vf610_nfc.c 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
 *
 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
 * Jason ported to M54418TWR and MVFA5 (VF610).
 * Authors: Stefan Agner <stefan.agner@toradex.com>
 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
 *          Shaohui Xie <b21989@freescale.com>
 *          Jason Jin <Jason.jin@freescale.com>
 *
 * Based on original driver mpc5121_nfc.c.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Limitations:
 * - Untested on MPC5125 and M54418.
 * - DMA and pipelining not used.
 * - 2K pages or less.
22 23
 * - HW ECC: Only 2K page with 64+ OOB.
 * - HW ECC: Only 24 and 32-bit error correction implemented.
24 25 26 27 28 29 30 31 32 33
 */

#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
34
#include <linux/mtd/rawnand.h>
35 36 37 38
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
39
#include <linux/swab.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

#define	DRV_NAME		"vf610_nfc"

/* Register Offsets */
#define NFC_FLASH_CMD1			0x3F00
#define NFC_FLASH_CMD2			0x3F04
#define NFC_COL_ADDR			0x3F08
#define NFC_ROW_ADDR			0x3F0c
#define NFC_ROW_ADDR_INC		0x3F14
#define NFC_FLASH_STATUS1		0x3F18
#define NFC_FLASH_STATUS2		0x3F1c
#define NFC_CACHE_SWAP			0x3F28
#define NFC_SECTOR_SIZE			0x3F2c
#define NFC_FLASH_CONFIG		0x3F30
#define NFC_IRQ_STATUS			0x3F38

/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n)		((n) *  0x1000)

#define PAGE_2K				0x0800
#define OOB_64				0x0040
#define OOB_MAX				0x0100

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* NFC_CMD2[CODE] controller cycle bit masks */
#define COMMAND_CMD_BYTE1		BIT(14)
#define COMMAND_CAR_BYTE1		BIT(13)
#define COMMAND_CAR_BYTE2		BIT(12)
#define COMMAND_RAR_BYTE1		BIT(11)
#define COMMAND_RAR_BYTE2		BIT(10)
#define COMMAND_RAR_BYTE3		BIT(9)
#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
#define COMMAND_WRITE_DATA		BIT(8)
#define COMMAND_CMD_BYTE2		BIT(7)
#define COMMAND_RB_HANDSHAKE		BIT(6)
#define COMMAND_READ_DATA		BIT(5)
#define COMMAND_CMD_BYTE3		BIT(4)
#define COMMAND_READ_STATUS		BIT(3)
#define COMMAND_READ_ID			BIT(2)

79 80
/* NFC ECC mode define */
#define ECC_BYPASS			0
81 82
#define ECC_45_BYTE			6
#define ECC_60_BYTE			7
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/*** Register Mask and bit definitions */

/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK				0xFF000000
#define CMD_BYTE2_SHIFT				24

/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK				0xFF000000
#define CMD_BYTE1_SHIFT				24
#define CMD_CODE_MASK				0x00FFFF00
#define CMD_CODE_SHIFT				8
#define BUFNO_MASK				0x00000006
#define BUFNO_SHIFT				1
#define START_BIT				BIT(0)

/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK				0x0000FFFF
#define COL_ADDR_SHIFT				0
102
#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
103 104 105 106

/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK				0x00FFFFFF
#define ROW_ADDR_SHIFT				0
107 108
#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT			24

/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK			0x000000FF

/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
#define CONFIG_DMA_REQ_BIT			BIT(20)
#define CONFIG_ECC_MODE_MASK			0x000E0000
#define CONFIG_ECC_MODE_SHIFT			17
#define CONFIG_FAST_FLASH_BIT			BIT(16)
#define CONFIG_16BIT				BIT(7)
#define CONFIG_BOOT_MODE_BIT			BIT(6)
#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
#define CONFIG_PAGE_CNT_MASK			0xF
#define CONFIG_PAGE_CNT_SHIFT			0

/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT				BIT(29)
#define IDLE_EN_BIT				BIT(20)
#define CMD_DONE_CLEAR_BIT			BIT(18)
#define IDLE_CLEAR_BIT				BIT(17)

