdr_size <<
2115 2116 2117 2118 2119 2120 2121
			 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
		adapter->rx_ps_hdr_size = 0;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		u32 vmolr;

		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
		srrctl |= E1000_SRRCTL_DROP_EN;

		/* disable queue 0 to prevent tail write w/o re-config */
		wr32(E1000_RXDCTL(0), 0);

2136
		vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2137 2138
		if (rctl & E1000_RCTL_LPE)
			vmolr |= E1000_VMOLR_LPE;
2139
		if (adapter->num_rx_queues > 1)
2140
			vmolr |= E1000_VMOLR_RSSE;
2141
		wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2142 2143
	}

2144
	for (i = 0; i < adapter->num_rx_queues; i++) {
2145
		int j = adapter->rx_ring[i].reg_idx;
2146 2147
		wr32(E1000_SRRCTL(j), srrctl);
	}
2148 2149 2150 2151

	wr32(E1000_RCTL, rctl);
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
		max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
	}

	wr32(E1000_RLPML, max_frame_size);
}

/**
 * igb_configure_vt_default_pool - Configure VT default pool
 * @adapter: board private structure
 *
 * Configure the default pool
 **/
static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;
	u32 vtctl;

	/* not in sr-iov mode - do nothing */
	if (!pf_id)
		return;

	vtctl = rd32(E1000_VT_CTL);
	vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
		   E1000_VT_CTL_DISABLE_DEF_POOL);
	vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
	wr32(E1000_VT_CTL, vtctl);
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
	u64 rdba;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rxcsum;
	u32 rxdctl;
2212
	int i;
2213 2214 2215 2216 2217 2218 2219 2220

	/* disable receives while setting up the descriptors */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	wrfl();
	mdelay(10);

	if (adapter->itr_setting > 3)
2221
		wr32(E1000_ITR, adapter->itr);
2222 2223 2224 2225

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++) {
2226
		struct igb_ring *ring = &adapter->rx_ring[i];
2227
		int j = ring->reg_idx;
2228
		rdba = ring->dma;
2229
		wr32(E1000_RDBAL(j),
2230
		     rdba & 0x00000000ffffffffULL);
2231 2232
		wr32(E1000_RDBAH(j), rdba >> 32);
		wr32(E1000_RDLEN(j),
2233
		     ring->count * sizeof(union e1000_adv_rx_desc));
2234

2235 2236
		ring->head = E1000_RDH(j);
		ring->tail = E1000_RDT(j);
2237 2238 2239
		writel(0, hw->hw_addr + ring->tail);
		writel(0, hw->hw_addr + ring->head);

2240
		rxdctl = rd32(E1000_RXDCTL(j));
2241 2242 2243 2244 2245
		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
		rxdctl &= 0xFFF00000;
		rxdctl |= IGB_RX_PTHRESH;
		rxdctl |= IGB_RX_HTHRESH << 8;
		rxdctl |= IGB_RX_WTHRESH << 16;
2246
		wr32(E1000_RXDCTL(j), rxdctl);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	}

	if (adapter->num_rx_queues > 1) {
		u32 random[10];
		u32 mrqc;
		u32 j, shift;
		union e1000_reta {
			u32 dword;
			u8  bytes[4];
		} reta;

		get_random_bytes(&random[0], 40);

A
Alexander Duyck 已提交
2260 2261 2262 2263
		if (hw->mac.type >= e1000_82576)
			shift = 0;
		else
			shift = 6;
2264 2265
		for (j = 0; j < (32 * 4); j++) {
			reta.bytes[j & 3] =
2266
				adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2267 2268 2269 2270
			if ((j & 3) == 3)
				writel(reta.dword,
				       hw->hw_addr + E1000_RETA(0) + (j & ~3));
		}
2271 2272 2273 2274
		if (adapter->vfs_allocated_count)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

		/* Fill out hash function seeds */
		for (j = 0; j < 10; j++)
			array_wr32(E1000_RSSRK(0), j, random[j]);

		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
			 E1000_MRQC_RSS_FIELD_IPV4_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
			 E1000_MRQC_RSS_FIELD_IPV6_UDP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

		wr32(E1000_MRQC, mrqc);
2290
	} else if (adapter->vfs_allocated_count) {
2291
		/* Enable multi-queue for sr-iov */
2292
		wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2293 2294
	}

2295 2296 2297 2298
	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = rd32(E1000_RXCSUM);
	/* Disable raw packet checksumming */
	rxcsum |= E1000_RXCSUM_PCSD;
2299 2300

	if (adapter->hw.mac.type == e1000_82576)
2301 2302 2303
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

2304
	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2305 2306
	wr32(E1000_RXCSUM, rxcsum);

2307 2308 2309 2310
	/* Set the default pool for the PF's first queue */
	igb_configure_vt_default_pool(adapter);

	igb_rlpml_set(adapter);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	/* Enable Receives */
	wr32(E1000_RCTL, rctl);
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2322
void igb_free_tx_resources(struct igb_ring *tx_ring)
2323
{
2324
	struct pci_dev *pdev = tx_ring->adapter->pdev;
2325

2326
	igb_clean_tx_ring(tx_ring);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2347
		igb_free_tx_resources(&adapter->tx_ring[i]);
2348 2349 2350 2351 2352
}

static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
					   struct igb_buffer *buffer_info)
{
2353
	buffer_info->dma = 0;
2354
	if (buffer_info->skb) {
2355 2356
		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
		              DMA_TO_DEVICE);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2368
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2369
{
2370
	struct igb_adapter *adapter = tx_ring->adapter;
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(adapter, buffer_info);
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2407
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2408 2409 2410 2411 2412 2413 2414 2415
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2416
void igb_free_rx_resources(struct igb_ring *rx_ring)
2417
{
2418
	struct pci_dev *pdev = rx_ring->adapter->pdev;
2419

