pptt.c 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// SPDX-License-Identifier: GPL-2.0
/*
 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
 *
 * Copyright (C) 2018, ARM
 *
 * This file implements parsing of the Processor Properties Topology Table
 * which is optionally used to describe the processor and cache topology.
 * Due to the relative pointers used throughout the table, this doesn't
 * leverage the existing subtable parsing in the kernel.
 *
 * The PPTT structure is an inverted tree, with each node potentially
 * holding one or two inverted tree data structures describing
 * the caches available at that level. Each cache structure optionally
 * contains properties describing the cache at a given level which can be
 * used to override hardware probed values.
 */
#define pr_fmt(fmt) "ACPI PPTT: " fmt

#include <linux/acpi.h>
#include <linux/cacheinfo.h>
#include <acpi/processor.h>

24 25 26
/* Root pointer to the mapped PPTT table */
static struct acpi_table_header *pptt_table;

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
							u32 pptt_ref)
{
	struct acpi_subtable_header *entry;

	/* there isn't a subtable at reference 0 */
	if (pptt_ref < sizeof(struct acpi_subtable_header))
		return NULL;

	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
		return NULL;

	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);

	if (entry->length == 0)
		return NULL;

	if (pptt_ref + entry->length > table_hdr->length)
		return NULL;

	return entry;
}

static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
						   u32 pptt_ref)
{
	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
}

static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
						u32 pptt_ref)
{
	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
}

static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
							   struct acpi_pptt_processor *node,
							   int resource)
{
	u32 *ref;

	if (resource >= node->number_of_priv_resources)
		return NULL;

	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
	ref += resource;

	return fetch_pptt_subtable(table_hdr, *ref);
}

static inline bool acpi_pptt_match_type(int table_type, int type)
{
	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
}

/**
 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 * @table_hdr: Pointer to the head of the PPTT table
 * @local_level: passed res reflects this cache level
 * @res: cache resource in the PPTT we want to walk
 * @found: returns a pointer to the requested level if found
 * @level: the requested cache level
 * @type: the requested cache type
 *
 * Attempt to find a given cache level, while counting the max number
 * of cache levels for the cache node.
 *
 * Given a pptt resource, verify that it is a cache node, then walk
 * down each level of caches, counting how many levels are found
 * as well as checking the cache type (icache, dcache, unified). If a
 * level & type match, then we set found, and continue the search.
 * Once the entire cache branch has been walked return its max
 * depth.
 *
 * Return: The cache structure and the level we terminated with.
 */
104 105 106 107 108
static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
					 unsigned int local_level,
					 struct acpi_subtable_header *res,
					 struct acpi_pptt_cache **found,
					 unsigned int level, int type)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
{
	struct acpi_pptt_cache *cache;

	if (res->type != ACPI_PPTT_TYPE_CACHE)
		return 0;

	cache = (struct acpi_pptt_cache *) res;
	while (cache) {
		local_level++;

		if (local_level == level &&
		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
		    acpi_pptt_match_type(cache->attributes, type)) {
			if (*found != NULL && cache != *found)
				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");

125
			pr_debug("Found cache @ level %u\n", level);
126 127 128 129 130 131 132 133 134 135 136 137
			*found = cache;
			/*
			 * continue looking at this node's resource list
			 * to verify that we don't find a duplicate
			 * cache node.
			 */
		}
		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
	}
	return local_level;
}

138 139 140 141 142
static struct acpi_pptt_cache *
acpi_find_cache_level(struct acpi_table_header *table_hdr,
		      struct acpi_pptt_processor *cpu_node,
		      unsigned int *starting_level, unsigned int level,
		      int type)
143 144
{
	struct acpi_subtable_header *res;
145
	unsigned int number_of_levels = *starting_level;
146 147
	int resource = 0;
	struct acpi_pptt_cache *ret = NULL;
148
	unsigned int local_level;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

	/* walk down from processor node */
	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
		resource++;

