lpt.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Adrian Hunter
 *          Artem Bityutskiy (Битюцкий Артём)
 */

/*
 * This file implements the LEB properties tree (LPT) area. The LPT area
 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
 * between the log and the orphan area.
 *
 * The LPT area is like a miniature self-contained file system. It is required
 * that it never runs out of space, is fast to access and update, and scales
 * logarithmically. The LEB properties tree is implemented as a wandering tree
 * much like the TNC, and the LPT area has its own garbage collection.
 *
 * The LPT has two slightly different forms called the "small model" and the
 * "big model". The small model is used when the entire LEB properties table
 * can be written into a single eraseblock. In that case, garbage collection
 * consists of just writing the whole table, which therefore makes all other
 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39
 * selected for garbage collection, which consists of marking the clean nodes in
40 41 42 43 44 45 46
 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
 * the case of the big model, a table of LEB numbers is saved so that the entire
 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
 * mounted.
 */

#include "ubifs.h"
A
Artem Bityutskiy 已提交
47 48
#include <linux/crc16.h>
#include <linux/math64.h>
49
#include <linux/slab.h>
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

/**
 * do_calc_lpt_geom - calculate sizes for the LPT area.
 * @c: the UBIFS file-system description object
 *
 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
 * properties of the flash and whether LPT is "big" (c->big_lpt).
 */
static void do_calc_lpt_geom(struct ubifs_info *c)
{
	int i, n, bits, per_leb_wastage, max_pnode_cnt;
	long long sz, tot_wastage;

	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);

	c->lpt_hght = 1;
	n = UBIFS_LPT_FANOUT;
	while (n < max_pnode_cnt) {
		c->lpt_hght += 1;
		n <<= UBIFS_LPT_FANOUT_SHIFT;
	}

	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);

	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
	c->nnode_cnt = n;
	for (i = 1; i < c->lpt_hght; i++) {
		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
		c->nnode_cnt += n;
	}

	c->space_bits = fls(c->leb_size) - 3;
	c->lpt_lnum_bits = fls(c->lpt_lebs);
	c->lpt_offs_bits = fls(c->leb_size - 1);
	c->lpt_spc_bits = fls(c->leb_size);

	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
	c->pcnt_bits = fls(n - 1);

	c->lnum_bits = fls(c->max_leb_cnt - 1);

	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
	       (c->big_lpt ? c->pcnt_bits : 0) +
	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
	c->pnode_sz = (bits + 7) / 8;

	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
	       (c->big_lpt ? c->pcnt_bits : 0) +
	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
	c->nnode_sz = (bits + 7) / 8;

	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
	       c->lpt_lebs * c->lpt_spc_bits * 2;
	c->ltab_sz = (bits + 7) / 8;

	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
	       c->lnum_bits * c->lsave_cnt;
	c->lsave_sz = (bits + 7) / 8;

	/* Calculate the minimum LPT size */
	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
	c->lpt_sz += c->ltab_sz;
114 115
	if (c->big_lpt)
		c->lpt_sz += c->lsave_sz;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

	/* Add wastage */
	sz = c->lpt_sz;
	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
	sz += per_leb_wastage;
	tot_wastage = per_leb_wastage;
	while (sz > c->leb_size) {
		sz += per_leb_wastage;
		sz -= c->leb_size;
		tot_wastage += per_leb_wastage;
	}
	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
	c->lpt_sz += tot_wastage;
}

/**
 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 * @c: the UBIFS file-system description object
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_calc_lpt_geom(struct ubifs_info *c)
{
	int lebs_needed;
A
Artem Bityutskiy 已提交
140
	long long sz;
141 142 143 144 145

	do_calc_lpt_geom(c);

	/* Verify that lpt_lebs is big enough */
	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
A
Artem Bityutskiy 已提交
146
	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147
	if (lebs_needed > c->lpt_lebs) {
148
		ubifs_err(c, "too few LPT LEBs");
149 150 151 152 153
		return -EINVAL;
	}

	/* Verify that ltab fits in a single LEB (since ltab is a single node */
	if (c->ltab_sz > c->leb_size) {
154
		ubifs_err(c, "LPT ltab too big");
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		return -EINVAL;
	}

	c->check_lpt_free = c->big_lpt;
	return 0;
}

/**
 * calc_dflt_lpt_geom - calculate default LPT geometry.
 * @c: the UBIFS file-system description object
 * @main_lebs: number of main area LEBs is passed and returned here
 * @big_lpt: whether the LPT area is "big" is returned here
 *
 * The size of the LPT area depends on parameters that themselves are dependent
 * on the size of the LPT area. This function, successively recalculates the LPT
 * area geometry until the parameters and resultant geometry are consistent.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
			      int *big_lpt)
{
	int i, lebs_needed;
A
Artem Bityutskiy 已提交
178
	long long sz;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	/* Start by assuming the minimum number of LPT LEBs */
	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
	c->main_lebs = *main_lebs - c->lpt_lebs;
	if (c->main_lebs <= 0)
		return -EINVAL;

	/* And assume we will use the small LPT model */
	c->big_lpt = 0;

	/*
	 * Calculate the geometry based on assumptions above and then see if it
	 * makes sense
	 */
	do_calc_lpt_geom(c);

	/* Small LPT model must have lpt_sz < leb_size */
	if (c->lpt_sz > c->leb_size) {
		/* Nope, so try again using big LPT model */
		c->big_lpt = 1;
		do_calc_lpt_geom(c);
	}

	/* Now check there are enough LPT LEBs */
	for (i = 0; i < 64 ; i++) {
		sz = c->lpt_sz * 4; /* Allow 4 times the size */
A
Artem Bityutskiy 已提交
205
		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 207 208 209 210 211 212 213 214 215
		if (lebs_needed > c->lpt_lebs) {
			/* Not enough LPT LEBs so try again with more */
			c->lpt_lebs = lebs_needed;
			c->main_lebs = *main_lebs - c->lpt_lebs;
			if (c->main_lebs <= 0)
				return -EINVAL;
			do_calc_lpt_geom(c);
			continue;
		}
		if (c->ltab_sz > c->leb_size) {
216
			ubifs_err(c, "LPT ltab too big");
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
			return -EINVAL;
		}
		*main_lebs = c->main_lebs;
		*big_lpt = c->big_lpt;
		return 0;
	}
	return -EINVAL;
}

/**
 * pack_bits - pack bit fields end-to-end.
 * @addr: address at which to pack (passed and next address returned)
 * @pos: bit position at which to pack (passed and next position returned)
 * @val: value to pack
 * @nrbits: number of bits of value to pack (1-32)
 */
static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
{
	uint8_t *p = *addr;
	int b = *pos;

	ubifs_assert(nrbits > 0);
	ubifs_assert(nrbits <= 32);
	ubifs_assert(*pos >= 0);
	ubifs_assert(*pos < 8);
	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
	if (b) {
		*p |= ((uint8_t)val) << b;
		nrbits += b;
		if (nrbits > 8) {
			*++p = (uint8_t)(val >>= (8 - b));
			if (nrbits > 16) {
				*++p = (uint8_t)(val >>= 8);
				if (nrbits > 24) {
					*++p = (uint8_t)(val >>= 8);
					if (nrbits > 32)
						*++p = (uint8_t)(val >>= 8);
				}
			}
		}
	} else {
		*p = (uint8_t)val;
		if (nrbits > 8) {
			*++p = (uint8_t)(val >>= 8);
			if (nrbits > 16) {
				*++p = (uint8_t)(val >>= 8);
				if (nrbits > 24)
					*++p = (uint8_t)(val >>= 8);
			}
		}
	}
	b = nrbits & 7;
	if (b == 0)
		p++;
	*addr = p;
	*pos = b;
}