2420
	igb_clean_rx_ring(rx_ring);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2441
		igb_free_rx_resources(&adapter->rx_ring[i]);
2442 2443 2444 2445 2446 2447
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2448
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2449
{
2450
	struct igb_adapter *adapter = rx_ring->adapter;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	struct igb_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->rx_ps_hdr_size)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_ps_hdr_size,
						 PCI_DMA_FROMDEVICE);
			else
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_buffer_len,
						 PCI_DMA_FROMDEVICE);
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
		if (buffer_info->page) {
2478 2479 2480 2481
			if (buffer_info->page_dma)
				pci_unmap_page(pdev, buffer_info->page_dma,
					       PAGE_SIZE / 2,
					       PCI_DMA_FROMDEVICE);
2482 2483 2484
			put_page(buffer_info->page);
			buffer_info->page = NULL;
			buffer_info->page_dma = 0;
2485
			buffer_info->page_offset = 0;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2511
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2524
	struct e1000_hw *hw = &adapter->hw;
2525 2526 2527 2528 2529 2530
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2531
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2532

2533
	igb_rar_set(hw, hw->mac.addr, 0);
2534 2535
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);

2536 2537 2538 2539
	return 0;
}

/**
2540
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2541 2542
 * @netdev: network interface device structure
 *
2543 2544 2545
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
2546 2547
 * promiscuous mode, and all-multi behavior.
 **/
2548
static void igb_set_rx_mode(struct net_device *netdev)
2549 2550 2551
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2552 2553 2554
	unsigned int rar_entries = hw->mac.rar_entry_count -
	                           (adapter->vfs_allocated_count + 1);
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2555
	u8  *mta_list = NULL;
2556 2557 2558 2559 2560 2561
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

2562
	if (netdev->flags & IFF_PROMISC) {
2563
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2564 2565
		rctl &= ~E1000_RCTL_VFE;
	} else {
2566
		if (netdev->flags & IFF_ALLMULTI)
2567
			rctl |= E1000_RCTL_MPE;
2568 2569 2570 2571 2572 2573
		else
			rctl &= ~E1000_RCTL_MPE;

		if (netdev->uc.count > rar_entries)
			rctl |= E1000_RCTL_UPE;
		else
2574
			rctl &= ~E1000_RCTL_UPE;
2575
		rctl |= E1000_RCTL_VFE;
2576
	}
2577 2578
	wr32(E1000_RCTL, rctl);

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
			igb_rar_set(hw, ha->addr, rar_entries);
			igb_set_rah_pool(hw, adapter->vfs_allocated_count,
			                 rar_entries);
			rar_entries--;
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return;
	}

	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list) {
		dev_err(&adapter->pdev->dev,
		        "failed to allocate multicast filter list\n");
		return;
2609 2610 2611 2612 2613 2614 2615 2616 2617
	}

	/* The shared function expects a packed array of only addresses. */
	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
	}
2618
	igb_update_mc_addr_list(hw, mta_list, i);
2619
	kfree(mta_list);
2620
	igb_restore_vf_multicasts(adapter);
2621 2622 2623 2624 2625 2626 2627
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2628
	igb_get_phy_info(&adapter->hw);
2629 2630
}

A
Alexander Duyck 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2686 2687
	u32 eics = 0;
	int i;
2688

A
Alexander Duyck 已提交
2689 2690
	link = igb_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link)
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		goto link_up;

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
			hw->mac.ops.get_speed_and_duplex(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
2701 2702
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2703
				 "Flow Control: %s\n",
2704
			         netdev->name,
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

2730 2731
			igb_ping_all_vfs(adapter);

2732
			/* link state has changed, schedule phy info update */
2733 2734 2735 2736 2737 2738 2739 2740
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2741 2742 2743
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2744
			netif_carrier_off(netdev);
2745

2746 2747
			igb_ping_all_vfs(adapter);

2748
			/* link state has changed, schedule phy info update */
2749 2750 2751 2752 2753 2754 2755 2756 2757
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

link_up:
	igb_update_stats(adapter);

2758
	hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2759
	adapter->tpt_old = adapter->stats.tpt;
2760
	hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	adapter->colc_old = adapter->stats.colc;

	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;

	igb_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
2771
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2772 2773 2774 2775 2776 2777
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
2778 2779
			/* return immediately since reset is imminent */
			return;
2780 2781 2782 2783
		}
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
2784 2785 2786 2787 2788 2789 2790
	if (adapter->msix_entries) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			eics |= adapter->rx_ring[i].eims_value;
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

	/* Force detection of hung controller every watchdog period */
	tx_ring->detect_tx_hung = true;

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};


2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
 * @rx_ring: pointer to ring
 **/
static void igb_update_ring_itr(struct igb_ring *rx_ring)
2826
{
2827 2828 2829
	int new_val = rx_ring->itr_val;
	int avg_wire_size = 0;
	struct igb_adapter *adapter = rx_ring->adapter;
2830

2831 2832
	if (!rx_ring->total_packets)
		goto clear_counts; /* no packets, so don't do anything */
2833

2834 2835 2836 2837 2838 2839
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
		new_val = 120;
		goto set_itr_val;
2840
	}
2841
	avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2842

2843 2844 2845 2846 2847
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
2848

2849 2850 2851 2852 2853
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
2854

2855
set_itr_val:
2856 2857
	if (new_val != rx_ring->itr_val) {
		rx_ring->itr_val = new_val;
2858
		rx_ring->set_itr = 1;
2859
	}
2860 2861 2862
clear_counts:
	rx_ring->total_bytes = 0;
	rx_ring->total_packets = 0;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
2919
		} else if (bytes < 1500) {
2920 2921 2922 2923 2924 2925 2926 2927 2928
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

2929
static void igb_set_itr(struct igb_adapter *adapter)
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
{
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

