i915_active.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2019 Intel Corporation
 */

#ifndef _I915_ACTIVE_H_
#define _I915_ACTIVE_H_

10 11
#include <linux/lockdep.h>

12
#include "i915_active_types.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
#include "i915_request.h"

/*
 * We treat requests as fences. This is not be to confused with our
 * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
 * We use the fences to synchronize access from the CPU with activity on the
 * GPU, for example, we should not rewrite an object's PTE whilst the GPU
 * is reading them. We also track fences at a higher level to provide
 * implicit synchronisation around GEM objects, e.g. set-domain will wait
 * for outstanding GPU rendering before marking the object ready for CPU
 * access, or a pageflip will wait until the GPU is complete before showing
 * the frame on the scanout.
 *
 * In order to use a fence, the object must track the fence it needs to
 * serialise with. For example, GEM objects want to track both read and
 * write access so that we can perform concurrent read operations between
 * the CPU and GPU engines, as well as waiting for all rendering to
 * complete, or waiting for the last GPU user of a "fence register". The
 * object then embeds a #i915_active_request to track the most recent (in
 * retirement order) request relevant for the desired mode of access.
 * The #i915_active_request is updated with i915_active_request_set() to
 * track the most recent fence request, typically this is done as part of
 * i915_vma_move_to_active().
 *
 * When the #i915_active_request completes (is retired), it will
 * signal its completion to the owner through a callback as well as mark
 * itself as idle (i915_active_request.request == NULL). The owner
 * can then perform any action, such as delayed freeing of an active
 * resource including itself.
 */

void i915_active_retire_noop(struct i915_active_request *active,
			     struct i915_request *request);

/**
 * i915_active_request_init - prepares the activity tracker for use
 * @active - the active tracker
 * @rq - initial request to track, can be NULL
 * @func - a callback when then the tracker is retired (becomes idle),
 *         can be NULL
 *
 * i915_active_request_init() prepares the embedded @active struct for use as
 * an activity tracker, that is for tracking the last known active request
 * associated with it. When the last request becomes idle, when it is retired
 * after completion, the optional callback @func is invoked.
 */
static inline void
i915_active_request_init(struct i915_active_request *active,
			 struct i915_request *rq,
			 i915_active_retire_fn retire)
{
	RCU_INIT_POINTER(active->request, rq);
	INIT_LIST_HEAD(&active->link);
	active->retire = retire ?: i915_active_retire_noop;
}

#define INIT_ACTIVE_REQUEST(name) i915_active_request_init((name), NULL, NULL)

/**
 * i915_active_request_set - updates the tracker to watch the current request
 * @active - the active tracker
 * @request - the request to watch
 *
 * __i915_active_request_set() watches the given @request for completion. Whilst
 * that @request is busy, the @active reports busy. When that @request is
 * retired, the @active tracker is updated to report idle.
 */
static inline void
__i915_active_request_set(struct i915_active_request *active,
			  struct i915_request *request)
{
	list_move(&active->link, &request->active_list);
	rcu_assign_pointer(active->request, request);
}

int __must_check
i915_active_request_set(struct i915_active_request *active,
			struct i915_request *rq);

/**
 * i915_active_request_raw - return the active request
 * @active - the active tracker
 *
 * i915_active_request_raw() returns the current request being tracked, or NULL.
 * It does not obtain a reference on the request for the caller, so the caller
 * must hold struct_mutex.
 */
static inline struct i915_request *
i915_active_request_raw(const struct i915_active_request *active,
			struct mutex *mutex)
{
	return rcu_dereference_protected(active->request,
					 lockdep_is_held(mutex));
}

/**
 * i915_active_request_peek - report the active request being monitored
 * @active - the active tracker
 *
 * i915_active_request_peek() returns the current request being tracked if
 * still active, or NULL. It does not obtain a reference on the request
 * for the caller, so the caller must hold struct_mutex.
 */
static inline struct i915_request *
i915_active_request_peek(const struct i915_active_request *active,
			 struct mutex *mutex)
{
	struct i915_request *request;

	request = i915_active_request_raw(active, mutex);
	if (!request || i915_request_completed(request))
		return NULL;

	return request;
}

/**
 * i915_active_request_get - return a reference to the active request
 * @active - the active tracker
 *
 * i915_active_request_get() returns a reference to the active request, or NULL
 * if the active tracker is idle. The caller must hold struct_mutex.
 */
static inline struct i915_request *
i915_active_request_get(const struct i915_active_request *active,
			struct mutex *mutex)
{
	return i915_request_get(i915_active_request_peek(active, mutex));
}

