memory.c 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21 22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24
#include <linux/stat.h>
25
#include <linux/slab.h>
26

27 28 29
#include <asm/atomic.h>
#include <asm/uaccess.h>

30 31
static DEFINE_MUTEX(mem_sysfs_mutex);

32
#define MEMORY_CLASS_NAME	"memory"
33 34 35 36 37 38 39 40
#define MIN_MEMORY_BLOCK_SIZE	(1 << SECTION_SIZE_BITS)

static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
41 42

static struct sysdev_class memory_sysdev_class = {
43
	.name = MEMORY_CLASS_NAME,
44 45
};

46
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
47 48 49 50
{
	return MEMORY_CLASS_NAME;
}

51
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
52 53 54 55 56 57
{
	int retval = 0;

	return retval;
}

58
static const struct kset_uevent_ops memory_uevent_ops = {
59 60
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
61 62
};

63
static BLOCKING_NOTIFIER_HEAD(memory_chain);
64

65
int register_memory_notifier(struct notifier_block *nb)
66
{
67
        return blocking_notifier_chain_register(&memory_chain, nb);
68
}
69
EXPORT_SYMBOL(register_memory_notifier);
70

71
void unregister_memory_notifier(struct notifier_block *nb)
72
{
73
        blocking_notifier_chain_unregister(&memory_chain, nb);
74
}
75
EXPORT_SYMBOL(unregister_memory_notifier);
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

91 92 93
/*
 * register_memory - Setup a sysfs device for a memory block
 */
94
static
95
int register_memory(struct memory_block *memory)
96 97 98 99
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
100
	memory->sysdev.id = memory->start_section_nr / sections_per_block;
101 102 103 104 105 106

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
107
unregister_memory(struct memory_block *memory)
108 109 110
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);

111 112
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
113 114 115
	sysdev_unregister(&memory->sysdev);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

136 137 138 139 140
/*
 * use this as the physical section index that this memsection
 * uses.
 */

141
static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142
			struct sysdev_attribute *attr, char *buf)
143 144 145
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

static ssize_t show_mem_end_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
161 162
}

163 164 165
/*
 * Show whether the section of memory is likely to be hot-removable
 */
166 167
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
168
{
169 170
	unsigned long i, pfn;
	int ret = 1;
171 172 173
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

174
	for (i = 0; i < sections_per_block; i++) {
175
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
176 177 178
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

179 180 181
	return sprintf(buf, "%d\n", ret);
}

182 183 184
/*
 * online, offline, going offline, etc.
 */
185 186
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

216
int memory_notify(unsigned long val, void *v)
217
{
218
	return blocking_notifier_call_chain(&memory_chain, val, v);
219 220
}

221 222 223 224 225
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

226 227 228 229 230
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
231
memory_section_action(unsigned long phys_index, unsigned long action)
232 233 234 235 236 237
{
	int i;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;

238
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
239 240 241 242 243 244 245 246 247 248 249 250

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
251 252
				"not reserved, was it already online?\n",
				phys_index, i);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			break;
		default:
268 269
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
270 271 272 273 274 275 276 277 278
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
279 280
	int i, ret = 0;

281
	mutex_lock(&mem->state_mutex);
282 283 284 285 286 287

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

288 289 290 291
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

	for (i = 0; i < sections_per_block; i++) {
292 293
		ret = memory_section_action(mem->start_section_nr + i,
					    to_state);
294 295 296 297 298 299
		if (ret)
			break;
	}

	if (ret) {
		for (i = 0; i < sections_per_block; i++)
300
			memory_section_action(mem->start_section_nr + i,
301 302 303 304
					      from_state_req);

		mem->state = from_state_req;
	} else
305 306 307
		mem->state = to_state;

out:
308
	mutex_unlock(&mem->state_mutex);
309 310 311 312
	return ret;
}

static ssize_t
313 314
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
315 316 317 318 319 320 321 322 323 324
{
	struct memory_block *mem;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
340 341
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
342 343 344 345 346 347
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

348 349
static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
350 351
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
352
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
353 354 355 356 357 358 359 360 361 362

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
363 364
print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
		 char *buf)
365
{
366
	return sprintf(buf, "%lx\n", get_memory_block_size());
367 368
}

369
static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
370 371 372

static int block_size_init(void)
{
373
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
374
				&attr_block_size_bytes.attr);
375 376 377 378 379 380 381 382 383 384
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
385 386
memory_probe_store(struct class *class, struct class_attribute *attr,
		   const char *buf, size_t count)
387 388
{
	u64 phys_addr;
389
	int nid;
390
	int i, ret;
391 392 393

	phys_addr = simple_strtoull(buf, NULL, 0);