2946
	if (adapter->rx_ring->buddy) {
2947 2948 2949 2950 2951 2952 2953 2954 2955
		adapter->tx_itr = igb_update_itr(adapter,
					    adapter->tx_itr,
					    adapter->tx_ring->total_packets,
					    adapter->tx_ring->total_bytes);
		current_itr = max(adapter->rx_itr, adapter->tx_itr);
	} else {
		current_itr = adapter->rx_itr;
	}

2956
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2957
	if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2958 2959
		current_itr = low_latency;

2960 2961 2962
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
2963
		new_itr = 56;  /* aka 70,000 ints/sec */
2964 2965
		break;
	case low_latency:
2966
		new_itr = 196; /* aka 20,000 ints/sec */
2967 2968
		break;
	case bulk_latency:
2969
		new_itr = 980; /* aka 4,000 ints/sec */
2970 2971 2972 2973 2974 2975
		break;
	default:
		break;
	}

set_itr_now:
2976 2977 2978 2979 2980 2981 2982
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
	if (adapter->rx_ring->buddy) {
		adapter->rx_ring->buddy->total_bytes = 0;
		adapter->rx_ring->buddy->total_packets = 0;
	}

2983 2984 2985 2986 2987
	if (new_itr != adapter->itr) {
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
		new_itr = new_itr > adapter->itr ?
2988 2989
			     max((new_itr * adapter->itr) /
			         (new_itr + (adapter->itr >> 2)), new_itr) :
2990 2991 2992 2993 2994 2995 2996 2997
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
		adapter->itr = new_itr;
2998
		adapter->rx_ring->itr_val = new_itr;
2999
		adapter->rx_ring->set_itr = 1;
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	}

	return;
}


#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
3010
#define IGB_TX_FLAGS_TSTAMP             0x00000010
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
#define IGB_TX_FLAGS_VLAN_MASK	0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT	16

static inline int igb_tso_adv(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3076
	/* For 82575, context index must be unique per ring. */
3077 3078
	if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
		mss_l4len_idx |= tx_ring->queue_index << 4;
3079 3080 3081 3082 3083

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3084
	buffer_info->next_to_watch = i;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
					struct igb_ring *tx_ring,
					struct sk_buff *skb, u32 tx_flags)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3133
			case cpu_to_be16(ETH_P_IP):
3134
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3135 3136
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3137 3138
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3139
				break;
3140
			case cpu_to_be16(ETH_P_IPV6):
3141 3142 3143
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3144 3145
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3146 3147 3148 3149 3150 3151 3152 3153
				break;
			default:
				if (unlikely(net_ratelimit()))
					dev_warn(&adapter->pdev->dev,
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3154 3155 3156 3157
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3158 3159 3160
		if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
			context_desc->mss_l4len_idx =
				cpu_to_le32(tx_ring->queue_index << 4);
3161 3162
		else
			context_desc->mss_l4len_idx = 0;
3163 3164

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3165
		buffer_info->next_to_watch = i;
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

static inline int igb_tx_map_adv(struct igb_adapter *adapter,
A
Alexander Duyck 已提交
3182 3183
				 struct igb_ring *tx_ring, struct sk_buff *skb,
				 unsigned int first)
3184 3185 3186 3187 3188
{
	struct igb_buffer *buffer_info;
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3189
	dma_addr_t *map;
3190 3191 3192

	i = tx_ring->next_to_use;

3193 3194 3195 3196 3197 3198 3199
	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3200 3201 3202 3203 3204
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3205
	buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3206
	buffer_info->dma = skb_shinfo(skb)->dma_head;
3207 3208 3209 3210

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3211 3212 3213 3214
		i++;
		if (i == tx_ring->count)
			i = 0;

3215 3216 3217 3218 3219 3220 3221
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3222
		buffer_info->next_to_watch = i;
3223
		buffer_info->dma = map[count];
3224 3225 3226 3227
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3228
	tx_ring->buffer_info[first].next_to_watch = i;
3229

E
Eric Dumazet 已提交
3230
	return count + 1;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
}

static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
				    struct igb_ring *tx_ring,
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3249 3250 3251
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3266 3267 3268
	if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
			 IGB_TX_FLAGS_VLAN)))
3269
		olinfo_status |= tx_ring->queue_index << 4;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

static int __igb_maybe_stop_tx(struct net_device *netdev,
			       struct igb_ring *tx_ring, int size)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

3305 3306
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3307 3308 3309 3310 3311 3312 3313
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3314
	if (igb_desc_unused(tx_ring) < size)
3315 3316 3317
		return -EBUSY;

	/* A reprieve! */
3318
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3319 3320 3321 3322 3323 3324 3325
	++adapter->restart_queue;
	return 0;
}

static int igb_maybe_stop_tx(struct net_device *netdev,
			     struct igb_ring *tx_ring, int size)
{
3326
	if (igb_desc_unused(tx_ring) >= size)
3327 3328 3329 3330
		return 0;
	return __igb_maybe_stop_tx(netdev, tx_ring, size);
}

3331 3332 3333
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
					   struct net_device *netdev,
					   struct igb_ring *tx_ring)
3334 3335
{
	struct igb_adapter *adapter = netdev_priv(netdev);
A
Alexander Duyck 已提交
3336
	unsigned int first;
3337 3338
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
3339
	int count = 0;
3340
	int tso = 0;
3341
	union skb_shared_tx *shtx;
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
	if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

	/*
	 * TODO: check that there currently is no other packet with
	 * time stamping in the queue
	 *
	 * When doing time stamping, keep the connection to the socket
	 * a while longer: it is still needed by skb_hwtstamp_tx(),
	 * called either in igb_tx_hwtstamp() or by our caller when
	 * doing software time stamping.
	 */
	shtx = skb_tx(skb);
	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3377 3378 3379 3380 3381 3382

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3383 3384 3385
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3386
	first = tx_ring->next_to_use;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
					      &hdr_len) : 0;

