fw-sbp2.c 33.5 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/timer.h>
41 42 43 44 45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

64
/* I don't know why the SCSI stack doesn't define something like this... */
65
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66 67 68 69

static const char sbp2_driver_name[] = "sbp2";

struct sbp2_device {
70
	struct kref kref;
71 72 73 74 75 76 77 78
	struct fw_unit *unit;
	struct fw_address_handler address_handler;
	struct list_head orb_list;
	u64 management_agent_address;
	u64 command_block_agent_address;
	u32 workarounds;
	int login_id;

79 80
	/*
	 * We cache these addresses and only update them once we've
81 82 83
	 * logged in or reconnected to the sbp2 device.  That way, any
	 * IO to the device will automatically fail and get retried if
	 * it happens in a window where the device is not ready to
84 85
	 * handle it (e.g. after a bus reset but before we reconnect).
	 */
86 87 88 89
	int node_id;
	int address_high;
	int generation;

90 91
	int retries;
	struct delayed_work work;
92 93 94 95
};

#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
#define SBP2_MAX_SECTORS		255	/* Max sectors supported */
96
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER	0x38
#define SBP2_COMMAND_SET		0x39
#define SBP2_COMMAND_SET_REVISION	0x3b
#define SBP2_FIRMWARE_REVISION		0x3c

/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

140 141 142 143 144 145 146 147
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
165
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
166 167 168
	struct list_head link;
};

169 170 171
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
172
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
173 174
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
175

176 177
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

194 195
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
196 197 198 199 200 201

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
202 203 204 205 206 207 208 209
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
210 211 212 213 214 215 216 217 218 219 220 221 222

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
	struct fw_unit *unit;

223
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
257 258 259

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
260 261
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
262 263 264
	 * could change due to Apple-supplied firmware updates though.
	 */

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
	struct sbp2_device *sd = callback_data;
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
296
	    length == 0 || length > sizeof(status)) {
297 298 299 300 301 302 303 304
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
305
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
306 307 308 309 310 311 312 313
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(orb, &sd->orb_list, link) {
314 315
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
		    STATUS_GET_ORB_LOW(status) == orb->request_bus &&
316
		    orb->rcode == RCODE_COMPLETE) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&orb->link != &sd->orb_list)
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

	orb->rcode = rcode;
	if (rcode != RCODE_COMPLETE) {
		spin_lock_irqsave(&card->lock, flags);
		list_del(&orb->link);
		spin_unlock_irqrestore(&card->lock, flags);
		orb->callback(orb, NULL);
	}
}

static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
	      int node_id, int generation, u64 offset)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
357
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
358 359 360 361 362 363

	spin_lock_irqsave(&device->card->lock, flags);
	list_add_tail(&orb->link, &sd->orb_list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
364
			node_id, generation, device->max_speed, offset,
365
			&orb->pointer, sizeof(orb->pointer),
366 367 368
			complete_transaction, orb);
}

369
static int sbp2_cancel_orbs(struct fw_unit *unit)
370 371 372 373 374 375
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
376
	int retval = -ENOENT;
377 378 379 380 381 382 383

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
	list_splice_init(&sd->orb_list, &list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
384
		retval = 0;
385 386 387
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

388 389 390 391
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

392
	return retval;
393 394
}

395 396 397 398
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
399
		container_of(base_orb, struct sbp2_management_orb, base);
400 401

	if (status)
402
		memcpy(&orb->status, status, sizeof(*status));
403 404 405 406 407 408 409 410 411 412 413 414
	complete(&orb->done);
}

static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
			 int function, int lun, void *response)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

415
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
416 417 418
	if (orb == NULL)
		return -ENOMEM;

419 420 421 422
	/*
	 * The sbp2 device is going to send a block read request to
	 * read out the request from host memory, so map it for dma.
	 */
423 424
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
425
			       sizeof(orb->request), DMA_TO_DEVICE);
426
	if (dma_mapping_error(orb->base.request_bus))
427 428 429 430
		goto out;

	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
431
			       sizeof(orb->response), DMA_FROM_DEVICE);
432
	if (dma_mapping_error(orb->response_bus))
433 434 435 436 437 438
		goto out;

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
439 440 441
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
		MANAGEMENT_ORB_LUN(lun);
442
	orb->request.length =
443
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
444 445 446 447 448 449

	orb->request.status_fifo.high = sd->address_handler.offset >> 32;
	orb->request.status_fifo.low  = sd->address_handler.offset;

	if (function == SBP2_LOGIN_REQUEST) {
		orb->request.misc |=
450
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
451
			MANAGEMENT_ORB_RECONNECT(0);
452 453
	}