		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
						   res, &ret, level, type);
		/*
		 * we are looking for the max depth. Since its potentially
		 * possible for a given node to have resources with differing
		 * depths verify that the depth we have found is the largest.
		 */
		if (number_of_levels < local_level)
			number_of_levels = local_level;
	}
	if (number_of_levels > *starting_level)
		*starting_level = number_of_levels;

	return ret;
}

/**
B
Bjorn Helgaas 已提交
171
 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 * @table_hdr: Pointer to the head of the PPTT table
 * @cpu_node: processor node we wish to count caches for
 *
 * Given a processor node containing a processing unit, walk into it and count
 * how many levels exist solely for it, and then walk up each level until we hit
 * the root node (ignore the package level because it may be possible to have
 * caches that exist across packages). Count the number of cache levels that
 * exist at each level on the way up.
 *
 * Return: Total number of levels found.
 */
static int acpi_count_levels(struct acpi_table_header *table_hdr,
			     struct acpi_pptt_processor *cpu_node)
{
	int total_levels = 0;

	do {
		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
	} while (cpu_node);

	return total_levels;
}

/**
 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 * @table_hdr: Pointer to the head of the PPTT table
 * @node: passed node is checked to see if its a leaf
 *
 * Determine if the *node parameter is a leaf node by iterating the
 * PPTT table, looking for nodes which reference it.
 *
 * Return: 0 if we find a node referencing the passed node (or table error),
 * or 1 if we don't.
 */
static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
			       struct acpi_pptt_processor *node)
{
	struct acpi_subtable_header *entry;
	unsigned long table_end;
	u32 node_entry;
	struct acpi_pptt_processor *cpu_node;
	u32 proc_sz;

216 217 218
	if (table_hdr->revision > 1)
		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	table_end = (unsigned long)table_hdr + table_hdr->length;
	node_entry = ACPI_PTR_DIFF(node, table_hdr);
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));
	proc_sz = sizeof(struct acpi_pptt_processor *);

	while ((unsigned long)entry + proc_sz < table_end) {
		cpu_node = (struct acpi_pptt_processor *)entry;
		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
		    cpu_node->parent == node_entry)
			return 0;
		if (entry->length == 0)
			return 0;
		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);

	}
	return 1;
}

/**
 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 * @table_hdr:  Pointer to the head of the PPTT table
B
Bjorn Helgaas 已提交
242
 * @acpi_cpu_id: CPU we are searching for
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
 *
 * Find the subtable entry describing the provided processor.
 * This is done by iterating the PPTT table looking for processor nodes
 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 * passed into the function. If we find a node that matches this criteria
 * we verify that its a leaf node in the topology rather than depending
 * on the valid flag, which doesn't need to be set for leaf nodes.
 *
 * Return: NULL, or the processors acpi_pptt_processor*
 */
static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
							    u32 acpi_cpu_id)
{
	struct acpi_subtable_header *entry;
	unsigned long table_end;
	struct acpi_pptt_processor *cpu_node;
	u32 proc_sz;

	table_end = (unsigned long)table_hdr + table_hdr->length;
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));
	proc_sz = sizeof(struct acpi_pptt_processor *);

	/* find the processor structure associated with this cpuid */
	while ((unsigned long)entry + proc_sz < table_end) {
		cpu_node = (struct acpi_pptt_processor *)entry;

		if (entry->length == 0) {
			pr_warn("Invalid zero length subtable\n");
			break;
		}
		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
		    acpi_cpu_id == cpu_node->acpi_processor_id &&
		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
			return (struct acpi_pptt_processor *)entry;
		}

		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);
	}

	return NULL;
}
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335


/*
 * acpi_pptt_find_cache_backwards() - Given a PPTT cache find a processor node
 * that points to it. This lets us find a cacheinfo node by fw_token, but
 * is totally broken as many processor node may point at the same PPTT
 * cache indicating different instances of the cache. (e.g. all the L1
 * caches are the same shape, but they aren't the same cache).
 * This only works if you cooked your PPTT table to look like this.
 */
struct acpi_pptt_processor *
acpi_pptt_find_cache_backwards(struct acpi_table_header *table_hdr,
			       struct acpi_pptt_cache *cache)
{
	struct acpi_pptt_processor *cpu_node;
	struct acpi_subtable_header *entry;
	struct acpi_subtable_header *res;
	unsigned long table_end;
	u32 proc_sz;
	int i;

	table_end = (unsigned long)table_hdr + table_hdr->length;
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));
	proc_sz = sizeof(struct acpi_pptt_processor *);