	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3397 3398 3399
	else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	/*
	 * count reflects descriptors mapped, if 0 then mapping error
	 * has occured and we need to rewind the descriptor queue
	 */
	count = igb_tx_map_adv(adapter, tx_ring, skb, first);

	if (count) {
		igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
			         skb->len, hdr_len);
		/* Make sure there is space in the ring for the next send. */
		igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
	} else {
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
	}
3417 3418 3419 3420

	return NETDEV_TX_OK;
}

3421 3422
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3423 3424
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3425 3426 3427
	struct igb_ring *tx_ring;

	int r_idx = 0;
3428
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3429
	tx_ring = adapter->multi_tx_table[r_idx];
3430 3431 3432 3433 3434

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3435
	return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
3450 3451
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3469
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	/* only return the current stats */
	return &adapter->net_stats;
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3502

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	if (netif_running(netdev))
		igb_down(adapter);

	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

	if (max_frame <= IGB_RXBUFFER_256)
		adapter->rx_buffer_len = IGB_RXBUFFER_256;
	else if (max_frame <= IGB_RXBUFFER_512)
		adapter->rx_buffer_len = IGB_RXBUFFER_512;
	else if (max_frame <= IGB_RXBUFFER_1024)
		adapter->rx_buffer_len = IGB_RXBUFFER_1024;
	else if (max_frame <= IGB_RXBUFFER_2048)
		adapter->rx_buffer_len = IGB_RXBUFFER_2048;
	else
3523 3524 3525 3526 3527
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		adapter->rx_buffer_len = IGB_RXBUFFER_16384;
#else
		adapter->rx_buffer_len = PAGE_SIZE / 2;
#endif
3528 3529 3530 3531 3532 3533

	/* if sr-iov is enabled we need to force buffer size to 1K or larger */
	if (adapter->vfs_allocated_count &&
	    (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
		adapter->rx_buffer_len = IGB_RXBUFFER_1024;

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u16 phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
	adapter->net_stats.multicast = adapter->stats.mprc;
	adapter->net_stats.collisions = adapter->stats.colc;

	/* Rx Errors */

3654 3655
	if (hw->mac.type != e1000_82575) {
		u32 rqdpc_tmp;
3656
		u64 rqdpc_total = 0;
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
		int i;
		/* Read out drops stats per RX queue.  Notice RQDPC (Receive
		 * Queue Drop Packet Count) stats only gets incremented, if
		 * the DROP_EN but it set (in the SRRCTL register for that
		 * queue).  If DROP_EN bit is NOT set, then the some what
		 * equivalent count is stored in RNBC (not per queue basis).
		 * Also note the drop count is due to lack of available
		 * descriptors.
		 */
		for (i = 0; i < adapter->num_rx_queues; i++) {
			rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
			adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3669
			rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3670
		}
3671
		adapter->net_stats.rx_fifo_errors = rqdpc_total;
3672 3673
	}

3674 3675 3676 3677 3678 3679 3680
	/* Note RNBC (Receive No Buffers Count) is an not an exact
	 * drop count as the hardware FIFO might save the day.  Thats
	 * one of the reason for saving it in rx_fifo_errors, as its
	 * potentially not a true drop.
	 */
	adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;

3681
	/* RLEC on some newer hardware can be incorrect so build
3682
	 * our own version based on RUC and ROC */
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	adapter->net_stats.tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3705
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3722
	u32 icr = rd32(E1000_ICR);
3723

P
PJ Waskiewicz 已提交
3724
	/* reading ICR causes bit 31 of EICR to be cleared */
3725 3726 3727 3728 3729

	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3730

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
P
PJ Waskiewicz 已提交
3743
	wr32(E1000_EIMS, adapter->eims_other);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753

	return IRQ_HANDLED;
}

static irqreturn_t igb_msix_tx(int irq, void *data)
{
	struct igb_ring *tx_ring = data;
	struct igb_adapter *adapter = tx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;

3754
#ifdef CONFIG_IGB_DCA
3755
	if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3756 3757
		igb_update_tx_dca(tx_ring);
#endif
3758

3759 3760
	tx_ring->total_bytes = 0;
	tx_ring->total_packets = 0;
3761 3762 3763

	/* auto mask will automatically reenable the interrupt when we write
	 * EICS */
3764
	if (!igb_clean_tx_irq(tx_ring))
3765 3766
		/* Ring was not completely cleaned, so fire another interrupt */
		wr32(E1000_EICS, tx_ring->eims_value);
3767
	else
3768
		wr32(E1000_EIMS, tx_ring->eims_value);
3769

3770 3771 3772
	return IRQ_HANDLED;
}

3773 3774 3775 3776 3777 3778
static void igb_write_itr(struct igb_ring *ring)
{
	struct e1000_hw *hw = &ring->adapter->hw;
	if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
		switch (hw->mac.type) {
		case e1000_82576:
3779
			wr32(ring->itr_register, ring->itr_val |
3780 3781 3782
			     0x80000000);
			break;
		default:
3783
			wr32(ring->itr_register, ring->itr_val |
3784 3785 3786 3787 3788 3789 3790
			     (ring->itr_val << 16));
			break;
		}
		ring->set_itr = 0;
	}
}

3791 3792 3793 3794
static irqreturn_t igb_msix_rx(int irq, void *data)
{
	struct igb_ring *rx_ring = data;

P
PJ Waskiewicz 已提交
3795 3796 3797
	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
3798

3799
	igb_write_itr(rx_ring);
3800

3801 3802
	if (napi_schedule_prep(&rx_ring->napi))
		__napi_schedule(&rx_ring->napi);
P
PJ Waskiewicz 已提交
3803

3804
#ifdef CONFIG_IGB_DCA
3805
	if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3806 3807 3808 3809 3810
		igb_update_rx_dca(rx_ring);
#endif
		return IRQ_HANDLED;
}

