fw-topology.c 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-topology.c - Incremental bus scan, based on bus topology
 *
 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include "fw-transaction.h"
#include "fw-topology.h"

#define self_id_phy_id(q)		(((q) >> 24) & 0x3f)
#define self_id_extended(q)		(((q) >> 23) & 0x01)
#define self_id_link_on(q)		(((q) >> 22) & 0x01)
#define self_id_gap_count(q)		(((q) >> 16) & 0x3f)
#define self_id_phy_speed(q)		(((q) >> 14) & 0x03)
#define self_id_contender(q)		(((q) >> 11) & 0x01)
#define self_id_phy_initiator(q)	(((q) >>  1) & 0x01)
#define self_id_more_packets(q)		(((q) >>  0) & 0x01)

#define self_id_ext_sequence(q)		(((q) >> 20) & 0x07)

static u32 *count_ports(u32 *sid, int *total_port_count, int *child_port_count)
{
	u32 q;
	int port_type, shift, seq;

	*total_port_count = 0;
	*child_port_count = 0;

	shift = 6;
	q = *sid;
	seq = 0;

	while (1) {
		port_type = (q >> shift) & 0x03;
		switch (port_type) {
		case SELFID_PORT_CHILD:
			(*child_port_count)++;
		case SELFID_PORT_PARENT:
		case SELFID_PORT_NCONN:
			(*total_port_count)++;
		case SELFID_PORT_NONE:
			break;
		}

		shift -= 2;
		if (shift == 0) {
			if (!self_id_more_packets(q))
				return sid + 1;

			shift = 16;
			sid++;
			q = *sid;

			/* Check that the extra packets actually are
			 * extended self ID packets and that the
			 * sequence numbers in the extended self ID
			 * packets increase as expected. */

			if (!self_id_extended(q) ||
			    seq != self_id_ext_sequence(q))
				return NULL;

			seq++;
		}
	}
}

static int get_port_type(u32 *sid, int port_index)
{
	int index, shift;

	index = (port_index + 5) / 8;
	shift = 16 - ((port_index + 5) & 7) * 2;
	return (sid[index] >> shift) & 0x03;
}

A
Adrian Bunk 已提交
95
static struct fw_node *fw_node_create(u32 sid, int port_count, int color)
96 97 98 99 100 101 102 103 104
{
	struct fw_node *node;

	node = kzalloc(sizeof *node + port_count * sizeof node->ports[0],
		       GFP_ATOMIC);
	if (node == NULL)
		return NULL;

	node->color = color;
105
	node->node_id = LOCAL_BUS | self_id_phy_id(sid);
106 107 108 109 110 111 112 113 114 115
	node->link_on = self_id_link_on(sid);
	node->phy_speed = self_id_phy_speed(sid);
	node->port_count = port_count;

	atomic_set(&node->ref_count, 1);
	INIT_LIST_HEAD(&node->link);

	return node;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* Compute the maximum hop count for this node and it's children.  The
 * maximum hop count is the maximum number of connections between any
 * two nodes in the subtree rooted at this node.  We need this for
 * setting the gap count.  As we build the tree bottom up in
 * build_tree() below, this is fairly easy to do: for each node we
 * maintain the max hop count and the max depth, ie the number of hops
 * to the furthest leaf.  Computing the max hop count breaks down into
 * two cases: either the path goes through this node, in which case
 * the hop count is the sum of the two biggest child depths plus 2.
 * Or it could be the case that the max hop path is entirely
 * containted in a child tree, in which case the max hop count is just
 * the max hop count of this child.
 */
static void update_hop_count(struct fw_node *node)
{
	int depths[2] = { -1, -1 };
	int max_child_hops = 0;
	int i;

	for (i = 0; i < node->port_count; i++) {
		if (node->ports[i].node == NULL)
			continue;

		if (node->ports[i].node->max_hops > max_child_hops)
			max_child_hops = node->ports[i].node->max_hops;

		if (node->ports[i].node->max_depth > depths[0]) {
			depths[1] = depths[0];
			depths[0] = node->ports[i].node->max_depth;
		} else if (node->ports[i].node->max_depth > depths[1])
			depths[1] = node->ports[i].node->max_depth;
	}

	node->max_depth = depths[0] + 1;
	node->max_hops = max(max_child_hops, depths[0] + depths[1] + 2);
}