/**
 * ubifs_unpack_bits - unpack bit fields.
 * @addr: address at which to unpack (passed and next address returned)
 * @pos: bit position at which to unpack (passed and next position returned)
 * @nrbits: number of bits of value to unpack (1-32)
 *
 * This functions returns the value unpacked.
 */
uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
{
	const int k = 32 - nrbits;
	uint8_t *p = *addr;
	int b = *pos;
288 289
	uint32_t uninitialized_var(val);
	const int bytes = (nrbits + b + 7) >> 3;
290 291 292 293 294 295

	ubifs_assert(nrbits > 0);
	ubifs_assert(nrbits <= 32);
	ubifs_assert(*pos >= 0);
	ubifs_assert(*pos < 8);
	if (b) {
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		switch (bytes) {
		case 2:
			val = p[1];
			break;
		case 3:
			val = p[1] | ((uint32_t)p[2] << 8);
			break;
		case 4:
			val = p[1] | ((uint32_t)p[2] << 8) |
				     ((uint32_t)p[3] << 16);
			break;
		case 5:
			val = p[1] | ((uint32_t)p[2] << 8) |
				     ((uint32_t)p[3] << 16) |
				     ((uint32_t)p[4] << 24);
		}
312 313 314
		val <<= (8 - b);
		val |= *p >> b;
		nrbits += b;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	} else {
		switch (bytes) {
		case 1:
			val = p[0];
			break;
		case 2:
			val = p[0] | ((uint32_t)p[1] << 8);
			break;
		case 3:
			val = p[0] | ((uint32_t)p[1] << 8) |
				     ((uint32_t)p[2] << 16);
			break;
		case 4:
			val = p[0] | ((uint32_t)p[1] << 8) |
				     ((uint32_t)p[2] << 16) |
				     ((uint32_t)p[3] << 24);
			break;
		}
	}
334 335 336
	val <<= k;
	val >>= k;
	b = nrbits & 7;
337
	p += nrbits >> 3;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	*addr = p;
	*pos = b;
	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
	return val;
}

/**
 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 * @c: UBIFS file-system description object
 * @buf: buffer into which to pack
 * @pnode: pnode to pack
 */
void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
		      struct ubifs_pnode *pnode)
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0;
	uint16_t crc;

	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
	if (c->big_lpt)
		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
			  c->space_bits);
		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
			  c->space_bits);
		if (pnode->lprops[i].flags & LPROPS_INDEX)
			pack_bits(&addr, &pos, 1, 1);
		else
			pack_bits(&addr, &pos, 0, 1);
	}
	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
	addr = buf;
	pos = 0;
	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}

/**
 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 * @c: UBIFS file-system description object
 * @buf: buffer into which to pack
 * @nnode: nnode to pack
 */
void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
		      struct ubifs_nnode *nnode)
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0;
	uint16_t crc;

	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
	if (c->big_lpt)
		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		int lnum = nnode->nbranch[i].lnum;

		if (lnum == 0)
			lnum = c->lpt_last + 1;
		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
			  c->lpt_offs_bits);
	}
	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
	addr = buf;
	pos = 0;
	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}

/**
 * ubifs_pack_ltab - pack the LPT's own lprops table.
 * @c: UBIFS file-system description object
 * @buf: buffer into which to pack
 * @ltab: LPT's own lprops table to pack
 */
void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
		     struct ubifs_lpt_lprops *ltab)
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0;
	uint16_t crc;

	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
	for (i = 0; i < c->lpt_lebs; i++) {
		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
	}
	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
	addr = buf;
	pos = 0;
	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}

/**
 * ubifs_pack_lsave - pack the LPT's save table.
 * @c: UBIFS file-system description object
 * @buf: buffer into which to pack
 * @lsave: LPT's save table to pack
 */
void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0;
	uint16_t crc;

	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
	for (i = 0; i < c->lsave_cnt; i++)
		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
	addr = buf;
	pos = 0;
	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}

/**
 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 * @c: UBIFS file-system description object
 * @lnum: LEB number to which to add dirty space
 * @dirty: amount of dirty space to add
 */
void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
{
	if (!dirty || !lnum)
		return;
	dbg_lp("LEB %d add %d to %d",
	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
	c->ltab[lnum - c->lpt_first].dirty += dirty;
}

/**
 * set_ltab - set LPT LEB properties.
 * @c: UBIFS file-system description object
 * @lnum: LEB number
 * @free: amount of free space
 * @dirty: amount of dirty space
 */
static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
{
	dbg_lp("LEB %d free %d dirty %d to %d %d",
	       lnum, c->ltab[lnum - c->lpt_first].free,
	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
	c->ltab[lnum - c->lpt_first].free = free;
	c->ltab[lnum - c->lpt_first].dirty = dirty;
}

/**
 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 * @c: UBIFS file-system description object
 * @nnode: nnode for which to add dirt
 */
void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
{
	struct ubifs_nnode *np = nnode->parent;

	if (np)
		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
				   c->nnode_sz);
	else {
		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
			c->lpt_drty_flgs |= LTAB_DIRTY;
			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
		}
	}
}

/**
 * add_pnode_dirt - add dirty space to LPT LEB properties.
 * @c: UBIFS file-system description object
 * @pnode: pnode for which to add dirt
 */
static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
{
	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
			   c->pnode_sz);
}

/**
 * calc_nnode_num - calculate nnode number.
 * @row: the row in the tree (root is zero)
 * @col: the column in the row (leftmost is zero)
 *
 * The nnode number is a number that uniquely identifies a nnode and can be used
 * easily to traverse the tree from the root to that nnode.
 *
 * This function calculates and returns the nnode number for the nnode at @row
 * and @col.
 */
static int calc_nnode_num(int row, int col)
{
	int num, bits;

	num = 1;
	while (row--) {
		bits = (col & (UBIFS_LPT_FANOUT - 1));
		col >>= UBIFS_LPT_FANOUT_SHIFT;
		num <<= UBIFS_LPT_FANOUT_SHIFT;
		num |= bits;
	}
	return num;
}

/**
 * calc_nnode_num_from_parent - calculate nnode number.
 * @c: UBIFS file-system description object
 * @parent: parent nnode
 * @iip: index in parent
 *
 * The nnode number is a number that uniquely identifies a nnode and can be used
 * easily to traverse the tree from the root to that nnode.
 *
 * This function calculates and returns the nnode number based on the parent's
 * nnode number and the index in parent.
 */
558
static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
				      struct ubifs_nnode *parent, int iip)
{
	int num, shft;

	if (!parent)
		return 1;
	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
	num = parent->num ^ (1 << shft);
	num |= (UBIFS_LPT_FANOUT + iip) << shft;
	return num;
}

/**
 * calc_pnode_num_from_parent - calculate pnode number.
 * @c: UBIFS file-system description object
 * @parent: parent nnode
 * @iip: index in parent
 *
 * The pnode number is a number that uniquely identifies a pnode and can be used
 * easily to traverse the tree from the root to that pnode.
 *
 * This function calculates and returns the pnode number based on the parent's
 * nnode number and the index in parent.
 */
583
static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
				      struct ubifs_nnode *parent, int iip)
{
	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;

	for (i = 0; i < n; i++) {
		num <<= UBIFS_LPT_FANOUT_SHIFT;
		num |= pnum & (UBIFS_LPT_FANOUT - 1);
		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
	}
	num <<= UBIFS_LPT_FANOUT_SHIFT;
	num |= iip;
	return num;
}

