rtc-sa1100.c 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
 *
 * Copyright (c) 2000 Nils Faerber
 *
 * Based on rtc.c by Paul Gortmaker
 *
 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
 *
 * Modifications from:
 *   CIH <cih@coventive.com>
 *   Nicolas Pitre <nico@cam.org>
 *   Andrew Christian <andrew.christian@hp.com>
 *
 * Converted to the RTC subsystem and Driver Model
 *   by Richard Purdie <rpurdie@rpsys.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
J
Jiri Slaby 已提交
32
#include <linux/bitops.h>
33

34
#include <mach/hardware.h>
35 36 37
#include <asm/irq.h>

#ifdef CONFIG_ARCH_PXA
38
#include <mach/pxa-regs.h>
39 40 41 42 43 44 45 46
#endif

#define TIMER_FREQ		CLOCK_TICK_RATE
#define RTC_DEF_DIVIDER		32768 - 1
#define RTC_DEF_TRIM		0

static unsigned long rtc_freq = 1024;
static struct rtc_time rtc_alarm;
I
Ingo Molnar 已提交
47
static DEFINE_SPINLOCK(sa1100_rtc_lock);
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static inline int rtc_periodic_alarm(struct rtc_time *tm)
{
	return  (tm->tm_year == -1) ||
		((unsigned)tm->tm_mon >= 12) ||
		((unsigned)(tm->tm_mday - 1) >= 31) ||
		((unsigned)tm->tm_hour > 23) ||
		((unsigned)tm->tm_min > 59) ||
		((unsigned)tm->tm_sec > 59);
}

/*
 * Calculate the next alarm time given the requested alarm time mask
 * and the current time.
 */
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
{
	unsigned long next_time;
	unsigned long now_time;

	next->tm_year = now->tm_year;
	next->tm_mon = now->tm_mon;
	next->tm_mday = now->tm_mday;
	next->tm_hour = alrm->tm_hour;
	next->tm_min = alrm->tm_min;
	next->tm_sec = alrm->tm_sec;

	rtc_tm_to_time(now, &now_time);
	rtc_tm_to_time(next, &next_time);

	if (next_time < now_time) {
		/* Advance one day */
		next_time += 60 * 60 * 24;
		rtc_time_to_tm(next_time, next);
	}
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
static int rtc_update_alarm(struct rtc_time *alrm)
{
	struct rtc_time alarm_tm, now_tm;
	unsigned long now, time;
	int ret;

	do {
		now = RCNR;
		rtc_time_to_tm(now, &now_tm);
		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
		ret = rtc_tm_to_time(&alarm_tm, &time);
		if (ret != 0)
			break;

		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
		RTAR = time;
	} while (now != RCNR);

	return ret;
}

106
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
{
	struct platform_device *pdev = to_platform_device(dev_id);
	struct rtc_device *rtc = platform_get_drvdata(pdev);
	unsigned int rtsr;
	unsigned long events = 0;

	spin_lock(&sa1100_rtc_lock);

	rtsr = RTSR;
	/* clear interrupt sources */
	RTSR = 0;
	RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);

	/* clear alarm interrupt if it has occurred */
	if (rtsr & RTSR_AL)
		rtsr &= ~RTSR_ALE;
	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);

	/* update irq data & counter */
	if (rtsr & RTSR_AL)
		events |= RTC_AF | RTC_IRQF;
	if (rtsr & RTSR_HZ)
		events |= RTC_UF | RTC_IRQF;

131
	rtc_update_irq(rtc, 1, events);
132 133 134 135 136 137 138 139 140 141 142

	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
		rtc_update_alarm(&rtc_alarm);

	spin_unlock(&sa1100_rtc_lock);

	return IRQ_HANDLED;
}

static int rtc_timer1_count;