/**
 * __i915_active_request_get_rcu - return a reference to the active request
 * @active - the active tracker
 *
 * __i915_active_request_get() returns a reference to the active request,
 * or NULL if the active tracker is idle. The caller must hold the RCU read
 * lock, but the returned pointer is safe to use outside of RCU.
 */
static inline struct i915_request *
__i915_active_request_get_rcu(const struct i915_active_request *active)
{
	/*
	 * Performing a lockless retrieval of the active request is super
	 * tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
	 * slab of request objects will not be freed whilst we hold the
	 * RCU read lock. It does not guarantee that the request itself
	 * will not be freed and then *reused*. Viz,
	 *
	 * Thread A			Thread B
	 *
	 * rq = active.request
	 *				retire(rq) -> free(rq);
	 *				(rq is now first on the slab freelist)
	 *				active.request = NULL
	 *
	 *				rq = new submission on a new object
	 * ref(rq)
	 *
	 * To prevent the request from being reused whilst the caller
	 * uses it, we take a reference like normal. Whilst acquiring
	 * the reference we check that it is not in a destroyed state
	 * (refcnt == 0). That prevents the request being reallocated
	 * whilst the caller holds on to it. To check that the request
	 * was not reallocated as we acquired the reference we have to
	 * check that our request remains the active request across
	 * the lookup, in the same manner as a seqlock. The visibility
	 * of the pointer versus the reference counting is controlled
	 * by using RCU barriers (rcu_dereference and rcu_assign_pointer).
	 *
	 * In the middle of all that, we inspect whether the request is
	 * complete. Retiring is lazy so the request may be completed long
	 * before the active tracker is updated. Querying whether the
	 * request is complete is far cheaper (as it involves no locked
	 * instructions setting cachelines to exclusive) than acquiring
	 * the reference, so we do it first. The RCU read lock ensures the
	 * pointer dereference is valid, but does not ensure that the
	 * seqno nor HWS is the right one! However, if the request was
	 * reallocated, that means the active tracker's request was complete.
	 * If the new request is also complete, then both are and we can
	 * just report the active tracker is idle. If the new request is
	 * incomplete, then we acquire a reference on it and check that
	 * it remained the active request.
	 *
	 * It is then imperative that we do not zero the request on
	 * reallocation, so that we can chase the dangling pointers!
	 * See i915_request_alloc().
	 */
	do {
		struct i915_request *request;

		request = rcu_dereference(active->request);
		if (!request || i915_request_completed(request))
			return NULL;

		/*
		 * An especially silly compiler could decide to recompute the
		 * result of i915_request_completed, more specifically
		 * re-emit the load for request->fence.seqno. A race would catch
		 * a later seqno value, which could flip the result from true to
		 * false. Which means part of the instructions below might not
		 * be executed, while later on instructions are executed. Due to
		 * barriers within the refcounting the inconsistency can't reach
		 * past the call to i915_request_get_rcu, but not executing
		 * that while still executing i915_request_put() creates
		 * havoc enough.  Prevent this with a compiler barrier.
		 */
		barrier();

		request = i915_request_get_rcu(request);

		/*
		 * What stops the following rcu_access_pointer() from occurring
		 * before the above i915_request_get_rcu()? If we were
		 * to read the value before pausing to get the reference to
		 * the request, we may not notice a change in the active
		 * tracker.
		 *
		 * The rcu_access_pointer() is a mere compiler barrier, which
		 * means both the CPU and compiler are free to perform the
		 * memory read without constraint. The compiler only has to
		 * ensure that any operations after the rcu_access_pointer()
		 * occur afterwards in program order. This means the read may
		 * be performed earlier by an out-of-order CPU, or adventurous
		 * compiler.
		 *
		 * The atomic operation at the heart of
		 * i915_request_get_rcu(), see dma_fence_get_rcu(), is
		 * atomic_inc_not_zero() which is only a full memory barrier
		 * when successful. That is, if i915_request_get_rcu()
		 * returns the request (and so with the reference counted
		 * incremented) then the following read for rcu_access_pointer()
		 * must occur after the atomic operation and so confirm
		 * that this request is the one currently being tracked.
		 *
		 * The corresponding write barrier is part of
		 * rcu_assign_pointer().
		 */
		if (!request || request == rcu_access_pointer(active->request))
			return rcu_pointer_handoff(request);

