i40e_xsk.c 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. */

#include <linux/bpf_trace.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>

#include "i40e.h"
#include "i40e_txrx_common.h"
#include "i40e_xsk.h"

/**
 * i40e_alloc_xsk_umems - Allocate an array to store per ring UMEMs
 * @vsi: Current VSI
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_alloc_xsk_umems(struct i40e_vsi *vsi)
{
	if (vsi->xsk_umems)
		return 0;

	vsi->num_xsk_umems_used = 0;
	vsi->num_xsk_umems = vsi->alloc_queue_pairs;
	vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
				 GFP_KERNEL);
	if (!vsi->xsk_umems) {
		vsi->num_xsk_umems = 0;
		return -ENOMEM;
	}

	return 0;
}

/**
 * i40e_add_xsk_umem - Store an UMEM for a certain ring/qid
 * @vsi: Current VSI
 * @umem: UMEM to store
 * @qid: Ring/qid to associate with the UMEM
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_add_xsk_umem(struct i40e_vsi *vsi, struct xdp_umem *umem,
			     u16 qid)
{
	int err;

	err = i40e_alloc_xsk_umems(vsi);
	if (err)
		return err;

	vsi->xsk_umems[qid] = umem;
	vsi->num_xsk_umems_used++;

	return 0;
}

/**
 * i40e_remove_xsk_umem - Remove an UMEM for a certain ring/qid
 * @vsi: Current VSI
 * @qid: Ring/qid associated with the UMEM
 **/
static void i40e_remove_xsk_umem(struct i40e_vsi *vsi, u16 qid)
{
	vsi->xsk_umems[qid] = NULL;
	vsi->num_xsk_umems_used--;

	if (vsi->num_xsk_umems == 0) {
		kfree(vsi->xsk_umems);
		vsi->xsk_umems = NULL;
		vsi->num_xsk_umems = 0;
	}
}

/**
 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
 * @vsi: Current VSI
 * @umem: UMEM to DMA map
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
	struct i40e_pf *pf = vsi->back;
	struct device *dev;
	unsigned int i, j;
	dma_addr_t dma;

	dev = &pf->pdev->dev;
	for (i = 0; i < umem->npgs; i++) {
		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
		if (dma_mapping_error(dev, dma))
			goto out_unmap;

		umem->pages[i].dma = dma;
	}

	return 0;

out_unmap:
	for (j = 0; j < i; j++) {
		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
		umem->pages[i].dma = 0;
	}

	return -1;
}

/**
 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
 * @vsi: Current VSI
 * @umem: UMEM to DMA map
 **/
static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
	struct i40e_pf *pf = vsi->back;
	struct device *dev;
	unsigned int i;

	dev = &pf->pdev->dev;

	for (i = 0; i < umem->npgs; i++) {
		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);

		umem->pages[i].dma = 0;
	}
}

/**
 * i40e_xsk_umem_enable - Enable/associate an UMEM to a certain ring/qid
 * @vsi: Current VSI
 * @umem: UMEM
 * @qid: Rx ring to associate UMEM to
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
				u16 qid)
{
	bool if_running;
	int err;

	if (vsi->type != I40E_VSI_MAIN)
		return -EINVAL;

	if (qid >= vsi->num_queue_pairs)
		return -EINVAL;

	if (vsi->xsk_umems) {
		if (qid >= vsi->num_xsk_umems)
			return -EINVAL;
		if (vsi->xsk_umems[qid])
			return -EBUSY;
	}

	err = i40e_xsk_umem_dma_map(vsi, umem);
	if (err)
		return err;

	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);

	if (if_running) {
		err = i40e_queue_pair_disable(vsi, qid);
		if (err)
			return err;
	}

	err = i40e_add_xsk_umem(vsi, umem, qid);
	if (err)
		return err;

	if (if_running) {
		err = i40e_queue_pair_enable(vsi, qid);
		if (err)
			return err;
	}

	return 0;
}

/**
 * i40e_xsk_umem_disable - Diassociate an UMEM from a certain ring/qid
 * @vsi: Current VSI
 * @qid: Rx ring to associate UMEM to
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
{
	bool if_running;
	int err;

	if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
	    !vsi->xsk_umems[qid])
		return -EINVAL;