454
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
455 456 457

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
458

459 460 461
	sbp2_send_orb(&orb->base, unit,
		      node_id, generation, sd->management_agent_address);

462 463
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
464 465

	retval = -EIO;
466 467
	if (sbp2_cancel_orbs(unit) == 0) {
		fw_error("orb reply timed out, rcode=0x%02x\n",
468 469 470 471
			 orb->base.rcode);
		goto out;
	}

472 473
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
474 475 476 477
			 orb->base.rcode);
		goto out;
	}

478 479
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
480
		fw_error("error status: %d:%d\n",
481 482
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
483 484 485 486 487 488
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
489
			 sizeof(orb->request), DMA_TO_DEVICE);
490
	dma_unmap_single(device->card->device, orb->response_bus,
491
			 sizeof(orb->response), DMA_FROM_DEVICE);
492 493 494

	if (response)
		fw_memcpy_from_be32(response,
495
				    orb->response, sizeof(orb->response));
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	kfree(orb);

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

static int sbp2_agent_reset(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct fw_transaction *t;
	static u32 zero;

517
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
518 519 520 521
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
522
			sd->node_id, sd->generation, device->max_speed,
523
			sd->command_block_agent_address + SBP2_AGENT_RESET,
524
			&zero, sizeof(zero), complete_agent_reset_write, t);
525 526 527 528

	return 0;
}

529
static void sbp2_reconnect(struct work_struct *work);
530
static struct scsi_host_template scsi_driver_template;
531

532
static void release_sbp2_device(struct kref *kref)
533 534
{
	struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
535 536
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
537

538
	scsi_remove_host(host);
539 540 541 542 543
	sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
				 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
	fw_core_remove_address_handler(&sd->address_handler);
	fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
	put_device(&sd->unit->device);
544
	scsi_host_put(host);
545 546
}

547 548 549 550
static void sbp2_login(struct work_struct *work)
{
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
551 552
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
	int generation, node_id, local_node_id, lun, retval;

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_LOGIN_REQUEST, lun, &response) < 0) {
		if (sd->retries++ < 5) {
			schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		} else {
			fw_error("failed to login to %s\n",
				 unit->device.bus_id);
572
			kref_put(&sd->kref, release_sbp2_device);
573 574 575 576 577 578 579 580 581 582
		}
		return;
	}

	sd->generation   = generation;
	sd->node_id      = node_id;
	sd->address_high = local_node_id << 16;

	/* Get command block agent offset and login id. */
	sd->command_block_agent_address =
583
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
584
		response.command_block_agent.low;
585
	sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
586

587 588 589
	fw_notify("logged in to sbp2 unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
	fw_notify(" - management_agent_address:    0x%012llx\n",
590 591 592
		  (unsigned long long) sd->management_agent_address);
	fw_notify(" - command_block_agent_address: 0x%012llx\n",
		  (unsigned long long) sd->command_block_agent_address);
593
	fw_notify(" - status write address:        0x%012llx\n",
594 595 596 597 598 599 600
		  (unsigned long long) sd->address_handler.offset);

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

601
	PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
602 603
	sbp2_agent_reset(unit);

604 605 606
	/* FIXME: Loop over luns here. */
	lun = 0;
	retval = scsi_add_device(host, 0, 0, lun);
607 608 609 610
	if (retval < 0) {
		sbp2_send_management_orb(unit, sd->node_id, sd->generation,
					 SBP2_LOGOUT_REQUEST, sd->login_id,
					 NULL);
611 612 613 614
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
615
		PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
616
	}
617
	kref_put(&sd->kref, release_sbp2_device);
618
}
619 620 621 622 623 624 625

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd;
	struct fw_csr_iterator ci;
626 627
	struct Scsi_Host *host;
	int i, key, value, err;
628 629
	u32 model, firmware_revision;

630 631 632 633
	err = -ENOMEM;
	host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
	if (host == NULL)
		goto fail;
634

635
	sd = (struct sbp2_device *) host->hostdata;
636 637 638
	unit->device.driver_data = sd;
	sd->unit = unit;
	INIT_LIST_HEAD(&sd->orb_list);
639
	kref_init(&sd->kref);
640 641 642 643 644

	sd->address_handler.length = 0x100;
	sd->address_handler.address_callback = sbp2_status_write;
	sd->address_handler.callback_data = sd;

645 646 647 648
	err = fw_core_add_address_handler(&sd->address_handler,
					  &fw_high_memory_region);
	if (err < 0)
		goto fail_host;
649

650 651 652 653 654 655 656
	err = fw_device_enable_phys_dma(device);
	if (err < 0)
		goto fail_address_handler;

	err = scsi_add_host(host, &unit->device);
	if (err < 0)
		goto fail_address_handler;
657