/**
 * ubifs_create_dflt_lpt - create default LPT.
 * @c: UBIFS file-system description object
 * @main_lebs: number of main area LEBs is passed and returned here
 * @lpt_first: LEB number of first LPT LEB
 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 * @big_lpt: use big LPT model is passed and returned here
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
			  int *lpt_lebs, int *big_lpt)
{
	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
	int blnum, boffs, bsz, bcnt;
	struct ubifs_pnode *pnode = NULL;
	struct ubifs_nnode *nnode = NULL;
	void *buf = NULL, *p;
	struct ubifs_lpt_lprops *ltab = NULL;
	int *lsave = NULL;

	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
	if (err)
		return err;
	*lpt_lebs = c->lpt_lebs;

	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
	c->lpt_first = lpt_first;
	/* Needed by 'set_ltab()' */
	c->lpt_last = lpt_first + c->lpt_lebs - 1;
	/* Needed by 'ubifs_pack_lsave()' */
	c->main_first = c->leb_cnt - *main_lebs;

	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
	buf = vmalloc(c->leb_size);
	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
	if (!pnode || !nnode || !buf || !ltab || !lsave) {
		err = -ENOMEM;
		goto out;
	}

	ubifs_assert(!c->ltab);
	c->ltab = ltab; /* Needed by set_ltab */

	/* Initialize LPT's own lprops */
	for (i = 0; i < c->lpt_lebs; i++) {
		ltab[i].free = c->leb_size;
		ltab[i].dirty = 0;
		ltab[i].tgc = 0;
		ltab[i].cmt = 0;
	}

	lnum = lpt_first;
	p = buf;
	/* Number of leaf nodes (pnodes) */
	cnt = c->pnode_cnt;

	/*
	 * The first pnode contains the LEB properties for the LEBs that contain
	 * the root inode node and the root index node of the index tree.
	 */
	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
	iopos = ALIGN(node_sz, c->min_io_size);
	pnode->lprops[0].free = c->leb_size - iopos;
	pnode->lprops[0].dirty = iopos - node_sz;
	pnode->lprops[0].flags = LPROPS_INDEX;

	node_sz = UBIFS_INO_NODE_SZ;
	iopos = ALIGN(node_sz, c->min_io_size);
	pnode->lprops[1].free = c->leb_size - iopos;
	pnode->lprops[1].dirty = iopos - node_sz;

	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
		pnode->lprops[i].free = c->leb_size;

	/* Add first pnode */
	ubifs_pack_pnode(c, p, pnode);
	p += c->pnode_sz;
	len = c->pnode_sz;
	pnode->num += 1;

	/* Reset pnode values for remaining pnodes */
	pnode->lprops[0].free = c->leb_size;
	pnode->lprops[0].dirty = 0;
	pnode->lprops[0].flags = 0;

	pnode->lprops[1].free = c->leb_size;
	pnode->lprops[1].dirty = 0;

	/*
	 * To calculate the internal node branches, we keep information about
	 * the level below.
	 */
	blnum = lnum; /* LEB number of level below */
	boffs = 0; /* Offset of level below */
	bcnt = cnt; /* Number of nodes in level below */
	bsz = c->pnode_sz; /* Size of nodes in level below */

	/* Add all remaining pnodes */
	for (i = 1; i < cnt; i++) {
		if (len + c->pnode_sz > c->leb_size) {
			alen = ALIGN(len, c->min_io_size);
			set_ltab(c, lnum, c->leb_size - alen, alen - len);
			memset(p, 0xff, alen - len);
R
Richard Weinberger 已提交
704
			err = ubifs_leb_change(c, lnum++, buf, alen);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
			if (err)
				goto out;
			p = buf;
			len = 0;
		}
		ubifs_pack_pnode(c, p, pnode);
		p += c->pnode_sz;
		len += c->pnode_sz;
		/*
		 * pnodes are simply numbered left to right starting at zero,
		 * which means the pnode number can be used easily to traverse
		 * down the tree to the corresponding pnode.
		 */
		pnode->num += 1;
	}

	row = 0;
	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
		row += 1;
	/* Add all nnodes, one level at a time */
	while (1) {
		/* Number of internal nodes (nnodes) at next level */
		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
		for (i = 0; i < cnt; i++) {
			if (len + c->nnode_sz > c->leb_size) {
				alen = ALIGN(len, c->min_io_size);
				set_ltab(c, lnum, c->leb_size - alen,
					    alen - len);
				memset(p, 0xff, alen - len);
R
Richard Weinberger 已提交
734
				err = ubifs_leb_change(c, lnum++, buf, alen);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
				if (err)
					goto out;
				p = buf;
				len = 0;
			}
			/* Only 1 nnode at this level, so it is the root */
			if (cnt == 1) {
				c->lpt_lnum = lnum;
				c->lpt_offs = len;
			}
			/* Set branches to the level below */
			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
				if (bcnt) {
					if (boffs + bsz > c->leb_size) {
						blnum += 1;
						boffs = 0;
					}
					nnode->nbranch[j].lnum = blnum;
					nnode->nbranch[j].offs = boffs;
					boffs += bsz;
					bcnt--;
				} else {
					nnode->nbranch[j].lnum = 0;
					nnode->nbranch[j].offs = 0;
				}
			}
			nnode->num = calc_nnode_num(row, i);
			ubifs_pack_nnode(c, p, nnode);
			p += c->nnode_sz;
			len += c->nnode_sz;
		}
		/* Only 1 nnode at this level, so it is the root */
		if (cnt == 1)
			break;
		/* Update the information about the level below */
		bcnt = cnt;
		bsz = c->nnode_sz;
		row -= 1;
	}

	if (*big_lpt) {
		/* Need to add LPT's save table */
		if (len + c->lsave_sz > c->leb_size) {
			alen = ALIGN(len, c->min_io_size);
			set_ltab(c, lnum, c->leb_size - alen, alen - len);
			memset(p, 0xff, alen - len);
R
Richard Weinberger 已提交
781
			err = ubifs_leb_change(c, lnum++, buf, alen);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
			if (err)
				goto out;
			p = buf;
			len = 0;
		}

		c->lsave_lnum = lnum;
		c->lsave_offs = len;

		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
			lsave[i] = c->main_first + i;
		for (; i < c->lsave_cnt; i++)
			lsave[i] = c->main_first;

		ubifs_pack_lsave(c, p, lsave);
		p += c->lsave_sz;
		len += c->lsave_sz;
	}

	/* Need to add LPT's own LEB properties table */
	if (len + c->ltab_sz > c->leb_size) {
		alen = ALIGN(len, c->min_io_size);
		set_ltab(c, lnum, c->leb_size - alen, alen - len);
		memset(p, 0xff, alen - len);
R
Richard Weinberger 已提交
806
		err = ubifs_leb_change(c, lnum++, buf, alen);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		if (err)
			goto out;
		p = buf;
		len = 0;
	}

	c->ltab_lnum = lnum;
	c->ltab_offs = len;

	/* Update ltab before packing it */
	len += c->ltab_sz;
	alen = ALIGN(len, c->min_io_size);
	set_ltab(c, lnum, c->leb_size - alen, alen - len);

	ubifs_pack_ltab(c, p, ltab);
	p += c->ltab_sz;