3811
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
3812 3813 3814 3815 3816 3817
static void igb_update_rx_dca(struct igb_ring *rx_ring)
{
	u32 dca_rxctrl;
	struct igb_adapter *adapter = rx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();
3818
	int q = rx_ring->reg_idx;
J
Jeb Cramer 已提交
3819 3820 3821

	if (rx_ring->cpu != cpu) {
		dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
A
Alexander Duyck 已提交
3822 3823
		if (hw->mac.type == e1000_82576) {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
M
Maciej Sosnowski 已提交
3824
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
A
Alexander Duyck 已提交
3825 3826 3827
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
3828
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
3829
		}
J
Jeb Cramer 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
		rx_ring->cpu = cpu;
	}
	put_cpu();
}

static void igb_update_tx_dca(struct igb_ring *tx_ring)
{
	u32 dca_txctrl;
	struct igb_adapter *adapter = tx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();
3845
	int q = tx_ring->reg_idx;
J
Jeb Cramer 已提交
3846 3847 3848

	if (tx_ring->cpu != cpu) {
		dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
A
Alexander Duyck 已提交
3849 3850
		if (hw->mac.type == e1000_82576) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
M
Maciej Sosnowski 已提交
3851
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
A
Alexander Duyck 已提交
3852 3853 3854
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		} else {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
3855
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
3856
		}
J
Jeb Cramer 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
		tx_ring->cpu = cpu;
	}
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
3866
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
3867 3868
	int i;

3869
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
3870 3871
		return;

3872 3873 3874
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

J
Jeb Cramer 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	for (i = 0; i < adapter->num_tx_queues; i++) {
		adapter->tx_ring[i].cpu = -1;
		igb_update_tx_dca(&adapter->tx_ring[i]);
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		adapter->rx_ring[i].cpu = -1;
		igb_update_rx_dca(&adapter->rx_ring[i]);
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
3895
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3896 3897 3898
			break;
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
3899
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
3900
		if (dca_add_requester(dev) == 0) {
3901
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
3902 3903 3904 3905 3906 3907
			dev_info(&adapter->pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
3908
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
3909 3910 3911 3912
			/* without this a class_device is left
 			 * hanging around in the sysfs model */
			dca_remove_requester(dev);
			dev_info(&adapter->pdev->dev, "DCA disabled\n");
3913
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
3914
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
3915 3916 3917
		}
		break;
	}
3918

J
Jeb Cramer 已提交
3919
	return 0;
3920 3921
}

J
Jeb Cramer 已提交
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
3932
#endif /* CONFIG_IGB_DCA */
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].clear_to_send)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* salt away the number of multi cast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* VFs are limited to using the MTA hash table for their multicast
	 * addresses */
	for (i = 0; i < n; i++)
3969
		vf_data->vf_mc_hashes[i] = hash_list[i];
3970 3971

	/* Flush and reset the mta with the new values */
3972
	igb_set_rx_mode(adapter->netdev);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		vf_data = &adapter->vf_data[i];
3985
		for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
			igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4015 4016

	adapter->vf_data[vf].vlans_enabled = 0;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

	/* It is an error to call this function when VFs are not enabled */
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
A
Alexander Duyck 已提交
4054 4055 4056 4057 4058
				/* add VID to filter table, if bit already set
				 * PF must have added it outside of table */
				if (igb_vfta_set(hw, vid, true))
					reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
						adapter->vfs_allocated_count);
4059 4060
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4061 4062
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4063 4064

			wr32(E1000_VLVF(i), reg);
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
			adapter->vf_data[vf].vlans_enabled++;

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	/* disable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = false;

	/* reset offloads to defaults */
	igb_set_vmolr(hw, vf);

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4139
	igb_set_rx_mode(adapter->netdev);
4140 4141 4142 4143 4144 4145
}

static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4146
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4147 4148 4149 4150 4151 4152 4153
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset_event(adapter, vf);

	/* set vf mac address */
4154 4155
	igb_rar_set(hw, vf_mac, rar_entry);
	igb_set_rah_pool(hw, vf, rar_entry);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

	/* enable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = true;

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
		unsigned char *addr = (char *)&msg[1];
		int err = -1;

		if (is_valid_ether_addr(addr))
			err = igb_set_vf_mac(adapter, vf, addr);

		return err;

}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!adapter->vf_data[vf].clear_to_send)
		igb_write_mbx(hw, &msg, 1, vf);
}


static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf)) {
			adapter->vf_data[vf].clear_to_send = false;
			igb_vf_reset_event(adapter, vf);
		}

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);

	}
}

static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	u32 mbx_size = E1000_VFMAILBOX_SIZE;
	u32 msgbuf[mbx_size];
	struct e1000_hw *hw = &adapter->hw;
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);

	if (retval)
		dev_err(&adapter->pdev->dev,
		        "Error receiving message from VF\n");

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		return retval;

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);

		return retval;
	}

	if (!adapter->vf_data[vf].clear_to_send) {
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
		igb_write_mbx(hw, msgbuf, 1, vf);
		return retval;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);

	return retval;
}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4297
	igb_write_itr(adapter->rx_ring);
4298

4299 4300 4301 4302 4303
	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4304 4305 4306 4307 4308 4309
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4310
	napi_schedule(&adapter->rx_ring[0].napi);
4311 4312 4313 4314 4315

	return IRQ_HANDLED;
}

/**
4316
 * igb_intr - Legacy Interrupt Handler
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4331
	igb_write_itr(adapter->rx_ring);
4332 4333 4334 4335 4336 4337

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4338 4339 4340 4341 4342
	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4343 4344 4345 4346 4347 4348 4349
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4350
	napi_schedule(&adapter->rx_ring[0].napi);
4351 4352 4353 4354

	return IRQ_HANDLED;
}

4355
static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4356
{
4357
	struct igb_adapter *adapter = rx_ring->adapter;
4358
	struct e1000_hw *hw = &adapter->hw;
4359