394 395 396 397 398
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
399
			goto out;
400 401 402

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
403

404 405 406
	ret = count;
out:
	return ret;
407
}
408
static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
409 410 411

static int memory_probe_init(void)
{
412
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
413
				&class_attr_probe.attr);
414 415
}
#else
416 417 418 419
static inline int memory_probe_init(void)
{
	return 0;
}
420 421
#endif

422 423 424 425 426 427 428
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
429 430 431
store_soft_offline_page(struct class *class,
			struct class_attribute *attr,
			const char *buf, size_t count)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
448 449 450
store_hard_offline_page(struct class *class,
			struct class_attribute *attr,
			const char *buf, size_t count)
451 452 453 454 455 456 457 458 459 460 461 462
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

463 464
static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
465 466 467 468 469 470

static __init int memory_fail_init(void)
{
	int err;

	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
471
				&class_attr_soft_offline_page.attr);
472 473
	if (!err)
		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
474
				&class_attr_hard_offline_page.attr);
475 476 477 478 479 480 481 482 483
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

484 485 486 487 488
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
489 490 491 492
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
493

494 495
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
496 497 498 499 500
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
501
	int block_id = base_memory_block_id(__section_nr(section));
502

503 504
	kobj = hint ? &hint->sysdev.kobj : NULL;

505 506 507 508
	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
509
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
510

511
	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
512 513 514 515 516 517 518 519 520
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

521 522 523 524 525 526 527 528 529 530 531 532 533
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

534 535
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
536
{
537
	struct memory_block *mem;
538
	unsigned long start_pfn;
539
	int scn_nr;
540 541
	int ret = 0;

542
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
543 544 545
	if (!mem)
		return -ENOMEM;

546
	scn_nr = __section_nr(section);
547 548 549
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
550
	mem->state = state;
551
	mem->section_count++;
552
	mutex_init(&mem->state_mutex);
553
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
554 555
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

556
	ret = register_memory(mem);
557 558
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
559 560
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
561 562 563 564 565 566
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	*memory = mem;
	return ret;
}

static int add_memory_section(int nid, struct mem_section *section,
			unsigned long state, enum mem_add_context context)
{
	struct memory_block *mem;
	int ret = 0;

	mutex_lock(&mem_sysfs_mutex);

	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		kobject_put(&mem->sysdev.kobj);
	} else
		ret = init_memory_block(&mem, section, state);

587
	if (!ret) {
588 589
		if (context == HOTPLUG &&
		    mem->section_count == sections_per_block)
590 591 592
			ret = register_mem_sect_under_node(mem, nid);
	}

593
	mutex_unlock(&mem_sysfs_mutex);
594 595 596
	return ret;
}

597 598 599 600 601
int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

602
	mutex_lock(&mem_sysfs_mutex);
603
	mem = find_memory_block(section);
604
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
605 606 607 608

	mem->section_count--;
	if (mem->section_count == 0) {
		mem_remove_simple_file(mem, phys_index);
609
		mem_remove_simple_file(mem, end_phys_index);
610 611 612
		mem_remove_simple_file(mem, state);
		mem_remove_simple_file(mem, phys_device);
		mem_remove_simple_file(mem, removable);
613 614 615 616
		unregister_memory(mem);
		kfree(mem);
	} else
		kobject_put(&mem->sysdev.kobj);
617

618
	mutex_unlock(&mem_sysfs_mutex);
619 620 621 622 623 624 625
	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
626
int register_new_memory(int nid, struct mem_section *section)
627
{
628
	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
629 630 631 632
}

int unregister_memory_section(struct mem_section *section)
{
633
	if (!present_section(section))
634 635 636 637 638 639 640 641 642 643 644 645
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
646
	int err;
647
	unsigned long block_sz;
648

649
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
650
	ret = sysdev_class_register(&memory_sysdev_class);
651 652
	if (ret)
		goto out;
653

654 655 656
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

657 658 659 660 661
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
662
		if (!present_section_nr(i))
663
			continue;
664 665
		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
					 BOOT);
666 667
		if (!ret)
			ret = err;
668 669
	}

670
	err = memory_probe_init();
671 672 673
	if (!ret)
		ret = err;
	err = memory_fail_init();
674 675 676 677 678 679 680
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
681
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
682 683
	return ret;
}