	/* Write remaining buffer */
	memset(p, 0xff, alen - len);
R
Richard Weinberger 已提交
826
	err = ubifs_leb_change(c, lnum, buf, alen);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	if (err)
		goto out;

	c->nhead_lnum = lnum;
	c->nhead_offs = ALIGN(len, c->min_io_size);

	dbg_lp("space_bits %d", c->space_bits);
	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
	dbg_lp("pcnt_bits %d", c->pcnt_bits);
	dbg_lp("lnum_bits %d", c->lnum_bits);
	dbg_lp("pnode_sz %d", c->pnode_sz);
	dbg_lp("nnode_sz %d", c->nnode_sz);
	dbg_lp("ltab_sz %d", c->ltab_sz);
	dbg_lp("lsave_sz %d", c->lsave_sz);
	dbg_lp("lsave_cnt %d", c->lsave_cnt);
	dbg_lp("lpt_hght %d", c->lpt_hght);
	dbg_lp("big_lpt %d", c->big_lpt);
	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
	if (c->big_lpt)
		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
out:
	c->ltab = NULL;
	kfree(lsave);
	vfree(ltab);
	vfree(buf);
	kfree(nnode);
	kfree(pnode);
	return err;
}

/**
 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 * @c: UBIFS file-system description object
 * @pnode: pnode
 *
 * When a pnode is loaded into memory, the LEB properties it contains are added,
 * by this function, to the LEB category lists and heaps.
 */
static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
{
	int i;

	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
		int lnum = pnode->lprops[i].lnum;

		if (!lnum)
			return;
		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
	}
}

/**
 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 * @c: UBIFS file-system description object
 * @old_pnode: pnode copied
 * @new_pnode: pnode copy
 *
 * During commit it is sometimes necessary to copy a pnode
 * (see dirty_cow_pnode).  When that happens, references in
 * category lists and heaps must be replaced.  This function does that.
 */
static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
			 struct ubifs_pnode *new_pnode)
{
	int i;

	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		if (!new_pnode->lprops[i].lnum)
			return;
		ubifs_replace_cat(c, &old_pnode->lprops[i],
				  &new_pnode->lprops[i]);
	}
}

/**
 * check_lpt_crc - check LPT node crc is correct.
 * @c: UBIFS file-system description object
 * @buf: buffer containing node
 * @len: length of node
 *
 * This function returns %0 on success and a negative error code on failure.
 */
914
static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
915 916 917 918 919 920 921 922 923
{
	int pos = 0;
	uint8_t *addr = buf;
	uint16_t crc, calc_crc;

	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
			 len - UBIFS_LPT_CRC_BYTES);
	if (crc != calc_crc) {
924 925
		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
			  crc, calc_crc);
926
		dump_stack();
927 928 929 930 931 932 933 934 935 936 937 938 939 940
		return -EINVAL;
	}
	return 0;
}

/**
 * check_lpt_type - check LPT node type is correct.
 * @c: UBIFS file-system description object
 * @addr: address of type bit field is passed and returned updated here
 * @pos: position of type bit field is passed and returned updated here
 * @type: expected type
 *
 * This function returns %0 on success and a negative error code on failure.
 */
941 942
static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
			  int *pos, int type)
943 944 945 946 947
{
	int node_type;

	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
	if (node_type != type) {
948 949
		ubifs_err(c, "invalid type (%d) in LPT node type %d",
			  node_type, type);
950
		dump_stack();
951 952 953 954 955 956 957 958 959 960 961 962 963
		return -EINVAL;
	}
	return 0;
}

/**
 * unpack_pnode - unpack a pnode.
 * @c: UBIFS file-system description object
 * @buf: buffer containing packed pnode to unpack
 * @pnode: pnode structure to fill
 *
 * This function returns %0 on success and a negative error code on failure.
 */
964
static int unpack_pnode(const struct ubifs_info *c, void *buf,
965 966 967 968 969
			struct ubifs_pnode *pnode)
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0, err;

970
	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	if (err)
		return err;
	if (c->big_lpt)
		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		struct ubifs_lprops * const lprops = &pnode->lprops[i];

		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
		lprops->free <<= 3;
		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
		lprops->dirty <<= 3;

		if (ubifs_unpack_bits(&addr, &pos, 1))
			lprops->flags = LPROPS_INDEX;
		else
			lprops->flags = 0;
		lprops->flags |= ubifs_categorize_lprops(c, lprops);
	}
989
	err = check_lpt_crc(c, buf, c->pnode_sz);
990 991 992 993
	return err;
}

/**
994
 * ubifs_unpack_nnode - unpack a nnode.
995 996 997 998 999 1000
 * @c: UBIFS file-system description object
 * @buf: buffer containing packed nnode to unpack
 * @nnode: nnode structure to fill
 *
 * This function returns %0 on success and a negative error code on failure.
 */
1001 1002
int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
		       struct ubifs_nnode *nnode)
1003 1004 1005 1006
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0, err;

1007
	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	if (err)
		return err;
	if (c->big_lpt)
		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		int lnum;

		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
		       c->lpt_first;
		if (lnum == c->lpt_last + 1)
			lnum = 0;
		nnode->nbranch[i].lnum = lnum;
		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
						     c->lpt_offs_bits);
	}
1023
	err = check_lpt_crc(c, buf, c->nnode_sz);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	return err;
}

/**
 * unpack_ltab - unpack the LPT's own lprops table.
 * @c: UBIFS file-system description object
 * @buf: buffer from which to unpack
 *
 * This function returns %0 on success and a negative error code on failure.
 */
1034
static int unpack_ltab(const struct ubifs_info *c, void *buf)
1035 1036 1037 1038
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0, err;

1039
	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (err)
		return err;
	for (i = 0; i < c->lpt_lebs; i++) {
		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);

		if (free < 0 || free > c->leb_size || dirty < 0 ||
		    dirty > c->leb_size || free + dirty > c->leb_size)
			return -EINVAL;

		c->ltab[i].free = free;
		c->ltab[i].dirty = dirty;
		c->ltab[i].tgc = 0;
		c->ltab[i].cmt = 0;
	}
1055
	err = check_lpt_crc(c, buf, c->ltab_sz);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	return err;
}

/**
 * unpack_lsave - unpack the LPT's save table.
 * @c: UBIFS file-system description object
 * @buf: buffer from which to unpack
 *
 * This function returns %0 on success and a negative error code on failure.
 */
1066
static int unpack_lsave(const struct ubifs_info *c, void *buf)
1067 1068 1069 1070
{
	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
	int i, pos = 0, err;

1071
	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (err)
		return err;
	for (i = 0; i < c->lsave_cnt; i++) {
		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);

		if (lnum < c->main_first || lnum >= c->leb_cnt)
			return -EINVAL;
		c->lsave[i] = lnum;
	}
1081
	err = check_lpt_crc(c, buf, c->lsave_sz);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	return err;
}

/**
 * validate_nnode - validate a nnode.
 * @c: UBIFS file-system description object
 * @nnode: nnode to validate
 * @parent: parent nnode (or NULL for the root nnode)
 * @iip: index in parent
 *
 * This function returns %0 on success and a negative error code on failure.
 */
1094
static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
			  struct ubifs_nnode *parent, int iip)
{
	int i, lvl, max_offs;

	if (c->big_lpt) {
		int num = calc_nnode_num_from_parent(c, parent, iip);

		if (nnode->num != num)
			return -EINVAL;
	}
	lvl = parent ? parent->level - 1 : c->lpt_hght;
	if (lvl < 1)
		return -EINVAL;
	if (lvl == 1)
		max_offs = c->leb_size - c->pnode_sz;
	else
		max_offs = c->leb_size - c->nnode_sz;
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		int lnum = nnode->nbranch[i].lnum;
		int offs = nnode->nbranch[i].offs;

		if (lnum == 0) {
			if (offs != 0)
				return -EINVAL;
			continue;
		}
		if (lnum < c->lpt_first || lnum > c->lpt_last)
			return -EINVAL;
		if (offs < 0 || offs > max_offs)
			return -EINVAL;
	}
	return 0;
}