	/* find the processor structure which points at  with this cpuid */
	while ((unsigned long)entry + proc_sz < table_end) {
		if (entry->length == 0) {
			pr_warn("Invalid zero length subtable\n");
			break;
		}

		cpu_node = (struct acpi_pptt_processor *)entry;
		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);

		if (cpu_node->header.type != ACPI_PPTT_TYPE_PROCESSOR)
			continue;

		for (i = 0; i < cpu_node->number_of_priv_resources; i++) {
			res = acpi_get_pptt_resource(table_hdr, cpu_node, i);
			if (&cache->header == res)
				return cpu_node;
		}
	}

	return NULL;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/**
 * acpi_validate_cache_node() - Given an offset in the table, check this is
 * a cache node.
 * Used for cross-table pointers.
 *
 * Return the cache pointer for a valid cache, or NULL.
 */
struct acpi_pptt_cache *
acpi_pptt_validate_cache_node(struct acpi_table_header *table_hdr, u32 offset)
{
	struct acpi_subtable_header *entry, *cache;
	unsigned long table_end;

	if ((offset < sizeof(*table_hdr)) || (offset >= table_hdr->length))
		return NULL;

	table_end = (unsigned long)table_hdr + table_hdr->length;
	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
			     sizeof(struct acpi_table_pptt));

	cache = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, offset);

	/* Walk every node to check offset is on a node boundary */
	while ((unsigned long)(entry + 1) < table_end) {
		if (entry->length == 0) {
			pr_err("Invalid zero length subtable\n");
			break;
		}
		if ((entry->type == ACPI_PPTT_TYPE_CACHE) && (entry == cache))
			return (struct acpi_pptt_cache *)entry;

		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
				     entry->length);
	}

	return NULL;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
				  u32 acpi_cpu_id)
{
	int number_of_levels = 0;
	struct acpi_pptt_processor *cpu;

	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
	if (cpu)
		number_of_levels = acpi_count_levels(table_hdr, cpu);

	return number_of_levels;
}

static u8 acpi_cache_type(enum cache_type type)
{
	switch (type) {
	case CACHE_TYPE_DATA:
		pr_debug("Looking for data cache\n");
		return ACPI_PPTT_CACHE_TYPE_DATA;
	case CACHE_TYPE_INST:
		pr_debug("Looking for instruction cache\n");
		return ACPI_PPTT_CACHE_TYPE_INSTR;
	default:
	case CACHE_TYPE_UNIFIED:
		pr_debug("Looking for unified cache\n");
		/*
		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
		 * contains the bit pattern that will match both
		 * ACPI unified bit patterns because we use it later
		 * to match both cases.
		 */
		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
	}
}

static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
						    u32 acpi_cpu_id,
						    enum cache_type type,
						    unsigned int level,
						    struct acpi_pptt_processor **node)
{
416
	unsigned int total_levels = 0;
417 418 419 420
	struct acpi_pptt_cache *found = NULL;
	struct acpi_pptt_processor *cpu_node;
	u8 acpi_type = acpi_cache_type(type);

421
	pr_debug("Looking for CPU %d's level %u cache type %d\n",
422 423 424 425 426 427 428 429 430 431 432 433 434 435
		 acpi_cpu_id, level, acpi_type);

	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);

	while (cpu_node && !found) {
		found = acpi_find_cache_level(table_hdr, cpu_node,
					      &total_levels, level, acpi_type);
		*node = cpu_node;
		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
	}

	return found;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/**
 * acpi_pptt_min_physid_from_cpu_node() - Recursivly find @min_physid for all
 * leaf CPUs below @cpu_node.
 * @table_hdr:  Pointer to the head of the PPTT table
 * @cpu_node:   The point in the toplogy to start the walk
 * @min_physid: The min_physid to update with leaf CPUs.
 * @min_cpu_node: The min_cpu_node to update with leaf CPUs.
 */
void acpi_pptt_find_min_physid_cpu_node(struct acpi_table_header *table_hdr,
			struct acpi_pptt_processor *cpu_node,
			phys_cpuid_t *min_physid,
			struct acpi_pptt_processor **min_cpu_node)
{
	bool leaf = true;
	u32 acpi_processor_id;
	phys_cpuid_t cpu_node_phys_id;
	struct acpi_subtable_header *iter;
	struct acpi_pptt_processor *iter_node = NULL;
	u32 target_node = ACPI_PTR_DIFF(cpu_node, table_hdr);
	u32 proc_sz = sizeof(struct acpi_pptt_processor *);
	unsigned long table_end = (unsigned long)table_hdr + table_hdr->length;