		i915_request_put(request);
	} while (1);
}

/**
 * i915_active_request_get_unlocked - return a reference to the active request
 * @active - the active tracker
 *
 * i915_active_request_get_unlocked() returns a reference to the active request,
 * or NULL if the active tracker is idle. The reference is obtained under RCU,
 * so no locking is required by the caller.
 *
 * The reference should be freed with i915_request_put().
 */
static inline struct i915_request *
i915_active_request_get_unlocked(const struct i915_active_request *active)
{
	struct i915_request *request;

	rcu_read_lock();
	request = __i915_active_request_get_rcu(active);
	rcu_read_unlock();

	return request;
}

/**
 * i915_active_request_isset - report whether the active tracker is assigned
 * @active - the active tracker
 *
 * i915_active_request_isset() returns true if the active tracker is currently
 * assigned to a request. Due to the lazy retiring, that request may be idle
 * and this may report stale information.
 */
static inline bool
i915_active_request_isset(const struct i915_active_request *active)
{
	return rcu_access_pointer(active->request);
}

/**
 * i915_active_request_retire - waits until the request is retired
 * @active - the active request on which to wait
 *
 * i915_active_request_retire() waits until the request is completed,
 * and then ensures that at least the retirement handler for this
 * @active tracker is called before returning. If the @active
 * tracker is idle, the function returns immediately.
 */
static inline int __must_check
i915_active_request_retire(struct i915_active_request *active,
			   struct mutex *mutex)
{
	struct i915_request *request;
	long ret;

	request = i915_active_request_raw(active, mutex);
	if (!request)
		return 0;

	ret = i915_request_wait(request,
314
				I915_WAIT_INTERRUPTIBLE,
315 316 317 318 319 320 321 322 323 324 325
				MAX_SCHEDULE_TIMEOUT);
	if (ret < 0)
		return ret;

	list_del_init(&active->link);
	RCU_INIT_POINTER(active->request, NULL);

	active->retire(active, request);

	return 0;
}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

/*
 * GPU activity tracking
 *
 * Each set of commands submitted to the GPU compromises a single request that
 * signals a fence upon completion. struct i915_request combines the
 * command submission, scheduling and fence signaling roles. If we want to see
 * if a particular task is complete, we need to grab the fence (struct
 * i915_request) for that task and check or wait for it to be signaled. More
 * often though we want to track the status of a bunch of tasks, for example
 * to wait for the GPU to finish accessing some memory across a variety of
 * different command pipelines from different clients. We could choose to
 * track every single request associated with the task, but knowing that
 * each request belongs to an ordered timeline (later requests within a
 * timeline must wait for earlier requests), we need only track the
 * latest request in each timeline to determine the overall status of the
 * task.
 *
 * struct i915_active provides this tracking across timelines. It builds a
 * composite shared-fence, and is updated as new work is submitted to the task,
 * forming a snapshot of the current status. It should be embedded into the
 * different resources that need to track their associated GPU activity to
 * provide a callback when that GPU activity has ceased, or otherwise to
 * provide a serialisation point either for request submission or for CPU
 * synchronisation.
 */

353 354 355 356 357 358 359 360 361 362
void __i915_active_init(struct drm_i915_private *i915,
			struct i915_active *ref,
			int (*active)(struct i915_active *ref),
			void (*retire)(struct i915_active *ref),
			struct lock_class_key *key);
#define i915_active_init(i915, ref, active, retire) do {		\
	static struct lock_class_key __key;				\
									\
	__i915_active_init(i915, ref, active, retire, &__key);		\
} while (0)
363 364 365 366 367 368 369 370 371

int i915_active_ref(struct i915_active *ref,
		    u64 timeline,
		    struct i915_request *rq);

int i915_active_wait(struct i915_active *ref);

int i915_request_await_active(struct i915_request *rq,
			      struct i915_active *ref);
372 373
int i915_request_await_active_request(struct i915_request *rq,
				      struct i915_active_request *active);
374

375
int i915_active_acquire(struct i915_active *ref);
376
void i915_active_release(struct i915_active *ref);
377
void __i915_active_release_nested(struct i915_active *ref, int subclass);
378

379 380 381
bool i915_active_trygrab(struct i915_active *ref);
void i915_active_ungrab(struct i915_active *ref);

382 383 384
static inline bool
i915_active_is_idle(const struct i915_active *ref)
{
385
	return !atomic_read(&ref->count);
386 387
}

388
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
389
void i915_active_fini(struct i915_active *ref);
390 391 392
#else
static inline void i915_active_fini(struct i915_active *ref) { }
#endif
393

394 395 396
int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
					    struct intel_engine_cs *engine);
void i915_active_acquire_barrier(struct i915_active *ref);
397
void i915_request_add_active_barriers(struct i915_request *rq);
398

399
#endif /* _I915_ACTIVE_H_ */