/**
 * validate_pnode - validate a pnode.
 * @c: UBIFS file-system description object
 * @pnode: pnode to validate
 * @parent: parent nnode
 * @iip: index in parent
 *
 * This function returns %0 on success and a negative error code on failure.
 */
1138
static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			  struct ubifs_nnode *parent, int iip)
{
	int i;

	if (c->big_lpt) {
		int num = calc_pnode_num_from_parent(c, parent, iip);

		if (pnode->num != num)
			return -EINVAL;
	}
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		int free = pnode->lprops[i].free;
		int dirty = pnode->lprops[i].dirty;

		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
		    (free & 7))
			return -EINVAL;
		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
			return -EINVAL;
		if (dirty + free > c->leb_size)
			return -EINVAL;
	}
	return 0;
}

/**
 * set_pnode_lnum - set LEB numbers on a pnode.
 * @c: UBIFS file-system description object
 * @pnode: pnode to update
 *
 * This function calculates the LEB numbers for the LEB properties it contains
 * based on the pnode number.
 */
1172 1173
static void set_pnode_lnum(const struct ubifs_info *c,
			   struct ubifs_pnode *pnode)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
{
	int i, lnum;

	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		if (lnum >= c->leb_cnt)
			return;
		pnode->lprops[i].lnum = lnum++;
	}
}

/**
 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
 * @c: UBIFS file-system description object
 * @parent: parent nnode (or NULL for the root)
 * @iip: index in parent
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch = NULL;
	struct ubifs_nnode *nnode = NULL;
	void *buf = c->lpt_nod_buf;
	int err, lnum, offs;

	if (parent) {
		branch = &parent->nbranch[iip];
		lnum = branch->lnum;
		offs = branch->offs;
	} else {
		lnum = c->lpt_lnum;
		offs = c->lpt_offs;
	}
	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
	if (!nnode) {
		err = -ENOMEM;
		goto out;
	}
	if (lnum == 0) {
		/*
		 * This nnode was not written which just means that the LEB
		 * properties in the subtree below it describe empty LEBs. We
		 * make the nnode as though we had read it, which in fact means
		 * doing almost nothing.
		 */
		if (c->big_lpt)
			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
	} else {
1223
		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1224 1225
		if (err)
			goto out;
1226
		err = ubifs_unpack_nnode(c, buf, nnode);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (err)
			goto out;
	}
	err = validate_nnode(c, nnode, parent, iip);
	if (err)
		goto out;
	if (!c->big_lpt)
		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
	if (parent) {
		branch->nnode = nnode;
		nnode->level = parent->level - 1;
	} else {
		c->nroot = nnode;
		nnode->level = c->lpt_hght;
	}
	nnode->parent = parent;
	nnode->iip = iip;
	return 0;

out:
1247
	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1248
	dump_stack();
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	kfree(nnode);
	return err;
}

/**
 * read_pnode - read a pnode from flash and link it to the tree in memory.
 * @c: UBIFS file-system description object
 * @parent: parent nnode
 * @iip: index in parent
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch;
	struct ubifs_pnode *pnode = NULL;
	void *buf = c->lpt_nod_buf;
	int err, lnum, offs;

	branch = &parent->nbranch[iip];
	lnum = branch->lnum;
	offs = branch->offs;
	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1272 1273 1274
	if (!pnode)
		return -ENOMEM;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (lnum == 0) {
		/*
		 * This pnode was not written which just means that the LEB
		 * properties in it describe empty LEBs. We make the pnode as
		 * though we had read it.
		 */
		int i;

		if (c->big_lpt)
			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
			struct ubifs_lprops * const lprops = &pnode->lprops[i];

			lprops->free = c->leb_size;
			lprops->flags = ubifs_categorize_lprops(c, lprops);
		}
	} else {
1292
		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		if (err)
			goto out;
		err = unpack_pnode(c, buf, pnode);
		if (err)
			goto out;
	}
	err = validate_pnode(c, pnode, parent, iip);
	if (err)
		goto out;
	if (!c->big_lpt)
		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
	branch->pnode = pnode;
	pnode->parent = parent;
	pnode->iip = iip;
	set_pnode_lnum(c, pnode);
	c->pnodes_have += 1;
	return 0;

out:
1312
	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1313
	ubifs_dump_pnode(c, pnode, parent, iip);
1314
	dump_stack();
1315
	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	kfree(pnode);
	return err;
}

/**
 * read_ltab - read LPT's own lprops table.
 * @c: UBIFS file-system description object
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int read_ltab(struct ubifs_info *c)
{
	int err;
	void *buf;

	buf = vmalloc(c->ltab_sz);
	if (!buf)
		return -ENOMEM;
1334
	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	if (err)
		goto out;
	err = unpack_ltab(c, buf);
out:
	vfree(buf);
	return err;
}

/**
 * read_lsave - read LPT's save table.
 * @c: UBIFS file-system description object
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int read_lsave(struct ubifs_info *c)
{
	int err, i;
	void *buf;

	buf = vmalloc(c->lsave_sz);
	if (!buf)
		return -ENOMEM;
1357 1358
	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
			     c->lsave_sz, 1);
1359 1360 1361 1362 1363 1364 1365
	if (err)
		goto out;
	err = unpack_lsave(c, buf);
	if (err)
		goto out;
	for (i = 0; i < c->lsave_cnt; i++) {
		int lnum = c->lsave[i];
1366
		struct ubifs_lprops *lprops;
1367 1368 1369 1370 1371 1372 1373

		/*
		 * Due to automatic resizing, the values in the lsave table
		 * could be beyond the volume size - just ignore them.
		 */
		if (lnum >= c->leb_cnt)
			continue;
1374 1375 1376 1377 1378
		lprops = ubifs_lpt_lookup(c, lnum);
		if (IS_ERR(lprops)) {
			err = PTR_ERR(lprops);
			goto out;
		}
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	}
out:
	vfree(buf);
	return err;
}

/**
 * ubifs_get_nnode - get a nnode.
 * @c: UBIFS file-system description object
 * @parent: parent nnode (or NULL for the root)
 * @iip: index in parent
 *
 * This function returns a pointer to the nnode on success or a negative error
 * code on failure.
 */
struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
				    struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch;
	struct ubifs_nnode *nnode;
	int err;

	branch = &parent->nbranch[iip];
	nnode = branch->nnode;
	if (nnode)
		return nnode;
	err = ubifs_read_nnode(c, parent, iip);
	if (err)
		return ERR_PTR(err);
	return branch->nnode;
}

/**
 * ubifs_get_pnode - get a pnode.
 * @c: UBIFS file-system description object
 * @parent: parent nnode
 * @iip: index in parent
 *
 * This function returns a pointer to the pnode on success or a negative error
 * code on failure.
 */
struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
				    struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch;
	struct ubifs_pnode *pnode;
	int err;

	branch = &parent->nbranch[iip];
	pnode = branch->pnode;
	if (pnode)
		return pnode;
	err = read_pnode(c, parent, iip);
	if (err)
		return ERR_PTR(err);
	update_cats(c, branch->pnode);
	return branch->pnode;
}

/**
 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
 * @c: UBIFS file-system description object
 * @lnum: LEB number to lookup
 *
 * This function returns a pointer to the LEB properties on success or a
 * negative error code on failure.
 */
struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
{
	int err, i, h, iip, shft;
	struct ubifs_nnode *nnode;
	struct ubifs_pnode *pnode;

	if (!c->nroot) {
		err = ubifs_read_nnode(c, NULL, 0);
		if (err)
			return ERR_PTR(err);
	}
	nnode = c->nroot;
	i = lnum - c->main_first;
	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
	for (h = 1; h < c->lpt_hght; h++) {
		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
		shft -= UBIFS_LPT_FANOUT_SHIFT;
		nnode = ubifs_get_nnode(c, nnode, iip);
		if (IS_ERR(nnode))
J
Julia Lawall 已提交
1465
			return ERR_CAST(nnode);
1466 1467 1468 1469
	}
	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
	pnode = ubifs_get_pnode(c, nnode, iip);
	if (IS_ERR(pnode))
J
Julia Lawall 已提交
1470
		return ERR_CAST(pnode);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	iip = (i & (UBIFS_LPT_FANOUT - 1));
	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
	       pnode->lprops[iip].flags);
	return &pnode->lprops[iip];
}