138 139 140 141 142 143 144 145 146 147 148 149
/*
 * ECC status - seems to consume 8 bytes (double word). The documented
 * status byte is located in the lowest byte of the second word (which is
 * the 4th or 7th byte depending on endianness).
 * Calculate an offset to store the ECC status at the end of the buffer.
 */
#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)

#define ECC_STATUS		0x4
#define ECC_STATUS_MASK		0x80
#define ECC_STATUS_ERR_COUNT	0x3F

150 151 152 153 154 155 156 157 158 159 160 161
enum vf610_nfc_variant {
	NFC_VFC610 = 1,
};

struct vf610_nfc {
	struct nand_chip chip;
	struct device *dev;
	void __iomem *regs;
	struct completion cmd_done;
	/* Status and ID are in alternate locations. */
	enum vf610_nfc_variant variant;
	struct clk *clk;
162 163 164 165 166 167
	/*
	 * Indicate that user data is accessed (full page/oob). This is
	 * useful to indicate the driver whether to swap byte endianness.
	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
	 */
	bool data_access;
168
	u32 ecc_mode;
169 170
};

171 172 173 174
static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
}
175

176 177 178 179 180
static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
{
	return container_of(chip, struct vf610_nfc, chip);
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
{
	return readl(nfc->regs + reg);
}

static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
{
	writel(val, nfc->regs + reg);
}

static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
{
	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
}

static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
{
	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
}

static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
				       u32 mask, u32 shift, u32 val)
{
	vf610_nfc_write(nfc, reg,
			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static inline bool vf610_nfc_kernel_is_little_endian(void)
{
#ifdef __LITTLE_ENDIAN
	return true;
#else
	return false;
#endif
}

/**
 * Read accessor for internal SRAM buffer
 * @dst: destination address in regular memory
 * @src: source address in SRAM buffer
 * @len: bytes to copy
 * @fix_endian: Fix endianness if required
 *
 * Use this accessor for the internal SRAM buffers. On the ARM
 * Freescale Vybrid SoC it's known that the driver can treat
 * the SRAM buffer as if it's memory. Other platform might need
 * to treat the buffers differently.
 *
 * The controller stores bytes from the NAND chip internally in big
 * endianness. On little endian platforms such as Vybrid this leads
 * to reversed byte order.
 * For performance reason (and earlier probably due to unawareness)
 * the driver avoids correcting endianness where it has control over
 * write and read side (e.g. page wise data access).
 */
static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
					  size_t len, bool fix_endian)
{
	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
		unsigned int i;

		for (i = 0; i < len; i += 4) {
			u32 val = swab32(__raw_readl(src + i));

			memcpy(dst + i, &val, min(sizeof(val), len - i));
		}
	} else {
		memcpy_fromio(dst, src, len);
	}
}

/**
 * Write accessor for internal SRAM buffer
 * @dst: destination address in SRAM buffer
 * @src: source address in regular memory
 * @len: bytes to copy
 * @fix_endian: Fix endianness if required
 *
 * Use this accessor for the internal SRAM buffers. On the ARM
 * Freescale Vybrid SoC it's known that the driver can treat
 * the SRAM buffer as if it's memory. Other platform might need
 * to treat the buffers differently.
 *
 * The controller stores bytes from the NAND chip internally in big
 * endianness. On little endian platforms such as Vybrid this leads
 * to reversed byte order.
 * For performance reason (and earlier probably due to unawareness)
 * the driver avoids correcting endianness where it has control over
 * write and read side (e.g. page wise data access).
 */
static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
					size_t len, bool fix_endian)
{
	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
		unsigned int i;

		for (i = 0; i < len; i += 4) {
			u32 val;

			memcpy(&val, src + i, min(sizeof(val), len - i));
			__raw_writel(swab32(val), dst + i);
		}
	} else {
		memcpy_toio(dst, src, len);
	}
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
{
	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);

	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
}

static void vf610_nfc_done(struct vf610_nfc *nfc)
{
	unsigned long timeout = msecs_to_jiffies(100);

	/*
	 * Barrier is needed after this write. This write need
	 * to be done before reading the next register the first
	 * time.
	 * vf610_nfc_set implicates such a barrier by using writel
	 * to write to the register.
	 */
	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);