143
static irqreturn_t timer1_interrupt(int irq, void *dev_id)
144 145 146 147 148 149 150 151 152 153 154 155 156
{
	struct platform_device *pdev = to_platform_device(dev_id);
	struct rtc_device *rtc = platform_get_drvdata(pdev);

	/*
	 * If we match for the first time, rtc_timer1_count will be 1.
	 * Otherwise, we wrapped around (very unlikely but
	 * still possible) so compute the amount of missed periods.
	 * The match reg is updated only when the data is actually retrieved
	 * to avoid unnecessary interrupts.
	 */
	OSSR = OSSR_M1;	/* clear match on timer1 */

157
	rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	if (rtc_timer1_count == 1)
		rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));

	return IRQ_HANDLED;
}

static int sa1100_rtc_read_callback(struct device *dev, int data)
{
	if (data & RTC_PF) {
		/* interpolate missed periods and set match for the next */
		unsigned long period = TIMER_FREQ/rtc_freq;
		unsigned long oscr = OSCR;
		unsigned long osmr1 = OSMR1;
		unsigned long missed = (oscr - osmr1)/period;
		data += missed << 8;
		OSSR = OSSR_M1;	/* clear match on timer 1 */
		OSMR1 = osmr1 + (missed + 1)*period;
		/* Ensure we didn't miss another match in the mean time.
		 * Here we compare (match - OSCR) 8 instead of 0 --
		 * see comment in pxa_timer_interrupt() for explanation.
		 */
		while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
			data += 0x100;
			OSSR = OSSR_M1;	/* clear match on timer 1 */
			OSMR1 = osmr1 + period;
		}
	}
	return data;
}

static int sa1100_rtc_open(struct device *dev)
{
	int ret;

193
	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
194 195
				"rtc 1Hz", dev);
	if (ret) {
196
		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
197 198
		goto fail_ui;
	}
199
	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
200 201
				"rtc Alrm", dev);
	if (ret) {
202
		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
203 204
		goto fail_ai;
	}
205
	ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
206 207
				"rtc timer", dev);
	if (ret) {
208
		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
209 210 211 212 213
		goto fail_pi;
	}
	return 0;

 fail_pi:
214
	free_irq(IRQ_RTCAlrm, dev);
215
 fail_ai:
216
	free_irq(IRQ_RTC1Hz, dev);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
 fail_ui:
	return ret;
}

static void sa1100_rtc_release(struct device *dev)
{
	spin_lock_irq(&sa1100_rtc_lock);
	RTSR = 0;
	OIER &= ~OIER_E1;
	OSSR = OSSR_M1;
	spin_unlock_irq(&sa1100_rtc_lock);

	free_irq(IRQ_OST1, dev);
	free_irq(IRQ_RTCAlrm, dev);
	free_irq(IRQ_RTC1Hz, dev);
}


static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
		unsigned long arg)
{
	switch(cmd) {
	case RTC_AIE_OFF:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR &= ~RTSR_ALE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_AIE_ON:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR |= RTSR_ALE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_UIE_OFF:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR &= ~RTSR_HZE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_UIE_ON:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR |= RTSR_HZE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_PIE_OFF:
		spin_lock_irq(&sa1100_rtc_lock);
		OIER &= ~OIER_E1;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_PIE_ON:
		spin_lock_irq(&sa1100_rtc_lock);
		OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
		OIER |= OIER_E1;
		rtc_timer1_count = 1;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_IRQP_READ:
		return put_user(rtc_freq, (unsigned long *)arg);
	case RTC_IRQP_SET:
		if (arg < 1 || arg > TIMER_FREQ)
			return -EINVAL;
		rtc_freq = arg;
		return 0;
	}
279
	return -ENOIOCTLCMD;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	rtc_time_to_tm(RCNR, tm);
	return 0;
}

static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	unsigned long time;
	int ret;

	ret = rtc_tm_to_time(tm, &time);
	if (ret == 0)
		RCNR = time;
	return ret;
}

static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
301 302
	u32	rtsr;