/**
 * dirty_cow_nnode - ensure a nnode is not being committed.
 * @c: UBIFS file-system description object
 * @nnode: nnode to check
 *
 * Returns dirtied nnode on success or negative error code on failure.
 */
static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
					   struct ubifs_nnode *nnode)
{
	struct ubifs_nnode *n;
	int i;

	if (!test_bit(COW_CNODE, &nnode->flags)) {
		/* nnode is not being committed */
		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
			c->dirty_nn_cnt += 1;
			ubifs_add_nnode_dirt(c, nnode);
		}
		return nnode;
	}

	/* nnode is being committed, so copy it */
	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
	if (unlikely(!n))
		return ERR_PTR(-ENOMEM);

	memcpy(n, nnode, sizeof(struct ubifs_nnode));
	n->cnext = NULL;
	__set_bit(DIRTY_CNODE, &n->flags);
	__clear_bit(COW_CNODE, &n->flags);

	/* The children now have new parent */
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		struct ubifs_nbranch *branch = &n->nbranch[i];

		if (branch->cnode)
			branch->cnode->parent = n;
	}

	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
	__set_bit(OBSOLETE_CNODE, &nnode->flags);

	c->dirty_nn_cnt += 1;
	ubifs_add_nnode_dirt(c, nnode);
	if (nnode->parent)
		nnode->parent->nbranch[n->iip].nnode = n;
	else
		c->nroot = n;
	return n;
}

/**
 * dirty_cow_pnode - ensure a pnode is not being committed.
 * @c: UBIFS file-system description object
 * @pnode: pnode to check
 *
 * Returns dirtied pnode on success or negative error code on failure.
 */
static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
					   struct ubifs_pnode *pnode)
{
	struct ubifs_pnode *p;

	if (!test_bit(COW_CNODE, &pnode->flags)) {
		/* pnode is not being committed */
		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
			c->dirty_pn_cnt += 1;
			add_pnode_dirt(c, pnode);
		}
		return pnode;
	}

	/* pnode is being committed, so copy it */
	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
	if (unlikely(!p))
		return ERR_PTR(-ENOMEM);

	memcpy(p, pnode, sizeof(struct ubifs_pnode));
	p->cnext = NULL;
	__set_bit(DIRTY_CNODE, &p->flags);
	__clear_bit(COW_CNODE, &p->flags);
	replace_cats(c, pnode, p);

	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
	__set_bit(OBSOLETE_CNODE, &pnode->flags);

	c->dirty_pn_cnt += 1;
	add_pnode_dirt(c, pnode);
	pnode->parent->nbranch[p->iip].pnode = p;
	return p;
}

/**
 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
 * @c: UBIFS file-system description object
 * @lnum: LEB number to lookup
 *
 * This function returns a pointer to the LEB properties on success or a
 * negative error code on failure.
 */
struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
{
	int err, i, h, iip, shft;
	struct ubifs_nnode *nnode;
	struct ubifs_pnode *pnode;

	if (!c->nroot) {
		err = ubifs_read_nnode(c, NULL, 0);
		if (err)
			return ERR_PTR(err);
	}
	nnode = c->nroot;
	nnode = dirty_cow_nnode(c, nnode);
	if (IS_ERR(nnode))
J
Julia Lawall 已提交
1593
		return ERR_CAST(nnode);
1594 1595 1596 1597 1598 1599 1600
	i = lnum - c->main_first;
	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
	for (h = 1; h < c->lpt_hght; h++) {
		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
		shft -= UBIFS_LPT_FANOUT_SHIFT;
		nnode = ubifs_get_nnode(c, nnode, iip);
		if (IS_ERR(nnode))
J
Julia Lawall 已提交
1601
			return ERR_CAST(nnode);
1602 1603
		nnode = dirty_cow_nnode(c, nnode);
		if (IS_ERR(nnode))
J
Julia Lawall 已提交
1604
			return ERR_CAST(nnode);
1605 1606 1607 1608
	}
	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
	pnode = ubifs_get_pnode(c, nnode, iip);
	if (IS_ERR(pnode))
J
Julia Lawall 已提交
1609
		return ERR_CAST(pnode);
1610 1611
	pnode = dirty_cow_pnode(c, pnode);
	if (IS_ERR(pnode))
J
Julia Lawall 已提交
1612
		return ERR_CAST(pnode);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	iip = (i & (UBIFS_LPT_FANOUT - 1));
	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
	       pnode->lprops[iip].flags);
	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
	return &pnode->lprops[iip];
}

/**
 * lpt_init_rd - initialize the LPT for reading.
 * @c: UBIFS file-system description object
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int lpt_init_rd(struct ubifs_info *c)
{
	int err, i;

	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
	if (!c->ltab)
		return -ENOMEM;

	i = max_t(int, c->nnode_sz, c->pnode_sz);
	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
	if (!c->lpt_nod_buf)
		return -ENOMEM;

	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
					     GFP_KERNEL);
		if (!c->lpt_heap[i].arr)
			return -ENOMEM;
		c->lpt_heap[i].cnt = 0;
		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
	}

	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
	if (!c->dirty_idx.arr)
		return -ENOMEM;
	c->dirty_idx.cnt = 0;
	c->dirty_idx.max_cnt = LPT_HEAP_SZ;

	err = read_ltab(c);
	if (err)
		return err;

	dbg_lp("space_bits %d", c->space_bits);
	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
	dbg_lp("pcnt_bits %d", c->pcnt_bits);
	dbg_lp("lnum_bits %d", c->lnum_bits);
	dbg_lp("pnode_sz %d", c->pnode_sz);
	dbg_lp("nnode_sz %d", c->nnode_sz);
	dbg_lp("ltab_sz %d", c->ltab_sz);
	dbg_lp("lsave_sz %d", c->lsave_sz);
	dbg_lp("lsave_cnt %d", c->lsave_cnt);
	dbg_lp("lpt_hght %d", c->lpt_hght);
	dbg_lp("big_lpt %d", c->big_lpt);
	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
	if (c->big_lpt)
		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);

	return 0;
}

/**
 * lpt_init_wr - initialize the LPT for writing.
 * @c: UBIFS file-system description object
 *
 * 'lpt_init_rd()' must have been called already.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int lpt_init_wr(struct ubifs_info *c)
{
	int err, i;

	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
	if (!c->ltab_cmt)
		return -ENOMEM;

	c->lpt_buf = vmalloc(c->leb_size);
	if (!c->lpt_buf)
		return -ENOMEM;

	if (c->big_lpt) {
		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
		if (!c->lsave)
			return -ENOMEM;
		err = read_lsave(c);
		if (err)
			return err;
	}

	for (i = 0; i < c->lpt_lebs; i++)
		if (c->ltab[i].free == c->leb_size) {
			err = ubifs_leb_unmap(c, i + c->lpt_first);
			if (err)
				return err;
		}

	return 0;
}

/**
 * ubifs_lpt_init - initialize the LPT.
 * @c: UBIFS file-system description object
 * @rd: whether to initialize lpt for reading
 * @wr: whether to initialize lpt for writing
 *
 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
 * true.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
{
	int err;

	if (rd) {
		err = lpt_init_rd(c);
		if (err)
1739
			goto out_err;
1740 1741 1742 1743 1744
	}

	if (wr) {
		err = lpt_init_wr(c);
		if (err)
1745
			goto out_err;
1746 1747 1748
	}

	return 0;
1749 1750

out_err:
1751 1752 1753 1754
	if (wr)
		ubifs_lpt_free(c, 1);
	if (rd)
		ubifs_lpt_free(c, 0);
1755
	return err;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
}