658 659
	/*
	 * Scan unit directory to get management agent address,
660
	 * firmware revison and model.  Initialize firmware_revision
661 662
	 * and model to values that wont match anything in our table.
	 */
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	firmware_revision = 0xff000000;
	model = 0xff000000;
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
			sd->management_agent_address =
				0xfffff0000000ULL + 4 * value;
			break;
		case SBP2_FIRMWARE_REVISION:
			firmware_revision = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
		sd->workarounds |= sbp2_workarounds_table[i].workarounds;
		break;
	}

	if (sd->workarounds)
		fw_notify("Workarounds for node %s: 0x%x "
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
			  unit->device.bus_id,
			  sd->workarounds, firmware_revision, model);

698 699
	get_device(&unit->device);

700 701
	/*
	 * We schedule work to do the login so we can easily
702
	 * reschedule retries. Always get the ref before scheduling
703 704
	 * work.
	 */
705
	INIT_DELAYED_WORK(&sd->work, sbp2_login);
706 707
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
708 709

	return 0;
710 711 712 713 714 715 716

 fail_address_handler:
	fw_core_remove_address_handler(&sd->address_handler);
 fail_host:
	scsi_host_put(host);
 fail:
	return err;
717 718 719 720 721 722 723
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct sbp2_device *sd = unit->device.driver_data;

724
	kref_put(&sd->kref, release_sbp2_device);
725 726 727 728 729 730

	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
731 732
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
733 734 735 736 737 738 739 740
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

741 742 743
	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_RECONNECT_REQUEST,
				     sd->login_id, NULL) < 0) {
744
		if (sd->retries++ >= 5) {
745 746 747 748
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
			sd->retries = 0;
749
			PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
750 751 752 753
		}
		schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		return;
	}
754 755 756

	sd->generation   = generation;
	sd->node_id      = node_id;
757
	sd->address_high = local_node_id << 16;
758

759 760
	fw_notify("reconnected to unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
761 762
	sbp2_agent_reset(unit);
	sbp2_cancel_orbs(unit);
763
	kref_put(&sd->kref, release_sbp2_device);
764 765 766 767 768 769 770
}

static void sbp2_update(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;

771
	sd->retries = 0;
772
	fw_device_enable_phys_dma(device);
773 774
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
775 776 777 778 779
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

780
static const struct fw_device_id sbp2_id_table[] = {
781 782 783
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
784
		.version      = SBP2_SW_VERSION_ENTRY,
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

801 802
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
803
{
804 805
	int sam_status;

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

823
	sam_status = sbp2_status[0] & 0x3f;
824

825 826
	switch (sam_status) {
	case SAM_STAT_GOOD:
827 828
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
829
	case SAM_STAT_BUSY:
830 831
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
832 833
		return DID_OK << 16 | sam_status;

834
	default:
835
		return DID_ERROR << 16;
836 837 838 839 840 841
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
842 843
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
844 845 846 847 848 849
	struct fw_unit *unit = orb->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int result;

	if (status != NULL) {
850
		if (STATUS_GET_DEAD(*status))
851 852
			sbp2_agent_reset(unit);

853
		switch (STATUS_GET_RESPONSE(*status)) {
854
		case SBP2_STATUS_REQUEST_COMPLETE:
855
			result = DID_OK << 16;
856 857
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
858
			result = DID_BUS_BUSY << 16;
859 860 861 862
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
863
			result = DID_ERROR << 16;
864 865 866
			break;
		}

867 868
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
869 870
							   orb->cmd->sense_buffer);
	} else {
871 872
		/*
		 * If the orb completes with status == NULL, something
873
		 * went wrong, typically a bus reset happened mid-orb
874 875
		 * or when sending the write (less likely).
		 */
876
		result = DID_BUS_BUSY << 16;
877 878 879
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
880
			 sizeof(orb->request), DMA_TO_DEVICE);
881 882 883 884 885 886 887 888 889

	if (orb->cmd->use_sg > 0) {
		sg = (struct scatterlist *)orb->cmd->request_buffer;
		dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
			     orb->cmd->sc_data_direction);
	}

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
890
				 sizeof(orb->page_table_bus), DMA_TO_DEVICE);
891

892
	orb->cmd->result = result;
893 894 895 896
	orb->done(orb->cmd);
	kfree(orb);
}

897
static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
898
{
899 900 901
	struct sbp2_device *sd =
		(struct sbp2_device *)orb->cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
902 903 904 905 906 907 908 909 910
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	size_t size;
	dma_addr_t sg_addr;

	sg = (struct scatterlist *)orb->cmd->request_buffer;
	count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
			   orb->cmd->sc_data_direction);
911 912
	if (count == 0)
		goto fail;
913