303
	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
304 305 306
	rtsr = RTSR;
	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
307 308 309 310 311 312 313 314 315 316 317
	return 0;
}

static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	int ret;

	spin_lock_irq(&sa1100_rtc_lock);
	ret = rtc_update_alarm(&alrm->time);
	if (ret == 0) {
		if (alrm->enabled)
318
			RTSR |= RTSR_ALE;
319
		else
320
			RTSR &= ~RTSR_ALE;
321 322 323 324 325 326 327 328
	}
	spin_unlock_irq(&sa1100_rtc_lock);

	return ret;
}

static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
329
	seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
330 331 332 333 334 335 336 337 338
	seq_printf(seq, "update_IRQ\t: %s\n",
			(RTSR & RTSR_HZE) ? "yes" : "no");
	seq_printf(seq, "periodic_IRQ\t: %s\n",
			(OIER & OIER_E1) ? "yes" : "no");
	seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);

	return 0;
}

339
static const struct rtc_class_ops sa1100_rtc_ops = {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	.open = sa1100_rtc_open,
	.read_callback = sa1100_rtc_read_callback,
	.release = sa1100_rtc_release,
	.ioctl = sa1100_rtc_ioctl,
	.read_time = sa1100_rtc_read_time,
	.set_time = sa1100_rtc_set_time,
	.read_alarm = sa1100_rtc_read_alarm,
	.set_alarm = sa1100_rtc_set_alarm,
	.proc = sa1100_rtc_proc,
};

static int sa1100_rtc_probe(struct platform_device *pdev)
{
	struct rtc_device *rtc;

	/*
	 * According to the manual we should be able to let RTTR be zero
	 * and then a default diviser for a 32.768KHz clock is used.
	 * Apparently this doesn't work, at least for my SA1110 rev 5.
	 * If the clock divider is uninitialized then reset it to the
	 * default value to get the 1Hz clock.
	 */
	if (RTTR == 0) {
		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
364
		dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
365 366 367 368
		/* The current RTC value probably doesn't make sense either */
		RCNR = 0;
	}

369 370
	device_init_wakeup(&pdev->dev, 1);

371 372 373
	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
				THIS_MODULE);

374
	if (IS_ERR(rtc))
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		return PTR_ERR(rtc);

	platform_set_drvdata(pdev, rtc);

	return 0;
}

static int sa1100_rtc_remove(struct platform_device *pdev)
{
	struct rtc_device *rtc = platform_get_drvdata(pdev);

 	if (rtc)
		rtc_device_unregister(rtc);

	return 0;
}

392 393 394
#ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
395 396
	if (device_may_wakeup(&pdev->dev))
		enable_irq_wake(IRQ_RTCAlrm);
397 398 399 400 401
	return 0;
}

static int sa1100_rtc_resume(struct platform_device *pdev)
{
402 403
	if (device_may_wakeup(&pdev->dev))
		disable_irq_wake(IRQ_RTCAlrm);
404 405 406 407 408 409 410
	return 0;
}
#else
#define sa1100_rtc_suspend	NULL
#define sa1100_rtc_resume	NULL
#endif

411 412 413
static struct platform_driver sa1100_rtc_driver = {
	.probe		= sa1100_rtc_probe,
	.remove		= sa1100_rtc_remove,
414 415
	.suspend	= sa1100_rtc_suspend,
	.resume		= sa1100_rtc_resume,
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	.driver		= {
		.name		= "sa1100-rtc",
	},
};

static int __init sa1100_rtc_init(void)
{
	return platform_driver_register(&sa1100_rtc_driver);
}

static void __exit sa1100_rtc_exit(void)
{
	platform_driver_unregister(&sa1100_rtc_driver);
}

module_init(sa1100_rtc_init);
module_exit(sa1100_rtc_exit);

MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
437
MODULE_ALIAS("platform:sa1100-rtc");