/**
 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
 * @nnode: where to keep a nnode
 * @pnode: where to keep a pnode
 * @cnode: where to keep a cnode
 * @in_tree: is the node in the tree in memory
 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
 * the tree
 * @ptr.pnode: ditto for pnode
 * @ptr.cnode: ditto for cnode
 */
struct lpt_scan_node {
	union {
		struct ubifs_nnode nnode;
		struct ubifs_pnode pnode;
		struct ubifs_cnode cnode;
	};
	int in_tree;
	union {
		struct ubifs_nnode *nnode;
		struct ubifs_pnode *pnode;
		struct ubifs_cnode *cnode;
	} ptr;
};

/**
 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
 * @c: the UBIFS file-system description object
 * @path: where to put the nnode
 * @parent: parent of the nnode
 * @iip: index in parent of the nnode
 *
 * This function returns a pointer to the nnode on success or a negative error
 * code on failure.
 */
static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
					  struct lpt_scan_node *path,
					  struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch;
	struct ubifs_nnode *nnode;
	void *buf = c->lpt_nod_buf;
	int err;

	branch = &parent->nbranch[iip];
	nnode = branch->nnode;
	if (nnode) {
		path->in_tree = 1;
		path->ptr.nnode = nnode;
		return nnode;
	}
	nnode = &path->nnode;
	path->in_tree = 0;
	path->ptr.nnode = nnode;
	memset(nnode, 0, sizeof(struct ubifs_nnode));
	if (branch->lnum == 0) {
		/*
		 * This nnode was not written which just means that the LEB
		 * properties in the subtree below it describe empty LEBs. We
		 * make the nnode as though we had read it, which in fact means
		 * doing almost nothing.
		 */
		if (c->big_lpt)
			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
	} else {
1823 1824
		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
				     c->nnode_sz, 1);
1825 1826
		if (err)
			return ERR_PTR(err);
1827
		err = ubifs_unpack_nnode(c, buf, nnode);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		if (err)
			return ERR_PTR(err);
	}
	err = validate_nnode(c, nnode, parent, iip);
	if (err)
		return ERR_PTR(err);
	if (!c->big_lpt)
		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
	nnode->level = parent->level - 1;
	nnode->parent = parent;
	nnode->iip = iip;
	return nnode;
}

/**
 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
 * @c: the UBIFS file-system description object
 * @path: where to put the pnode
 * @parent: parent of the pnode
 * @iip: index in parent of the pnode
 *
 * This function returns a pointer to the pnode on success or a negative error
 * code on failure.
 */
static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
					  struct lpt_scan_node *path,
					  struct ubifs_nnode *parent, int iip)
{
	struct ubifs_nbranch *branch;
	struct ubifs_pnode *pnode;
	void *buf = c->lpt_nod_buf;
	int err;

	branch = &parent->nbranch[iip];
	pnode = branch->pnode;
	if (pnode) {
		path->in_tree = 1;
		path->ptr.pnode = pnode;
		return pnode;
	}
	pnode = &path->pnode;
	path->in_tree = 0;
	path->ptr.pnode = pnode;
	memset(pnode, 0, sizeof(struct ubifs_pnode));
	if (branch->lnum == 0) {
		/*
		 * This pnode was not written which just means that the LEB
		 * properties in it describe empty LEBs. We make the pnode as
		 * though we had read it.
		 */
		int i;

		if (c->big_lpt)
			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
			struct ubifs_lprops * const lprops = &pnode->lprops[i];

			lprops->free = c->leb_size;
			lprops->flags = ubifs_categorize_lprops(c, lprops);
		}
	} else {
		ubifs_assert(branch->lnum >= c->lpt_first &&
			     branch->lnum <= c->lpt_last);
		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1892 1893
		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
				     c->pnode_sz, 1);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		if (err)
			return ERR_PTR(err);
		err = unpack_pnode(c, buf, pnode);
		if (err)
			return ERR_PTR(err);
	}
	err = validate_pnode(c, pnode, parent, iip);
	if (err)
		return ERR_PTR(err);
	if (!c->big_lpt)
		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
	pnode->parent = parent;
	pnode->iip = iip;
	set_pnode_lnum(c, pnode);
	return pnode;
}

/**
 * ubifs_lpt_scan_nolock - scan the LPT.
 * @c: the UBIFS file-system description object
 * @start_lnum: LEB number from which to start scanning
 * @end_lnum: LEB number at which to stop scanning
 * @scan_cb: callback function called for each lprops
 * @data: data to be passed to the callback function
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
			  ubifs_lpt_scan_callback scan_cb, void *data)
{
	int err = 0, i, h, iip, shft;
	struct ubifs_nnode *nnode;
	struct ubifs_pnode *pnode;
	struct lpt_scan_node *path;

	if (start_lnum == -1) {
		start_lnum = end_lnum + 1;
		if (start_lnum >= c->leb_cnt)
			start_lnum = c->main_first;
	}

	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);

	if (!c->nroot) {
		err = ubifs_read_nnode(c, NULL, 0);
		if (err)
			return err;
	}

	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
		       GFP_NOFS);
	if (!path)
		return -ENOMEM;

	path[0].ptr.nnode = c->nroot;
	path[0].in_tree = 1;
again:
	/* Descend to the pnode containing start_lnum */
	nnode = c->nroot;
	i = start_lnum - c->main_first;
	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
	for (h = 1; h < c->lpt_hght; h++) {
		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
		shft -= UBIFS_LPT_FANOUT_SHIFT;
		nnode = scan_get_nnode(c, path + h, nnode, iip);
		if (IS_ERR(nnode)) {
			err = PTR_ERR(nnode);
			goto out;
		}
	}
	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
	pnode = scan_get_pnode(c, path + h, nnode, iip);
	if (IS_ERR(pnode)) {
		err = PTR_ERR(pnode);
		goto out;
	}
	iip = (i & (UBIFS_LPT_FANOUT - 1));

	/* Loop for each lprops */
	while (1) {
		struct ubifs_lprops *lprops = &pnode->lprops[iip];
		int ret, lnum = lprops->lnum;

		ret = scan_cb(c, lprops, path[h].in_tree, data);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret & LPT_SCAN_ADD) {
			/* Add all the nodes in path to the tree in memory */
			for (h = 1; h < c->lpt_hght; h++) {
				const size_t sz = sizeof(struct ubifs_nnode);
				struct ubifs_nnode *parent;

				if (path[h].in_tree)
					continue;
1991
				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
				if (!nnode) {
					err = -ENOMEM;
					goto out;
				}
				parent = nnode->parent;
				parent->nbranch[nnode->iip].nnode = nnode;
				path[h].ptr.nnode = nnode;
				path[h].in_tree = 1;
				path[h + 1].cnode.parent = nnode;
			}
			if (path[h].in_tree)
				ubifs_ensure_cat(c, lprops);
			else {
				const size_t sz = sizeof(struct ubifs_pnode);
				struct ubifs_nnode *parent;