4360 4361
	if (adapter->itr_setting & 3) {
		if (adapter->num_rx_queues == 1)
4362
			igb_set_itr(adapter);
4363 4364
		else
			igb_update_ring_itr(rx_ring);
4365 4366
	}

4367 4368 4369 4370 4371 4372
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
			wr32(E1000_EIMS, rx_ring->eims_value);
		else
			igb_irq_enable(adapter);
	}
4373 4374
}

4375 4376 4377 4378 4379 4380
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4381 4382 4383 4384
{
	struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
	int work_done = 0;

4385
#ifdef CONFIG_IGB_DCA
4386
	if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4387 4388
		igb_update_rx_dca(rx_ring);
#endif
4389
	igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4390

4391 4392
	if (rx_ring->buddy) {
#ifdef CONFIG_IGB_DCA
4393
		if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4394 4395 4396 4397 4398 4399
			igb_update_tx_dca(rx_ring->buddy);
#endif
		if (!igb_clean_tx_irq(rx_ring->buddy))
			work_done = budget;
	}

4400
	/* If not enough Rx work done, exit the polling mode */
4401
	if (work_done < budget) {
4402
		napi_complete(napi);
4403
		igb_rx_irq_enable(rx_ring);
4404 4405
	}

4406
	return work_done;
4407
}
A
Al Viro 已提交
4408

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
/**
 * igb_hwtstamp - utility function which checks for TX time stamp
 * @adapter: board private structure
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
{
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;

	if (unlikely(shtx->hardware)) {
		u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
		if (valid) {
			u64 regval = rd32(E1000_TXSTMPL);
			u64 ns;
			struct skb_shared_hwtstamps shhwtstamps;

			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
			regval |= (u64)rd32(E1000_TXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock,
						  regval);
			timecompare_update(&adapter->compare, ns);
			shhwtstamps.hwtstamp = ns_to_ktime(ns);
			shhwtstamps.syststamp =
				timecompare_transform(&adapter->compare, ns);
			skb_tstamp_tx(skb, &shhwtstamps);
		}
	}
}

4443 4444 4445 4446 4447
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 * returns true if ring is completely cleaned
 **/
4448
static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4449
{
4450 4451
	struct igb_adapter *adapter = tx_ring->adapter;
	struct net_device *netdev = adapter->netdev;
A
Alexander Duyck 已提交
4452
	struct e1000_hw *hw = &adapter->hw;
4453 4454
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4455
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4456
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4457 4458
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4459 4460

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4461 4462 4463 4464 4465 4466 4467
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4468
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4469
			cleaned = (i == eop);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4481 4482

				igb_tx_hwtstamp(adapter, skb);
4483 4484 4485
			}

			igb_unmap_and_free_tx_resource(adapter, buffer_info);
A
Alexander Duyck 已提交
4486
			tx_desc->wb.status = 0;
4487 4488 4489 4490 4491

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4492 4493 4494 4495
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4496 4497
	tx_ring->next_to_clean = i;

4498
	if (unlikely(count &&
4499
		     netif_carrier_ok(netdev) &&
4500
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4501 4502 4503 4504
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4505 4506 4507 4508 4509
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
			++adapter->restart_queue;
		}
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
			dev_err(&adapter->pdev->dev,
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4525
				"  Tx Queue             <%d>\n"
4526 4527 4528 4529 4530 4531
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4532
				"  next_to_watch        <%x>\n"
4533 4534
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4535
				tx_ring->queue_index,
4536 4537 4538 4539 4540
				readl(adapter->hw.hw_addr + tx_ring->head),
				readl(adapter->hw.hw_addr + tx_ring->tail),
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_ring->buffer_info[i].time_stamp,
A
Alexander Duyck 已提交
4541
				eop,
4542
				jiffies,
A
Alexander Duyck 已提交
4543
				eop_desc->wb.status);
4544
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4545 4546 4547 4548
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4549 4550
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
4551 4552
	adapter->net_stats.tx_bytes += total_bytes;
	adapter->net_stats.tx_packets += total_packets;
A
Alexander Duyck 已提交
4553
	return (count < tx_ring->count);
4554 4555 4556 4557
}

/**
 * igb_receive_skb - helper function to handle rx indications
4558
 * @ring: pointer to receive ring receving this packet
4559
 * @status: descriptor status field as written by hardware
4560
 * @rx_desc: receive descriptor containing vlan and type information.
4561 4562
 * @skb: pointer to sk_buff to be indicated to stack
 **/
4563 4564 4565 4566 4567 4568 4569
static void igb_receive_skb(struct igb_ring *ring, u8 status,
                            union e1000_adv_rx_desc * rx_desc,
                            struct sk_buff *skb)
{
	struct igb_adapter * adapter = ring->adapter;
	bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));

4570
	skb_record_rx_queue(skb, ring->queue_index);
4571 4572 4573 4574 4575 4576
	if (vlan_extracted)
		vlan_gro_receive(&ring->napi, adapter->vlgrp,
		                 le16_to_cpu(rx_desc->wb.upper.vlan),
		                 skb);
	else
		napi_gro_receive(&ring->napi, skb);
4577 4578 4579 4580 4581 4582 4583 4584
}

static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
4585 4586
	if ((status_err & E1000_RXD_STAT_IXSM) ||
	    (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4587 4588 4589 4590
		return;
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4591 4592 4593 4594 4595 4596 4597 4598
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
		if (!((adapter->hw.mac.type == e1000_82576) &&
		      (skb->len == 60)))
			adapter->hw_csum_err++;
4599 4600 4601 4602 4603 4604 4605
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