	/*
	 * Walk the PPTT, looking for nodes that reference cpu_node
	 * as parent.
	 */
	iter = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
				sizeof(struct acpi_table_pptt));

	while ((unsigned long)iter + proc_sz < table_end) {
		iter_node = (struct acpi_pptt_processor *)iter;

		if (iter->type == ACPI_PPTT_TYPE_PROCESSOR &&
			iter_node->parent == target_node) {
			leaf = false;
			acpi_pptt_find_min_physid_cpu_node(table_hdr, iter_node,
						min_physid, min_cpu_node);
		}

		if (iter->length == 0)
			return;
		iter = ACPI_ADD_PTR(struct acpi_subtable_header, iter,
					iter->length);
	}

	acpi_processor_id = cpu_node->acpi_processor_id;
	cpu_node_phys_id = acpi_id_to_phys_cpuid(acpi_processor_id);
	if (!invalid_phys_cpuid(cpu_node_phys_id) &&
		*min_physid > cpu_node_phys_id &&
		leaf == true) {
		*min_physid = cpu_node_phys_id;
		*min_cpu_node = cpu_node;
	}
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/**
 * update_cache_properties() - Update cacheinfo for the given processor
 * @this_leaf: Kernel cache info structure being updated
 * @found_cache: The PPTT node describing this cache instance
 * @cpu_node: A unique reference to describe this cache instance
 *
 * The ACPI spec implies that the fields in the cache structures are used to
 * extend and correct the information probed from the hardware. Lets only
 * set fields that we determine are VALID.
 *
 * Return: nothing. Side effect of updating the global cacheinfo
 */
static void update_cache_properties(struct cacheinfo *this_leaf,
				    struct acpi_pptt_cache *found_cache,
				    struct acpi_pptt_processor *cpu_node)
{
	this_leaf->fw_token = cpu_node;
508
	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
509
		this_leaf->size = found_cache->size;
510
	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
511
		this_leaf->coherency_line_size = found_cache->line_size;
512
	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
513
		this_leaf->number_of_sets = found_cache->number_of_sets;
514
	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		this_leaf->ways_of_associativity = found_cache->associativity;
	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
		case ACPI_PPTT_CACHE_POLICY_WT:
			this_leaf->attributes = CACHE_WRITE_THROUGH;
			break;
		case ACPI_PPTT_CACHE_POLICY_WB:
			this_leaf->attributes = CACHE_WRITE_BACK;
			break;
		}
	}
	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
		case ACPI_PPTT_CACHE_READ_ALLOCATE:
			this_leaf->attributes |= CACHE_READ_ALLOCATE;
			break;
		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
			break;
		case ACPI_PPTT_CACHE_RW_ALLOCATE:
		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
			this_leaf->attributes |=
				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
			break;
		}
	}
	/*
542 543 544 545 546 547 548 549
	 * If cache type is NOCACHE, then the cache hasn't been specified
	 * via other mechanisms.  Update the type if a cache type has been
	 * provided.
	 *
	 * Note, we assume such caches are unified based on conventional system
	 * design and known examples.  Significant work is required elsewhere to
	 * fully support data/instruction only type caches which are only
	 * specified in PPTT.
550 551
	 */
	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
552
	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		this_leaf->type = CACHE_TYPE_UNIFIED;
}

static void cache_setup_acpi_cpu(struct acpi_table_header *table,
				 unsigned int cpu)
{
	struct acpi_pptt_cache *found_cache;
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct cacheinfo *this_leaf;
	unsigned int index = 0;
	struct acpi_pptt_processor *cpu_node = NULL;