2008
				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
				if (!pnode) {
					err = -ENOMEM;
					goto out;
				}
				parent = pnode->parent;
				parent->nbranch[pnode->iip].pnode = pnode;
				path[h].ptr.pnode = pnode;
				path[h].in_tree = 1;
				update_cats(c, pnode);
				c->pnodes_have += 1;
			}
			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
						  c->nroot, 0, 0);
			if (err)
				goto out;
			err = dbg_check_cats(c);
			if (err)
				goto out;
		}
		if (ret & LPT_SCAN_STOP) {
			err = 0;
			break;
		}
		/* Get the next lprops */
		if (lnum == end_lnum) {
			/*
			 * We got to the end without finding what we were
			 * looking for
			 */
			err = -ENOSPC;
			goto out;
		}
		if (lnum + 1 >= c->leb_cnt) {
			/* Wrap-around to the beginning */
			start_lnum = c->main_first;
			goto again;
		}
		if (iip + 1 < UBIFS_LPT_FANOUT) {
			/* Next lprops is in the same pnode */
			iip += 1;
			continue;
		}
		/* We need to get the next pnode. Go up until we can go right */
		iip = pnode->iip;
		while (1) {
			h -= 1;
			ubifs_assert(h >= 0);
			nnode = path[h].ptr.nnode;
			if (iip + 1 < UBIFS_LPT_FANOUT)
				break;
			iip = nnode->iip;
		}
		/* Go right */
		iip += 1;
		/* Descend to the pnode */
		h += 1;
		for (; h < c->lpt_hght; h++) {
			nnode = scan_get_nnode(c, path + h, nnode, iip);
			if (IS_ERR(nnode)) {
				err = PTR_ERR(nnode);
				goto out;
			}
			iip = 0;
		}
		pnode = scan_get_pnode(c, path + h, nnode, iip);
		if (IS_ERR(pnode)) {
			err = PTR_ERR(pnode);
			goto out;
		}
		iip = 0;
	}
out:
	kfree(path);
	return err;
}

/**
 * dbg_chk_pnode - check a pnode.
 * @c: the UBIFS file-system description object
 * @pnode: pnode to check
 * @col: pnode column
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
			 int col)
{
	int i;

	if (pnode->num != col) {
2099
		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
A
Artem Bityutskiy 已提交
2100
			  pnode->num, col, pnode->parent->num, pnode->iip);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		return -EINVAL;
	}
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
			   c->main_first;
		int found, cat = lprops->flags & LPROPS_CAT_MASK;
		struct ubifs_lpt_heap *heap;
		struct list_head *list = NULL;

		if (lnum >= c->leb_cnt)
			continue;
		if (lprops->lnum != lnum) {
2114
			ubifs_err(c, "bad LEB number %d expected %d",
A
Artem Bityutskiy 已提交
2115
				  lprops->lnum, lnum);
2116 2117 2118 2119
			return -EINVAL;
		}
		if (lprops->flags & LPROPS_TAKEN) {
			if (cat != LPROPS_UNCAT) {
2120
				ubifs_err(c, "LEB %d taken but not uncat %d",
A
Artem Bityutskiy 已提交
2121
					  lprops->lnum, cat);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
				return -EINVAL;
			}
			continue;
		}
		if (lprops->flags & LPROPS_INDEX) {
			switch (cat) {
			case LPROPS_UNCAT:
			case LPROPS_DIRTY_IDX:
			case LPROPS_FRDI_IDX:
				break;
			default:
2133
				ubifs_err(c, "LEB %d index but cat %d",
A
Artem Bityutskiy 已提交
2134
					  lprops->lnum, cat);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
				return -EINVAL;
			}
		} else {
			switch (cat) {
			case LPROPS_UNCAT:
			case LPROPS_DIRTY:
			case LPROPS_FREE:
			case LPROPS_EMPTY:
			case LPROPS_FREEABLE:
				break;
			default:
2146
				ubifs_err(c, "LEB %d not index but cat %d",
A
Artem Bityutskiy 已提交
2147
					  lprops->lnum, cat);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
				return -EINVAL;
			}
		}
		switch (cat) {
		case LPROPS_UNCAT:
			list = &c->uncat_list;
			break;
		case LPROPS_EMPTY:
			list = &c->empty_list;
			break;
		case LPROPS_FREEABLE:
			list = &c->freeable_list;
			break;
		case LPROPS_FRDI_IDX:
			list = &c->frdi_idx_list;
			break;
		}
		found = 0;
		switch (cat) {
		case LPROPS_DIRTY:
		case LPROPS_DIRTY_IDX:
		case LPROPS_FREE:
			heap = &c->lpt_heap[cat - 1];
			if (lprops->hpos < heap->cnt &&
			    heap->arr[lprops->hpos] == lprops)
				found = 1;
			break;
		case LPROPS_UNCAT:
		case LPROPS_EMPTY:
		case LPROPS_FREEABLE:
		case LPROPS_FRDI_IDX:
			list_for_each_entry(lp, list, list)
				if (lprops == lp) {
					found = 1;
					break;
				}
			break;
		}
		if (!found) {
2187
			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
A
Artem Bityutskiy 已提交
2188
				  lprops->lnum, cat);
2189 2190 2191 2192 2193
			return -EINVAL;
		}
		switch (cat) {
		case LPROPS_EMPTY:
			if (lprops->free != c->leb_size) {
2194
				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
A
Artem Bityutskiy 已提交
2195 2196
					  lprops->lnum, cat, lprops->free,
					  lprops->dirty);
2197 2198
				return -EINVAL;
			}
2199
			break;
2200 2201 2202
		case LPROPS_FREEABLE:
		case LPROPS_FRDI_IDX:
			if (lprops->free + lprops->dirty != c->leb_size) {
2203
				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
A
Artem Bityutskiy 已提交
2204 2205
					  lprops->lnum, cat, lprops->free,
					  lprops->dirty);
2206 2207
				return -EINVAL;
			}
2208
			break;
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		}
	}
	return 0;
}

/**
 * dbg_check_lpt_nodes - check nnodes and pnodes.
 * @c: the UBIFS file-system description object
 * @cnode: next cnode (nnode or pnode) to check
 * @row: row of cnode (root is zero)
 * @col: column of cnode (leftmost is zero)
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
			int row, int col)
{
	struct ubifs_nnode *nnode, *nn;
	struct ubifs_cnode *cn;
	int num, iip = 0, err;

2230
	if (!dbg_is_chk_lprops(c))
2231 2232 2233 2234 2235 2236 2237 2238 2239
		return 0;

	while (cnode) {
		ubifs_assert(row >= 0);
		nnode = cnode->parent;
		if (cnode->level) {
			/* cnode is a nnode */
			num = calc_nnode_num(row, col);
			if (cnode->num != num) {
2240
				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
A
Artem Bityutskiy 已提交
2241 2242
					  cnode->num, num,
					  (nnode ? nnode->num : 0), cnode->iip);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
				return -EINVAL;
			}
			nn = (struct ubifs_nnode *)cnode;
			while (iip < UBIFS_LPT_FANOUT) {
				cn = nn->nbranch[iip].cnode;
				if (cn) {
					/* Go down */
					row += 1;
					col <<= UBIFS_LPT_FANOUT_SHIFT;
					col += iip;
					iip = 0;
					cnode = cn;
					break;
				}
				/* Go right */
				iip += 1;
			}
			if (iip < UBIFS_LPT_FANOUT)
				continue;
		} else {
			struct ubifs_pnode *pnode;

			/* cnode is a pnode */
			pnode = (struct ubifs_pnode *)cnode;
			err = dbg_chk_pnode(c, pnode, col);
			if (err)
				return err;
		}
		/* Go up and to the right */
		row -= 1;
		col >>= UBIFS_LPT_FANOUT_SHIFT;
		iip = cnode->iip + 1;
		cnode = (struct ubifs_cnode *)nnode;
	}
	return 0;
}