	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");

	vf610_nfc_clear_status(nfc);
}

static irqreturn_t vf610_nfc_irq(int irq, void *data)
{
	struct mtd_info *mtd = data;
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
	complete(&nfc->cmd_done);

	return IRQ_HANDLED;
}

328 329 330 331 332 333 334
static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
{
	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
			    CONFIG_ECC_MODE_MASK,
			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
}

335 336 337 338 339
static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
{
	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
				 u32 cmd1, u32 cmd2, u32 trfr_sz)
{
	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
			    COL_ADDR_SHIFT, col);

	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
			    ROW_ADDR_SHIFT, row);

	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);

	dev_dbg(nfc->dev,
		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
		col, row, cmd1, cmd2, trfr_sz);

	vf610_nfc_done(nfc);
}

static inline const struct nand_op_instr *
vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
{
	if (*op_id + 1 >= subop->ninstrs)
		return NULL;

	(*op_id)++;

	return &subop->instrs[*op_id];
}

static int vf610_nfc_cmd(struct nand_chip *chip,
			 const struct nand_subop *subop)
{
	const struct nand_op_instr *instr;
	struct vf610_nfc *nfc = chip_to_nfc(chip);
	int op_id = -1, trfr_sz = 0, offset;
	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
	bool force8bit = false;

	/*
	 * Some ops are optional, but the hardware requires the operations
	 * to be in this exact order.
	 * The op parser enforces the order and makes sure that there isn't
	 * a read and write element in a single operation.
	 */
	instr = vf610_get_next_instr(subop, &op_id);
	if (!instr)
		return -EINVAL;

	if (instr && instr->type == NAND_OP_CMD_INSTR) {
		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
		code |= COMMAND_CMD_BYTE1;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
		int i = nand_subop_get_addr_start_off(subop, op_id);

		for (; i < naddrs; i++) {
			u8 val = instr->ctx.addr.addrs[i];

			if (i < 2)
				col |= COL_ADDR(i, val);
			else
				row |= ROW_ADDR(i - 2, val);
		}
		code |= COMMAND_NADDR_BYTES(naddrs);

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
		trfr_sz = nand_subop_get_data_len(subop, op_id);
		offset = nand_subop_get_data_start_off(subop, op_id);
		force8bit = instr->ctx.data.force_8bit;

		/*
		 * Don't fix endianness on page access for historical reasons.
		 * See comment in vf610_nfc_wr_to_sram
		 */
		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
				     instr->ctx.data.buf.out + offset,
				     trfr_sz, !nfc->data_access);
		code |= COMMAND_WRITE_DATA;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_CMD_INSTR) {
		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
		code |= COMMAND_CMD_BYTE2;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
		code |= COMMAND_RB_HANDSHAKE;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
		trfr_sz = nand_subop_get_data_len(subop, op_id);
		offset = nand_subop_get_data_start_off(subop, op_id);
		force8bit = instr->ctx.data.force_8bit;

		code |= COMMAND_READ_DATA;
	}

	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);

	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);

	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
		/*
		 * Don't fix endianness on page access for historical reasons.
		 * See comment in vf610_nfc_rd_from_sram
		 */
		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
				       nfc->regs + NFC_MAIN_AREA(0) + offset,
				       trfr_sz, !nfc->data_access);
	}

	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);

	return 0;
}

static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
	);

static int vf610_nfc_exec_op(struct nand_chip *chip,
			     const struct nand_operation *op,
			     bool check_only)
{
	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
				      check_only);
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
 */
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);

	/* Vybrid only (MPC5125 would have full RB and four CS) */
	if (nfc->variant != NFC_VFC610)
		return;

	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);

	if (chip >= 0) {
		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
		tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
	}

	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
					 uint8_t *oob, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
	u8 ecc_status;
	u8 ecc_count;
	int flips_threshold = nfc->chip.ecc.strength / 2;

	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;

	if (!(ecc_status & ECC_STATUS_MASK))
		return ecc_count;

535 536 537
	nfc->data_access = true;
	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
	nfc->data_access = false;
538 539 540 541 542

	/*
	 * On an erased page, bit count (including OOB) should be zero or
	 * at least less then half of the ECC strength.
	 */
543 544 545
	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
					   mtd->oobsize, NULL, 0,
					   flips_threshold);
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559
static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
			       u32 *row)
{
	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;

	if (chip->options & NAND_ROW_ADDR_3) {
		*row |= ROW_ADDR(2, page >> 16);
		*code |= COMMAND_RAR_BYTE3;
	}
}