	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);

	if (if_running) {
		err = i40e_queue_pair_disable(vsi, qid);
		if (err)
			return err;
	}

	i40e_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
	i40e_remove_xsk_umem(vsi, qid);

	if (if_running) {
		err = i40e_queue_pair_enable(vsi, qid);
		if (err)
			return err;
	}

	return 0;
}

/**
 * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
 * @vsi: Current VSI
 * @umem: UMEM associated to the ring, if any
 * @qid: Rx ring to associate UMEM to
 *
 * This function will store, if any, the UMEM associated to certain ring.
 *
 * Returns 0 on success, <0 on failure
 **/
int i40e_xsk_umem_query(struct i40e_vsi *vsi, struct xdp_umem **umem,
			u16 qid)
{
	if (vsi->type != I40E_VSI_MAIN)
		return -EINVAL;

	if (qid >= vsi->num_queue_pairs)
		return -EINVAL;

	if (vsi->xsk_umems) {
		if (qid >= vsi->num_xsk_umems)
			return -EINVAL;
		*umem = vsi->xsk_umems[qid];
		return 0;
	}

	*umem = NULL;
	return 0;
}

/**
 * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
 * @vsi: Current VSI
 * @umem: UMEM to enable/associate to a ring, or NULL to disable
 * @qid: Rx ring to (dis)associate UMEM (from)to
 *
 * This function enables or disables an UMEM to a certain ring.
 *
 * Returns 0 on success, <0 on failure
 **/
int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
			u16 qid)
{
	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
		i40e_xsk_umem_disable(vsi, qid);
}

/**
 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
 * @rx_ring: Rx ring
 * @xdp: xdp_buff used as input to the XDP program
 *
 * This function enables or disables an UMEM to a certain ring.
 *
 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
 **/
static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
{
	int err, result = I40E_XDP_PASS;
	struct i40e_ring *xdp_ring;
	struct bpf_prog *xdp_prog;
	u32 act;

	rcu_read_lock();
	/* NB! xdp_prog will always be !NULL, due to the fact that
	 * this path is enabled by setting an XDP program.
	 */
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
	act = bpf_prog_run_xdp(xdp_prog, xdp);
	xdp->handle += xdp->data - xdp->data_hard_start;
	switch (act) {
	case XDP_PASS:
		break;
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
		break;
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
	rcu_read_unlock();
	return result;
}

/**
 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
 * @rx_ring: Rx ring
 * @bi: Rx buffer to populate
 *
 * This function allocates an Rx buffer. The buffer can come from fill
 * queue, or via the recycle queue (next_to_alloc).
 *
 * Returns true for a successful allocation, false otherwise
 **/
static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
				 struct i40e_rx_buffer *bi)
{
	struct xdp_umem *umem = rx_ring->xsk_umem;
	void *addr = bi->addr;
	u64 handle, hr;

	if (addr) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}

	if (!xsk_umem_peek_addr(umem, &handle)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}

	hr = umem->headroom + XDP_PACKET_HEADROOM;

	bi->dma = xdp_umem_get_dma(umem, handle);
	bi->dma += hr;

	bi->addr = xdp_umem_get_data(umem, handle);
	bi->addr += hr;

	bi->handle = handle + umem->headroom;

	xsk_umem_discard_addr(umem);
	return true;
}

/**
 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
 * @rx_ring: Rx ring
 * @count: The number of buffers to allocate
 *
 * This function allocates a number of Rx buffers and places them on
 * the Rx ring.
 *
 * Returns true for a successful allocation, false otherwise
 **/
bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
{
	u16 ntu = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	bool ok = true;

	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
	do {
		if (!i40e_alloc_buffer_zc(rx_ring, bi)) {
			ok = false;
			goto no_buffers;
		}