154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/**
 * build_tree - Build the tree representation of the topology
 * @self_ids: array of self IDs to create the tree from
 * @self_id_count: the length of the self_ids array
 * @local_id: the node ID of the local node
 *
 * This function builds the tree representation of the topology given
 * by the self IDs from the latest bus reset.  During the construction
 * of the tree, the function checks that the self IDs are valid and
 * internally consistent.  On succcess this funtions returns the
 * fw_node corresponding to the local card otherwise NULL.
 */
static struct fw_node *build_tree(struct fw_card *card)
{
	struct fw_node *node, *child, *local_node;
	struct list_head stack, *h;
	u32 *sid, *next_sid, *end, q;
	int i, port_count, child_port_count, phy_id, parent_count, stack_depth;
172
	int gap_count, topology_type;
173 174 175 176 177 178 179 180 181

	local_node = NULL;
	node = NULL;
	INIT_LIST_HEAD(&stack);
	stack_depth = 0;
	sid = card->self_ids;
	end = sid + card->self_id_count;
	phy_id = 0;
	card->irm_node = NULL;
182 183
	gap_count = self_id_gap_count(*sid);
	topology_type = 0;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	while (sid < end) {
		next_sid = count_ports(sid, &port_count, &child_port_count);

		if (next_sid == NULL) {
			fw_error("Inconsistent extended self IDs.\n");
			return NULL;
		}

		q = *sid;
		if (phy_id != self_id_phy_id(q)) {
			fw_error("PHY ID mismatch in self ID: %d != %d.\n",
				 phy_id, self_id_phy_id(q));
			return NULL;
		}

		if (child_port_count > stack_depth) {
			fw_error("Topology stack underflow\n");
			return NULL;
		}

		/* Seek back from the top of our stack to find the
		 * start of the child nodes for this node. */
		for (i = 0, h = &stack; i < child_port_count; i++)
			h = h->prev;
		child = fw_node(h);

		node = fw_node_create(q, port_count, card->color);
		if (node == NULL) {
			fw_error("Out of memory while building topology.");
			return NULL;
		}

		if (phy_id == (card->node_id & 0x3f))
			local_node = node;

		if (self_id_contender(q))
			card->irm_node = node;

223 224 225 226 227
		if (node->phy_speed == SCODE_BETA)
			topology_type |= FW_TOPOLOGY_B;
		else
			topology_type |= FW_TOPOLOGY_A;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		parent_count = 0;

		for (i = 0; i < port_count; i++) {
			switch (get_port_type(sid, i)) {
			case SELFID_PORT_PARENT:
				/* Who's your daddy?  We dont know the
				 * parent node at this time, so we
				 * temporarily abuse node->color for
				 * remembering the entry in the
				 * node->ports array where the parent
				 * node should be.  Later, when we
				 * handle the parent node, we fix up
				 * the reference.
				 */
				parent_count++;
				node->color = i;
				break;

			case SELFID_PORT_CHILD:
				node->ports[i].node = child;
				/* Fix up parent reference for this
				 * child node. */
				child->ports[child->color].node = node;
				child->color = card->color;
				child = fw_node(child->link.next);
				break;
			}
		}

		/* Check that the node reports exactly one parent
		 * port, except for the root, which of course should
		 * have no parents. */
		if ((next_sid == end && parent_count != 0) ||
		    (next_sid < end && parent_count != 1)) {
			fw_error("Parent port inconsistency for node %d: "
				 "parent_count=%d\n", phy_id, parent_count);
			return NULL;
		}

		/* Pop the child nodes off the stack and push the new node. */
		__list_del(h->prev, &stack);
		list_add_tail(&node->link, &stack);
		stack_depth += 1 - child_port_count;

272 273 274 275 276 277 278 279
		/* If all PHYs does not report the same gap count
		 * setting, we fall back to 63 which will force a gap
		 * count reconfiguration and a reset. */
		if (self_id_gap_count(q) != gap_count)
			gap_count = 63;

		update_hop_count(node);

280 281 282 283 284
		sid = next_sid;
		phy_id++;
	}

	card->root_node = node;
285 286
	card->gap_count = gap_count;
	card->topology_type = topology_type;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	return local_node;
}

typedef void (*fw_node_callback_t) (struct fw_card * card,
				    struct fw_node * node,
				    struct fw_node * parent);

static void
for_each_fw_node(struct fw_card *card, struct fw_node *root,
		 fw_node_callback_t callback)
{
	struct list_head list;
	struct fw_node *node, *next, *child, *parent;
	int i;

	INIT_LIST_HEAD(&list);

	fw_node_get(root);
	list_add_tail(&root->link, &list);
	parent = NULL;
	list_for_each_entry(node, &list, link) {
		node->color = card->color;

		for (i = 0; i < node->port_count; i++) {
			child = node->ports[i].node;
			if (!child)
				continue;
			if (child->color == card->color)
				parent = child;
			else {
				fw_node_get(child);
				list_add_tail(&child->link, &list);
			}
		}

		callback(card, node, parent);
	}

	list_for_each_entry_safe(node, next, &list, link)
		fw_node_put(node);
}

static void
report_lost_node(struct fw_card *card,
		 struct fw_node *node, struct fw_node *parent)
{
	fw_node_event(card, node, FW_NODE_DESTROYED);
	fw_node_put(node);
}

static void
report_found_node(struct fw_card *card,
		  struct fw_node *node, struct fw_node *parent)
{
	int b_path = (node->phy_speed == SCODE_BETA);