560 561 562
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
563 564 565
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int trfr_sz = mtd->writesize + mtd->oobsize;
	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
566 567
	int stat;

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;

	vf610_nfc_fill_row(chip, page, &code, &row);

	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;

	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);

	/*
	 * Don't fix endianness on page access for historical reasons.
	 * See comment in vf610_nfc_rd_from_sram
	 */
	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
			       mtd->writesize, false);
588
	if (oob_required)
589 590 591 592
		vf610_nfc_rd_from_sram(chip->oob_poi,
				       nfc->regs + NFC_MAIN_AREA(0) +
						   mtd->writesize,
				       mtd->oobsize, false);
593 594 595 596 597 598 599 600 601 602 603 604 605

	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
		return 0;
	} else {
		mtd->ecc_stats.corrected += stat;
		return stat;
	}
}

static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
606
				const uint8_t *buf, int oob_required, int page)
607 608
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
609 610 611 612
	int trfr_sz = mtd->writesize + mtd->oobsize;
	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
	u8 status;
	int ret;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;

	vf610_nfc_fill_row(chip, page, &code, &row);

	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;

	/*
	 * Don't fix endianness on page access for historical reasons.
	 * See comment in vf610_nfc_wr_to_sram
	 */
	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
			     mtd->writesize, false);

	code |= COMMAND_RB_HANDSHAKE;
	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);

	ret = nand_status_op(chip, &status);
	if (ret)
		return ret;

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
				   struct nand_chip *chip, u8 *buf,
				   int oob_required, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
	nfc->data_access = false;

	return ret;
}

static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
				    struct nand_chip *chip, const u8 *buf,
				    int oob_required, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
	if (!ret && oob_required)
		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
					 false);
	nfc->data_access = false;

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}

static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_read_oob_std(mtd, chip, page);
	nfc->data_access = false;

	return ret;
}

static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			       int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
				      chip->oob_poi, mtd->oobsize);
	nfc->data_access = false;
703

704 705
	if (ret)
		return ret;
706

707
	return nand_prog_page_end_op(chip);
708 709
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723
static const struct of_device_id vf610_nfc_dt_ids[] = {
	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);

static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
{
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
724
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
725 726 727 728 729 730 731 732 733 734 735 736

	/* Disable virtual pages, only one elementary transfer unit */
	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
			    CONFIG_PAGE_CNT_SHIFT, 1);
}

static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
{
	if (nfc->chip.options & NAND_BUSWIDTH_16)
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
	else
		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
737 738 739 740 741 742 743 744 745 746 747

	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
		/* Set ECC status offset in SRAM */
		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
				    CONFIG_ECC_SRAM_ADDR_MASK,
				    CONFIG_ECC_SRAM_ADDR_SHIFT,
				    ECC_SRAM_ADDR >> 3);

		/* Enable ECC status in SRAM */
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
	}
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

static int vf610_nfc_probe(struct platform_device *pdev)
{
	struct vf610_nfc *nfc;
	struct resource *res;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct device_node *child;
	const struct of_device_id *of_id;
	int err;
	int irq;

	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = &pdev->dev;
	chip = &nfc->chip;
767
	mtd = nand_to_mtd(chip);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	mtd->owner = THIS_MODULE;
	mtd->dev.parent = nfc->dev;
	mtd->name = DRV_NAME;

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0)
		return -EINVAL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(nfc->dev, res);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	nfc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(nfc->clk))
		return PTR_ERR(nfc->clk);

	err = clk_prepare_enable(nfc->clk);
	if (err) {
		dev_err(nfc->dev, "Unable to enable clock!\n");
		return err;
	}

	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
	nfc->variant = (enum vf610_nfc_variant)of_id->data;

	for_each_available_child_of_node(nfc->dev->of_node, child) {
		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {

798
			if (nand_get_flash_node(chip)) {
799 800 801
				dev_err(nfc->dev,
					"Only one NAND chip supported!\n");
				err = -EINVAL;
802
				goto err_disable_clk;
803 804
			}