	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
		this_leaf = this_cpu_ci->info_list + index;
		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
						   this_leaf->type,
						   this_leaf->level,
						   &cpu_node);
		pr_debug("found = %p %p\n", found_cache, cpu_node);
		if (found_cache)
			update_cache_properties(this_leaf,
						found_cache,
						cpu_node);

		index++;
	}
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static bool flag_identical(struct acpi_table_header *table_hdr,
			   struct acpi_pptt_processor *cpu)
{
	struct acpi_pptt_processor *next;

	/* heterogeneous machines must use PPTT revision > 1 */
	if (table_hdr->revision < 2)
		return false;

	/* Locate the last node in the tree with IDENTICAL set */
	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
		next = fetch_pptt_node(table_hdr, cpu->parent);
		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
			return true;
	}

	return false;
}

601 602 603
/* Passing level values greater than this will result in search termination */
#define PPTT_ABORT_PACKAGE 0xFF

604 605 606
static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
							   struct acpi_pptt_processor *cpu,
							   int level, int flag)
607 608 609 610
{
	struct acpi_pptt_processor *prev_node;

	while (cpu && level) {
611 612 613 614 615
		/* special case the identical flag to find last identical */
		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
			if (flag_identical(table_hdr, cpu))
				break;
		} else if (cpu->flags & flag)
616 617 618 619 620 621 622 623 624 625 626
			break;
		pr_debug("level %d\n", level);
		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
		if (prev_node == NULL)
			break;
		cpu = prev_node;
		level--;
	}
	return cpu;
}

627 628
static void acpi_pptt_warn_missing(void)
{
B
Bjorn Helgaas 已提交
629
	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
630 631
}

632 633 634
/**
 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 * @table: Pointer to the head of the PPTT table
B
Bjorn Helgaas 已提交
635
 * @cpu: Kernel logical CPU number
636 637 638
 * @level: A level that terminates the search
 * @flag: A flag which terminates the search
 *
B
Bjorn Helgaas 已提交
639
 * Get a unique value given a CPU, and a topology level, that can be
640 641 642
 * matched to determine which cpus share common topological features
 * at that level.
 *
B
Bjorn Helgaas 已提交
643
 * Return: Unique value, or -ENOENT if unable to locate CPU
644 645 646 647 648 649 650 651 652
 */
static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
				     unsigned int cpu, int level, int flag)
{
	struct acpi_pptt_processor *cpu_node;
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);

	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
	if (cpu_node) {
653 654
		cpu_node = acpi_find_processor_tag(table, cpu_node,
						   level, flag);
655 656 657 658 659 660 661 662
		/*
		 * As per specification if the processor structure represents
		 * an actual processor, then ACPI processor ID must be valid.
		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
		 * should be set if the UID is valid
		 */
		if (level == 0 ||
		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
663 664 665 666 667 668 669 670 671 672 673 674
			return cpu_node->acpi_processor_id;
		return ACPI_PTR_DIFF(cpu_node, table);
	}
	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
		    cpu, acpi_cpu_id);
	return -ENOENT;
}

static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
{
	int retval;

675
	if (!pptt_table)
676
		return -ENOENT;
677
	retval = topology_get_acpi_cpu_tag(pptt_table, cpu, level, flag);
B
Bjorn Helgaas 已提交
678
	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
679 680 681 682 683
		 cpu, level, retval);

	return retval;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
 * @cpu: Kernel logical CPU number
 * @rev: The minimum PPTT revision defining the flag
 * @flag: The flag itself
 *
 * Check the node representing a CPU for a given flag.
 *
 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
 *	   the table revision isn't new enough.
 *	   1, any passed flag set
 *	   0, flag unset
 */
static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
{
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct acpi_pptt_processor *cpu_node = NULL;
	int ret = -ENOENT;

703 704
	if (!pptt_table)
		return -ENOENT;
705

706 707
	if (pptt_table->revision >= rev)
		cpu_node = acpi_find_processor_node(pptt_table, acpi_cpu_id);
708 709 710 711 712 713 714

	if (cpu_node)
		ret = (cpu_node->flags & flag) != 0;

	return ret;
}

715 716
/**
 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
B
Bjorn Helgaas 已提交
717
 * @cpu: Kernel logical CPU number
718
 *
B
Bjorn Helgaas 已提交
719
 * Given a logical CPU number, returns the number of levels of cache represented
720 721 722 723 724 725 726 727 728 729
 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 * indicating we didn't find any cache levels.
 *
 * Return: Cache levels visible to this core.
 */
int acpi_find_last_cache_level(unsigned int cpu)
{
	u32 acpi_cpu_id;
	int number_of_levels = 0;