4606
	dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4607 4608 4609
	adapter->hw_csum_good++;
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
static inline u16 igb_get_hlen(struct igb_adapter *adapter,
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
	if (hlen > adapter->rx_ps_hdr_size)
		hlen = adapter->rx_ps_hdr_size;
	return hlen;
}

4624 4625
static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
				 int *work_done, int budget)
4626
{
4627
	struct igb_adapter *adapter = rx_ring->adapter;
4628
	struct net_device *netdev = adapter->netdev;
4629
	struct e1000_hw *hw = &adapter->hw;
4630 4631 4632 4633 4634 4635 4636
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4637
	unsigned int i;
4638 4639
	u32 staterr;
	u16 length;
4640 4641

	i = rx_ring->next_to_clean;
4642
	buffer_info = &rx_ring->buffer_info[i];
4643 4644 4645 4646 4647 4648 4649 4650
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4661 4662 4663 4664 4665

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

J
Jesse Brandeburg 已提交
4666
		/* this is the fast path for the non-packet split case */
4667 4668
		if (!adapter->rx_ps_hdr_size) {
			pci_unmap_single(pdev, buffer_info->dma,
J
Jesse Brandeburg 已提交
4669
					 adapter->rx_buffer_len,
4670
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4671
			buffer_info->dma = 0;
4672 4673
			skb_put(skb, length);
			goto send_up;
4674 4675
		}

4676 4677
		if (buffer_info->dma) {
			u16 hlen = igb_get_hlen(adapter, rx_desc);
4678
			pci_unmap_single(pdev, buffer_info->dma,
J
Jesse Brandeburg 已提交
4679
					 adapter->rx_ps_hdr_size,
4680
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4681
			buffer_info->dma = 0;
4682 4683 4684 4685
			skb_put(skb, hlen);
		}

		if (length) {
4686
			pci_unmap_page(pdev, buffer_info->page_dma,
4687
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4688
			buffer_info->page_dma = 0;
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
			    (page_count(buffer_info->page) != 1))
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4700 4701 4702 4703

			skb->len += length;
			skb->data_len += length;

4704
			skb->truesize += length;
4705 4706
		}

4707
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4708 4709 4710 4711
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4712 4713
			goto next_desc;
		}
4714
send_up:
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		/*
		 * If this bit is set, then the RX registers contain
		 * the time stamp. No other packet will be time
		 * stamped until we read these registers, so read the
		 * registers to make them available again. Because
		 * only one packet can be time stamped at a time, we
		 * know that the register values must belong to this
		 * one here and therefore we don't need to compare
		 * any of the additional attributes stored for it.
		 *
		 * If nothing went wrong, then it should have a
		 * skb_shared_tx that we can turn into a
		 * skb_shared_hwtstamps.
		 *
		 * TODO: can time stamping be triggered (thus locking
		 * the registers) without the packet reaching this point
		 * here? In that case RX time stamping would get stuck.
		 *
		 * TODO: in "time stamp all packets" mode this bit is
		 * not set. Need a global flag for this mode and then
		 * always read the registers. Cannot be done without
		 * a race condition.
		 */
		if (unlikely(staterr & E1000_RXD_STAT_TS)) {
			u64 regval;
			u64 ns;
			struct skb_shared_hwtstamps *shhwtstamps =
				skb_hwtstamps(skb);

			WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
			     "igb: no RX time stamp available for time stamped packet");
			regval = rd32(E1000_RXSTMPL);
			regval |= (u64)rd32(E1000_RXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock, regval);
			timecompare_update(&adapter->compare, ns);
			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
			shhwtstamps->hwtstamp = ns_to_ktime(ns);
			shhwtstamps->syststamp =
				timecompare_transform(&adapter->compare, ns);
		}

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

		igb_rx_checksum_adv(adapter, staterr, skb);

		skb->protocol = eth_type_trans(skb, netdev);

4768
		igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4769 4770 4771 4772 4773 4774

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4775
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4776 4777 4778 4779 4780 4781 4782 4783
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
4784

4785
	rx_ring->next_to_clean = i;
4786
	cleaned_count = igb_desc_unused(rx_ring);
4787 4788

	if (cleaned_count)
4789
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	adapter->net_stats.rx_bytes += total_bytes;
	adapter->net_stats.rx_packets += total_packets;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
4804
static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4805 4806
				     int cleaned_count)
{
4807
	struct igb_adapter *adapter = rx_ring->adapter;
4808 4809 4810 4811 4812 4813
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
4814
	int bufsz;
4815 4816 4817 4818

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

4819 4820 4821 4822 4823
	if (adapter->rx_ps_hdr_size)
		bufsz = adapter->rx_ps_hdr_size;
	else
		bufsz = adapter->rx_buffer_len;

4824 4825 4826
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

4827
		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4828
			if (!buffer_info->page) {
4829 4830 4831 4832 4833 4834 4835 4836
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
4837 4838
			}
			buffer_info->page_dma =
4839
				pci_map_page(pdev, buffer_info->page,
4840 4841
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
4842 4843 4844 4845
					     PCI_DMA_FROMDEVICE);
		}

		if (!buffer_info->skb) {
J
Jesse Brandeburg 已提交
4846
			skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
			if (!skb) {
				adapter->alloc_rx_buff_failed++;
				goto no_buffers;
			}

			/* Make buffer alignment 2 beyond a 16 byte boundary
			 * this will result in a 16 byte aligned IP header after
			 * the 14 byte MAC header is removed
			 */
			skb_reserve(skb, NET_IP_ALIGN);

			buffer_info->skb = skb;
			buffer_info->dma = pci_map_single(pdev, skb->data,
							  bufsz,
							  PCI_DMA_FROMDEVICE);
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
		if (adapter->rx_ps_hdr_size) {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
4917 4918
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
4919 4920 4921 4922 4923 4924 4925 4926 4927
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