	if (parent != NULL) {
345 346 347
		/* min() macro doesn't work here with gcc 3.4 */
		node->max_speed = parent->max_speed < node->phy_speed ?
					parent->max_speed : node->phy_speed;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		node->b_path = parent->b_path && b_path;
	} else {
		node->max_speed = node->phy_speed;
		node->b_path = b_path;
	}

	fw_node_event(card, node, FW_NODE_CREATED);
}

void fw_destroy_nodes(struct fw_card *card)
{
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	card->color++;
	if (card->local_node != NULL)
		for_each_fw_node(card, card->local_node, report_lost_node);
	spin_unlock_irqrestore(&card->lock, flags);
}

static void move_tree(struct fw_node *node0, struct fw_node *node1, int port)
{
	struct fw_node *tree;
	int i;

	tree = node1->ports[port].node;
	node0->ports[port].node = tree;
	for (i = 0; i < tree->port_count; i++) {
		if (tree->ports[i].node == node1) {
			tree->ports[i].node = node0;
			break;
		}
	}
}

/**
 * update_tree - compare the old topology tree for card with the new
 * one specified by root.  Queue the nodes and mark them as either
 * found, lost or updated.  Update the nodes in the card topology tree
 * as we go.
 */
static void
390
update_tree(struct fw_card *card, struct fw_node *root)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	struct list_head list0, list1;
	struct fw_node *node0, *node1;
	int i, event;

	INIT_LIST_HEAD(&list0);
	list_add_tail(&card->local_node->link, &list0);
	INIT_LIST_HEAD(&list1);
	list_add_tail(&root->link, &list1);

	node0 = fw_node(list0.next);
	node1 = fw_node(list1.next);

	while (&node0->link != &list0) {

		/* assert(node0->port_count == node1->port_count); */
		if (node0->link_on && !node1->link_on)
			event = FW_NODE_LINK_OFF;
		else if (!node0->link_on && node1->link_on)
			event = FW_NODE_LINK_ON;
		else
			event = FW_NODE_UPDATED;

		node0->node_id = node1->node_id;
		node0->color = card->color;
		node0->link_on = node1->link_on;
		node0->initiated_reset = node1->initiated_reset;
418
		node0->max_hops = node1->max_hops;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
		node1->color = card->color;
		fw_node_event(card, node0, event);

		if (card->root_node == node1)
			card->root_node = node0;
		if (card->irm_node == node1)
			card->irm_node = node0;

		for (i = 0; i < node0->port_count; i++) {
			if (node0->ports[i].node && node1->ports[i].node) {
				/* This port didn't change, queue the
				 * connected node for further
				 * investigation. */
				if (node0->ports[i].node->color == card->color)
					continue;
				list_add_tail(&node0->ports[i].node->link,
					      &list0);
				list_add_tail(&node1->ports[i].node->link,
					      &list1);
			} else if (node0->ports[i].node) {
				/* The nodes connected here were
				 * unplugged; unref the lost nodes and
				 * queue FW_NODE_LOST callbacks for
				 * them. */

				for_each_fw_node(card, node0->ports[i].node,
						 report_lost_node);
				node0->ports[i].node = NULL;
			} else if (node1->ports[i].node) {
				/* One or more node were connected to
				 * this port. Move the new nodes into
				 * the tree and queue FW_NODE_CREATED
				 * callbacks for them. */
				move_tree(node0, node1, i);
				for_each_fw_node(card, node0->ports[i].node,
						 report_found_node);
			}
		}

		node0 = fw_node(node0->link.next);
		node1 = fw_node(node1->link.next);
	}
}

void
fw_core_handle_bus_reset(struct fw_card *card,
			 int node_id, int generation,
			 int self_id_count, u32 * self_ids)
{
	struct fw_node *local_node;
	unsigned long flags;

	fw_flush_transactions(card);

	spin_lock_irqsave(&card->lock, flags);

475 476 477 478 479 480
	/* If the new topology has a different self_id_count the topology
	 * changed, either nodes were added or removed. In that case we
	 * reset the IRM reset counter. */
	if (card->self_id_count != self_id_count)
		card->irm_retries = 0;

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	card->node_id = node_id;
	card->self_id_count = self_id_count;
	card->generation = generation;
	memcpy(card->self_ids, self_ids, self_id_count * 4);

	local_node = build_tree(card);

	card->color++;

	if (local_node == NULL) {
		fw_error("topology build failed\n");
		/* FIXME: We need to issue a bus reset in this case. */
	} else if (card->local_node == NULL) {
		card->local_node = local_node;
		for_each_fw_node(card, local_node, report_found_node);
	} else {
497
		update_tree(card, local_node);
498 499
	}

500 501 502 503
	/* If we're not the root node, we may have to do some IRM work. */
	if (card->local_node != card->root_node)
		schedule_delayed_work(&card->work, 0);

504 505 506
	spin_unlock_irqrestore(&card->lock, flags);
}
EXPORT_SYMBOL(fw_core_handle_bus_reset);