B
Bjorn Helgaas 已提交
730
	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
731 732

	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
733 734 735
	if (pptt_table)
		number_of_levels = acpi_find_cache_levels(pptt_table, acpi_cpu_id);

736 737 738 739 740 741 742
	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);

	return number_of_levels;
}

/**
 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
B
Bjorn Helgaas 已提交
743
 * @cpu: Kernel logical CPU number
744 745 746 747
 *
 * Updates the global cache info provided by cpu_get_cacheinfo()
 * when there are valid properties in the acpi_pptt_cache nodes. A
 * successful parse may not result in any updates if none of the
B
Bjorn Helgaas 已提交
748
 * cache levels have any valid flags set.  Further, a unique value is
749
 * associated with each known CPU cache entry. This unique value
B
Bjorn Helgaas 已提交
750
 * can be used to determine whether caches are shared between CPUs.
751 752 753 754 755
 *
 * Return: -ENOENT on failure to find table, or 0 on success
 */
int cache_setup_acpi(unsigned int cpu)
{
B
Bjorn Helgaas 已提交
756
	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
757

758
	if (!pptt_table)
759 760
		return -ENOENT;

761
	cache_setup_acpi_cpu(pptt_table, cpu);
762

763
	return 0;
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779
/**
 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
 * @cpu: Kernel logical CPU number
 *
 * Return: 1, a thread
 *         0, not a thread
 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
 *         the table revision isn't new enough.
 */
int acpi_pptt_cpu_is_thread(unsigned int cpu)
{
	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
}

780
/**
B
Bjorn Helgaas 已提交
781 782
 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
 * @cpu: Kernel logical CPU number
783 784 785 786 787 788 789 790 791 792 793 794
 * @level: The topological level for which we would like a unique ID
 *
 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 * /socket/etc. This ID can then be used to group peers, which will have
 * matching ids.
 *
 * The search terminates when either the requested level is found or
 * we reach a root node. Levels beyond the termination point will return the
 * same unique ID. The unique id for level 0 is the acpi processor id. All
 * other levels beyond this use a generated value to uniquely identify
 * a topological feature.
 *
B
Bjorn Helgaas 已提交
795
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
796 797 798 799 800 801 802 803 804
 * Otherwise returns a value which represents a unique topological feature.
 */
int find_acpi_cpu_topology(unsigned int cpu, int level)
{
	return find_acpi_cpu_topology_tag(cpu, level, 0);
}

/**
 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
B
Bjorn Helgaas 已提交
805
 * @cpu: Kernel logical CPU number
806 807 808 809
 * @level: The cache level for which we would like a unique ID
 *
 * Determine a unique ID for each unified cache in the system
 *
B
Bjorn Helgaas 已提交
810
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
811 812 813 814 815 816 817 818 819
 * Otherwise returns a value which represents a unique topological feature.
 */
int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
{
	struct acpi_pptt_cache *found_cache;
	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	struct acpi_pptt_processor *cpu_node = NULL;
	int ret = -1;

820
	if (!pptt_table)
821 822
		return -ENOENT;

823
	found_cache = acpi_find_cache_node(pptt_table, acpi_cpu_id,
824 825 826 827
					   CACHE_TYPE_UNIFIED,
					   level,
					   &cpu_node);
	if (found_cache)
828
		ret = ACPI_PTR_DIFF(cpu_node, pptt_table);
829 830 831 832 833