		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
						 rx_ring->rx_buf_len,
						 DMA_BIDIRECTIONAL);

		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);

		rx_desc++;
		bi++;
		ntu++;

		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		rx_desc->wb.qword1.status_error_len = 0;
		count--;
	} while (count);

no_buffers:
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);

	return ok;
}

/**
 * i40e_get_rx_buffer_zc - Return the current Rx buffer
 * @rx_ring: Rx ring
 * @size: The size of the rx buffer (read from descriptor)
 *
 * This function returns the current, received Rx buffer, and also
 * does DMA synchronization.  the Rx ring.
 *
 * Returns the received Rx buffer
 **/
static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
						    const unsigned int size)
{
	struct i40e_rx_buffer *bi;

	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      bi->dma, 0,
				      size,
				      DMA_BIDIRECTIONAL);

	return bi;
}

/**
 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
 * @rx_ring: Rx ring
 * @old_bi: The Rx buffer to recycle
 *
 * This function recycles a finished Rx buffer, and places it on the
 * recycle queue (next_to_alloc).
 **/
static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
				    struct i40e_rx_buffer *old_bi)
{
	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
445
	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
	u16 nta = rx_ring->next_to_alloc;

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	new_bi->dma = old_bi->dma & mask;
	new_bi->dma += hr;

	new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
	new_bi->addr += hr;

	new_bi->handle = old_bi->handle & mask;
	new_bi->handle += rx_ring->xsk_umem->headroom;

	old_bi->addr = NULL;
}

/**
 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
 * @alloc: Zero-copy allocator
 * @handle: Buffer handle
 **/
void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
{
	struct i40e_rx_buffer *bi;
	struct i40e_ring *rx_ring;
	u64 hr, mask;
	u16 nta;

	rx_ring = container_of(alloc, struct i40e_ring, zca);
	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
480
	mask = rx_ring->xsk_umem->chunk_mask;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	nta = rx_ring->next_to_alloc;
	bi = &rx_ring->rx_bi[nta];

	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	handle &= mask;

	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
	bi->dma += hr;

	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
	bi->addr += hr;

	bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
}

/**
 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
 * @rx_ring: Rx ring
 * @bi: Rx buffer
 * @xdp: xdp_buff
 *
 * This functions allocates a new skb from a zero-copy Rx buffer.
 *
 * Returns the skb, or NULL on failure.
 **/
static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
					     struct i40e_rx_buffer *bi,
					     struct xdp_buff *xdp)
{
	unsigned int metasize = xdp->data - xdp->data_meta;
	unsigned int datasize = xdp->data_end - xdp->data;
	struct sk_buff *skb;

	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       xdp->data_end - xdp->data_hard_start,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
	if (metasize)
		skb_metadata_set(skb, metasize);

	i40e_reuse_rx_buffer_zc(rx_ring, bi);
	return skb;
}

/**
 * i40e_inc_ntc: Advance the next_to_clean index
 * @rx_ring: Rx ring
 **/
static void i40e_inc_ntc(struct i40e_ring *rx_ring)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;
	prefetch(I40E_RX_DESC(rx_ring, ntc));
}

/**
 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
 * @rx_ring: Rx ring
 * @budget: NAPI budget
 *
 * Returns amount of work completed
 **/
int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	unsigned int xdp_res, xdp_xmit = 0;
	bool failure = false;
	struct sk_buff *skb;
	struct xdp_buff xdp;

	xdp.rxq = &rx_ring->xdp_rxq;

	while (likely(total_rx_packets < (unsigned int)budget)) {
		struct i40e_rx_buffer *bi;
		union i40e_rx_desc *rx_desc;
		unsigned int size;
		u16 vlan_tag;
		u8 rx_ptype;
		u64 qword;

		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
			failure = failure ||
				  !i40e_alloc_rx_buffers_zc(rx_ring,
							    cleaned_count);
			cleaned_count = 0;
		}