914 915
	/*
	 * Handle the special case where there is only one element in
916 917 918
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
919 920
	 * tables.
	 */
921 922 923 924
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
		orb->request.data_descriptor.high = sd->address_high;
		orb->request.data_descriptor.low  = sg_dma_address(sg);
		orb->request.misc |=
925
			COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
926
		return 0;
927 928
	}

929 930
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
931 932 933 934
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
935
	 */
936 937 938 939 940 941 942 943 944 945 946 947 948
	for (i = 0, j = 0; i < count; i++) {
		sg_len = sg_dma_len(sg + i);
		sg_addr = sg_dma_address(sg + i);
		while (sg_len) {
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

949
	size = sizeof(orb->page_table[0]) * j;
950

951 952
	/*
	 * The data_descriptor pointer is the one case where we need
953 954 955
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
956 957
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
958 959 960 961

	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       size, DMA_TO_DEVICE);
962 963
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
964 965 966
	orb->request.data_descriptor.high = sd->address_high;
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
967 968
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
969 970

	fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
971 972 973 974 975 976 977 978

	return 0;

 fail_page_table:
	dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
979 980 981 982 983 984
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
985 986 987
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
988 989 990
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_command_orb *orb;

991 992 993 994
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
995
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
996
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
997 998 999
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1000 1001
	}

1002
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1003 1004
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1005
		goto fail_alloc;
1006 1007
	}

1008 1009
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1010 1011
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
1012
			       sizeof(orb->request), DMA_TO_DEVICE);
1013 1014
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping;
1015 1016 1017 1018 1019 1020 1021

	orb->unit = unit;
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1022 1023
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1024 1025
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1026 1027
	 * if we set this to max_speed + 7, we get the right value.
	 */
1028
	orb->request.misc =
1029 1030
		COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
		COMMAND_ORB_SPEED(device->max_speed) |
1031
		COMMAND_ORB_NOTIFY;
1032 1033 1034

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1035
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1036 1037
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1038
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1039

1040
	if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
1041
		goto fail_map_payload;
1042

1043
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1044 1045

	memset(orb->request.command_block,
1046
	       0, sizeof(orb->request.command_block));
1047 1048 1049 1050 1051 1052 1053 1054
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;

	sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
		      sd->command_block_agent_address + SBP2_ORB_POINTER);

	return 0;
1055

1056
 fail_map_payload:
1057
	dma_unmap_single(device->card->device, orb->base.request_bus,
1058
			 sizeof(orb->request), DMA_TO_DEVICE);
1059 1060 1061
 fail_mapping:
	kfree(orb);
 fail_alloc:
1062
	return SCSI_MLQUEUE_HOST_BUSY;
1063 1064
}

1065 1066
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1067
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1068 1069 1070 1071 1072 1073 1074 1075

	sdev->allow_restart = 1;

	if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
		sdev->inquiry_len = 36;
	return 0;
}

1076 1077
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1078 1079
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
	struct fw_unit *unit = sd->unit;
1080

1081 1082 1083 1084
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1085 1086 1087 1088 1089 1090 1091
	if (sdev->type == TYPE_DISK &&
	    sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
		sdev->skip_ms_page_8 = 1;
	if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
		fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
		sdev->fix_capacity = 1;
	}
1092 1093
	if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1094 1095 1096 1097 1098 1099 1100 1101 1102
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1103 1104 1105
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
1106 1107

	fw_notify("sbp2_scsi_abort\n");
1108
	sbp2_agent_reset(unit);
1109 1110 1111 1112 1113
	sbp2_cancel_orbs(unit);

	return SUCCESS;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
	struct sbp2_device *sd;
	struct fw_unit *unit;
	struct fw_device *device;
	u32 directory_id;
	struct fw_csr_iterator ci;
	int key, value, lun;

	if (!sdev)
		return 0;
	sd = (struct sbp2_device *)sdev->host->hostdata;
	unit = sd->unit;
	device = fw_device(unit->device.parent);

	/* implicit directory ID */
	directory_id = ((unit->directory - device->config_rom) * 4
			+ CSR_CONFIG_ROM) & 0xffffff;

	/* explicit directory ID, overrides implicit ID if present */
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == CSR_DIRECTORY_ID) {
			directory_id = value;
			break;
		}

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
			directory_id, lun);
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1166 1167 1168 1169 1170
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
	.proc_name		= (char *)sbp2_driver_name,
	.queuecommand		= sbp2_scsi_queuecommand,
1171
	.slave_alloc		= sbp2_scsi_slave_alloc,
1172 1173 1174 1175 1176
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1177 1178
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1179
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1180 1181 1182 1183 1184 1185 1186
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1187 1188 1189 1190 1191
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int __init sbp2_init(void)
{
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);