	return ret;
}

/**
B
Bjorn Helgaas 已提交
834 835
 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
 * @cpu: Kernel logical CPU number
836
 *
B
Bjorn Helgaas 已提交
837
 * Determine a topology unique package ID for the given CPU.
838 839 840 841 842
 * This ID can then be used to group peers, which will have matching ids.
 *
 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 * flag set or we reach a root node.
 *
B
Bjorn Helgaas 已提交
843 844
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents the package for this CPU.
845 846 847 848 849 850
 */
int find_acpi_cpu_topology_package(unsigned int cpu)
{
	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
					  ACPI_PPTT_PHYSICAL_PACKAGE);
}
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/**
 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
 * @cpu: Kernel logical CPU number
 *
 * Determine a topology unique cluster ID for the given CPU/thread.
 * This ID can then be used to group peers, which will have matching ids.
 *
 * The cluster, if present is the level of topology above CPUs. In a
 * multi-thread CPU, it will be the level above the CPU, not the thread.
 * It may not exist in single CPU systems. In simple multi-CPU systems,
 * it may be equal to the package topology level.
 *
 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
 * or there is no toplogy level above the CPU..
 * Otherwise returns a value which represents the package for this CPU.
 */

int find_acpi_cpu_topology_cluster(unsigned int cpu)
{
	struct acpi_table_header *table;
	acpi_status status;
	struct acpi_pptt_processor *cpu_node, *cluster_node;
	u32 acpi_cpu_id;
	int retval;
	int is_thread;

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return -ENOENT;
	}

	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
	if (cpu_node == NULL || !cpu_node->parent) {
		retval = -ENOENT;
		goto put_table;
	}

	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
	cluster_node = fetch_pptt_node(table, cpu_node->parent);
	if (cluster_node == NULL) {
		retval = -ENOENT;
		goto put_table;
	}
	if (is_thread) {
		if (!cluster_node->parent) {
			retval = -ENOENT;
			goto put_table;
		}
		cluster_node = fetch_pptt_node(table, cluster_node->parent);
		if (cluster_node == NULL) {
			retval = -ENOENT;
			goto put_table;
		}
	}
	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
		retval = cluster_node->acpi_processor_id;
	else
		retval = ACPI_PTR_DIFF(cluster_node, table);

put_table:
	acpi_put_table(table);

	return retval;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/**
 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
 * @cpu: Kernel logical CPU number
 *
 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
 * implementation should have matching tags.
 *
 * The returned tag can be used to group peers with identical implementation.
 *
 * The search terminates when a level is found with the identical implementation
 * flag set or we reach a root node.
 *
 * Due to limitations in the PPTT data structure, there may be rare situations
 * where two cores in a heterogeneous machine may be identical, but won't have
 * the same tag.
 *
 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 * Otherwise returns a value which represents a group of identical cores
 * similar to this CPU.
 */
int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
{
	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
					  ACPI_PPTT_ACPI_IDENTICAL);
}
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

int __init acpi_pptt_init(void)
{
	acpi_status status;

	/*
	 * pptt_table will be used at runtime after acpi_pptt_init, so we don't
	 * need to call acpi_put_table() to release the PPTT table mapping.
	 */
	status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt_table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return -ENOENT;
	}

	return 0;
}
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

struct acpi_pptt_processor *find_acpi_processor_node_from_cache_id(u32 cache_id)
{
	u32 acpi_cpu_id;
	acpi_status status;
	int level, cpu, num_levels;
	struct acpi_pptt_cache *cache;
	struct acpi_table_header *table;
	struct acpi_pptt_cache_v1 *cache_v1;
	struct acpi_pptt_processor *cpu_node;

	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
	if (ACPI_FAILURE(status)) {
		acpi_pptt_warn_missing();
		return NULL;
	}

	if (table->revision < 3) {
		acpi_put_table(table);
		return NULL;
	}

	/*
	 * If we found the cache first, we'd still need to walk from each CPU
	 * to find the level...
	 */
	for_each_possible_cpu(cpu) {
		acpi_cpu_id = get_acpi_id_for_cpu(cpu);
		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
		if (!cpu_node)
			break;
		num_levels = acpi_count_levels(table, cpu_node);

		for (level = 0; level <= num_levels; level++) {
			cache = acpi_find_cache_node(table, acpi_cpu_id,
						     ACPI_PPTT_CACHE_TYPE_UNIFIED,
						     level, &cpu_node);
			if (!cache)
				continue;

			cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
						cache,
						sizeof(struct acpi_pptt_cache));

			if (cache->flags & ACPI_PPTT_CACHE_ID_VALID &&
			    cache_v1->cache_id == cache_id) {
				acpi_put_table(table);
				return cpu_node;
			}
		}
	}

	acpi_put_table(table);
	return NULL;
}