4928 4929 4930 4931 4932 4933
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
4946 4947 4948 4949
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
4950 4951
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
4952
	struct hwtstamp_config config;
4953 4954 4955 4956 4957 4958 4959 4960
	u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_ctl_type = 0;
	u32 tsync_rx_cfg = 0;
	int is_l4 = 0;
	int is_l2 = 0;
	short port = 319; /* PTP */
	u32 regval;
4961 4962 4963 4964 4965 4966 4967 4968

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl_bit = 0;
		break;
	case HWTSTAMP_TX_ON:
		tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl_bit = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = 1;
		break;
	default:
		return -ERANGE;
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX, define which PTP packets are time stamped */
	regval = rd32(E1000_TSYNCRXCTL);
	regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
	regval = (regval & ~0xE) | tsync_rx_ctl_type;
	wr32(E1000_TSYNCRXCTL, regval);
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/*
	 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
	 *                                          (Ethertype to filter on)
	 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
	 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
	 */
	wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);

	/* L4 Queue Filter[0]: only filter by source and destination port */
	wr32(E1000_SPQF0, htons(port));
	wr32(E1000_IMIREXT(0), is_l4 ?
	     ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
	wr32(E1000_IMIR(0), is_l4 ?
	     (htons(port)
	      | (0<<16) /* immediate interrupt disabled */
	      | 0 /* (1<<17) bit cleared: do not bypass
		     destination port check */)
		: 0);
	wr32(E1000_FTQF0, is_l4 ?
	     (0x11 /* UDP */
	      | (1<<15) /* VF not compared */
	      | (1<<27) /* Enable Timestamping */
	      | (7<<28) /* only source port filter enabled,
			   source/target address and protocol
			   masked */)
	     : ((1<<15) | (15<<28) /* all mask bits set = filter not
				      enabled */));

	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5080

5081 5082
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5083 5084
}

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5098 5099
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5100 5101 5102 5103 5104
	default:
		return -EOPNOTSUPP;
	}
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
		igb_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
			igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
		}
	}

5166 5167
	igb_rlpml_set(adapter);

5168 5169 5170 5171 5172 5173 5174 5175
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5176
	int pf_id = adapter->vfs_allocated_count;
5177

5178
	if ((hw->mng_cookie.status &
5179 5180 5181
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
5182 5183 5184 5185 5186 5187

	/* add vid to vlvf if sr-iov is enabled,
	 * if that fails add directly to filter table */
	if (igb_vlvf_set(adapter, vid, true, pf_id))
		igb_vfta_set(hw, vid, true);

5188 5189 5190 5191 5192 5193
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5194
	int pf_id = adapter->vfs_allocated_count;
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		igb_release_hw_control(adapter);
		return;
	}

5210 5211 5212 5213
	/* remove vid from vlvf if sr-iov is enabled,
	 * if not in vlvf remove from vfta */
	if (igb_vlvf_set(adapter, vid, false, pf_id))
		igb_vfta_set(hw, vid, false);
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

5262
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5263 5264 5265 5266
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5267
	u32 ctrl, rctl, status;
5268 5269 5270 5271 5272 5273 5274
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5275 5276 5277 5278 5279 5280
	if (netif_running(netdev))
		igb_close(netdev);

	igb_reset_interrupt_capability(adapter);

	igb_free_queues(adapter);
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5294
		igb_set_rx_mode(netdev);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(&adapter->hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5321 5322
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5323
		igb_shutdown_serdes_link_82575(hw);
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5354 5355 5356 5357 5358 5359 5360 5361 5362
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5363

5364
	err = pci_enable_device_mem(pdev);
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

A
Alexander Duyck 已提交
5375 5376 5377 5378 5379
	igb_set_interrupt_capability(adapter);

	if (igb_alloc_queues(adapter)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5380 5381 5382 5383 5384
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5385 5386 5387 5388 5389

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5390 5391
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5392 5393 5394 5395 5396
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5397 5398 5399 5400 5401 5402 5403 5404 5405

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5406 5407 5408 5409 5410 5411 5412 5413
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5425
	struct e1000_hw *hw = &adapter->hw;
5426 5427
	int i;

5428 5429 5430 5431 5432
	if (!adapter->msix_entries) {
		igb_irq_disable(adapter);
		napi_schedule(&adapter->rx_ring[0].napi);
		return;
	}
5433

5434 5435 5436 5437 5438 5439
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = &adapter->tx_ring[i];
		wr32(E1000_EIMC, tx_ring->eims_value);
		igb_clean_tx_irq(tx_ring);
		wr32(E1000_EIMS, tx_ring->eims_value);
	}
5440

5441 5442 5443 5444 5445
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = &adapter->rx_ring[i];
		wr32(E1000_EIMC, rx_ring->eims_value);
		napi_schedule(&rx_ring->napi);
	}
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5465 5466 5467
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5488
	pci_ers_result_t result;
T
Taku Izumi 已提交
5489
	int err;
5490

5491
	if (pci_enable_device_mem(pdev)) {
5492 5493
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5494 5495 5496 5497
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5498

5499 5500
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5501

5502 5503 5504 5505
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5506

5507 5508 5509 5510 5511 5512
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5513 5514

	return result;
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5544 5545 5546 5547
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5548 5549 5550
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5551

5552
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5553

5554
	igb_rar_set(hw, mac_addr, rar_entry);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	igb_set_rah_pool(hw, vf, rar_entry);

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_data;

	if (!adapter->vfs_allocated_count)
		return;

	/* VF's need PF reset indication before they
	 * can send/receive mail */
	reg_data = rd32(E1000_CTRL_EXT);
	reg_data |= E1000_CTRL_EXT_PFRSTD;
	wr32(E1000_CTRL_EXT, reg_data);

	igb_vmdq_set_loopback_pf(hw, true);
	igb_vmdq_set_replication_pf(hw, true);
}

5578
/* igb_main.c */