805
			nand_set_flash_node(chip, child);
806 807 808
		}
	}

809
	if (!nand_get_flash_node(chip)) {
810 811
		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
		err = -ENODEV;
812
		goto err_disable_clk;
813 814
	}

815
	chip->exec_op = vf610_nfc_exec_op;
816 817 818 819 820 821 822 823 824
	chip->select_chip = vf610_nfc_select_chip;

	chip->options |= NAND_NO_SUBPAGE_WRITE;

	init_completion(&nfc->cmd_done);

	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
	if (err) {
		dev_err(nfc->dev, "Error requesting IRQ!\n");
825
		goto err_disable_clk;
826 827 828 829 830
	}

	vf610_nfc_preinit_controller(nfc);

	/* first scan to find the device and get the page size */
831 832
	err = nand_scan_ident(mtd, 1, NULL);
	if (err)
833
		goto err_disable_clk;
834 835 836 837 838 839 840 841 842 843 844

	vf610_nfc_init_controller(nfc);

	/* Bad block options. */
	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;

	/* Single buffer only, max 256 OOB minus ECC status */
	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
		dev_err(nfc->dev, "Unsupported flash page size\n");
		err = -ENXIO;
845
		goto err_disable_clk;
846 847
	}

848 849 850 851
	if (chip->ecc.mode == NAND_ECC_HW) {
		if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
			dev_err(nfc->dev, "Unsupported flash with hwecc\n");
			err = -ENXIO;
852
			goto err_disable_clk;
853 854 855 856 857
		}

		if (chip->ecc.size != mtd->writesize) {
			dev_err(nfc->dev, "Step size needs to be page size\n");
			err = -ENXIO;
858
			goto err_disable_clk;
859 860 861 862 863 864
		}

		/* Only 64 byte ECC layouts known */
		if (mtd->oobsize > 64)
			mtd->oobsize = 64;

865 866
		/* Use default large page ECC layout defined in NAND core */
		mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
867 868 869 870 871 872 873 874 875
		if (chip->ecc.strength == 32) {
			nfc->ecc_mode = ECC_60_BYTE;
			chip->ecc.bytes = 60;
		} else if (chip->ecc.strength == 24) {
			nfc->ecc_mode = ECC_45_BYTE;
			chip->ecc.bytes = 45;
		} else {
			dev_err(nfc->dev, "Unsupported ECC strength\n");
			err = -ENXIO;
876
			goto err_disable_clk;
877 878 879 880
		}

		chip->ecc.read_page = vf610_nfc_read_page;
		chip->ecc.write_page = vf610_nfc_write_page;
881 882 883 884
		chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
		chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
		chip->ecc.read_oob = vf610_nfc_read_oob;
		chip->ecc.write_oob = vf610_nfc_write_oob;
885 886 887 888

		chip->ecc.size = PAGE_2K;
	}

889
	/* second phase scan */
890 891
	err = nand_scan_tail(mtd);
	if (err)
892
		goto err_disable_clk;
893 894 895 896

	platform_set_drvdata(pdev, mtd);

	/* Register device in MTD */
897 898 899 900
	err = mtd_device_register(mtd, NULL, 0);
	if (err)
		goto err_cleanup_nand;
	return 0;
901

902 903
err_cleanup_nand:
	nand_cleanup(chip);
904
err_disable_clk:
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	clk_disable_unprepare(nfc->clk);
	return err;
}

static int vf610_nfc_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	nand_release(mtd);
	clk_disable_unprepare(nfc->clk);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int vf610_nfc_suspend(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	clk_disable_unprepare(nfc->clk);
	return 0;
}

static int vf610_nfc_resume(struct device *dev)
{
931 932
	int err;

933 934 935
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

936 937 938
	err = clk_prepare_enable(nfc->clk);
	if (err)
		return err;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

	vf610_nfc_preinit_controller(nfc);
	vf610_nfc_init_controller(nfc);
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);

static struct platform_driver vf610_nfc_driver = {
	.driver		= {
		.name	= DRV_NAME,
		.of_match_table = vf610_nfc_dt_ids,
		.pm	= &vf610_nfc_pm_ops,
	},
	.probe		= vf610_nfc_probe,
	.remove		= vf610_nfc_remove,
};

module_platform_driver(vf610_nfc_driver);

MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
MODULE_LICENSE("GPL");