		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
		 */
		dma_rmb();

		bi = i40e_clean_programming_status(rx_ring, rx_desc,
						   qword);
		if (unlikely(bi)) {
			i40e_reuse_rx_buffer_zc(rx_ring, bi);
			cleaned_count++;
			continue;
		}

		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

		bi = i40e_get_rx_buffer_zc(rx_ring, size);
		xdp.data = bi->addr;
		xdp.data_meta = xdp.data;
		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
		xdp.data_end = xdp.data + size;
		xdp.handle = bi->handle;

		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
		if (xdp_res) {
			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
				bi->addr = NULL;
			} else {
				i40e_reuse_rx_buffer_zc(rx_ring, bi);
			}

			total_rx_bytes += size;
			total_rx_packets++;

			cleaned_count++;
			i40e_inc_ntc(rx_ring);
			continue;
		}

		/* XDP_PASS path */

		/* NB! We are not checking for errors using
		 * i40e_test_staterr with
		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
		 * SBP is *not* set in PRT_SBPVSI (default not set).
		 */
		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			break;
		}

		cleaned_count++;
		i40e_inc_ntc(rx_ring);

		if (eth_skb_pad(skb))
			continue;

		total_rx_bytes += skb->len;
		total_rx_packets++;

		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);
	}

	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
	return failure ? budget : (int)total_rx_packets;
}

662 663 664 665 666 667 668 669 670
/**
 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
 * @xdp_ring: XDP Tx ring
 * @budget: NAPI budget
 *
 * Returns true if the work is finished.
 **/
static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
{
671
	struct i40e_tx_desc *tx_desc = NULL;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	struct i40e_tx_buffer *tx_bi;
	bool work_done = true;
	dma_addr_t dma;
	u32 len;

	while (budget-- > 0) {
		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
			xdp_ring->tx_stats.tx_busy++;
			work_done = false;
			break;
		}

		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
			break;

		dma_sync_single_for_device(xdp_ring->dev, dma, len,
					   DMA_BIDIRECTIONAL);

		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
		tx_bi->bytecount = len;

		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
		tx_desc->buffer_addr = cpu_to_le64(dma);
		tx_desc->cmd_type_offset_bsz =
			build_ctob(I40E_TX_DESC_CMD_ICRC
				   | I40E_TX_DESC_CMD_EOP,
				   0, len, 0);

		xdp_ring->next_to_use++;
		if (xdp_ring->next_to_use == xdp_ring->count)
			xdp_ring->next_to_use = 0;
	}

705
	if (tx_desc) {
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		/* Request an interrupt for the last frame and bump tail ptr. */
		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
						 I40E_TXD_QW1_CMD_SHIFT);
		i40e_xdp_ring_update_tail(xdp_ring);

		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
	}

	return !!budget && work_done;
}

/**
 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
 * @tx_ring: XDP Tx ring
 * @tx_bi: Tx buffer info to clean
 **/
static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
				     struct i40e_tx_buffer *tx_bi)
{
	xdp_return_frame(tx_bi->xdpf);
	dma_unmap_single(tx_ring->dev,
			 dma_unmap_addr(tx_bi, dma),
			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
	dma_unmap_len_set(tx_bi, len, 0);
}

/**
 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
 * @tx_ring: XDP Tx ring
 * @tx_bi: Tx buffer info to clean
 *
 * Returns true if cleanup/tranmission is done.
 **/
bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
			   struct i40e_ring *tx_ring, int napi_budget)
{
	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
	u32 i, completed_frames, frames_ready, xsk_frames = 0;
	struct xdp_umem *umem = tx_ring->xsk_umem;
	u32 head_idx = i40e_get_head(tx_ring);
	bool work_done = true, xmit_done;
	struct i40e_tx_buffer *tx_bi;

	if (head_idx < tx_ring->next_to_clean)
		head_idx += tx_ring->count;
	frames_ready = head_idx - tx_ring->next_to_clean;

	if (frames_ready == 0) {
		goto out_xmit;
	} else if (frames_ready > budget) {
		completed_frames = budget;
		work_done = false;
	} else {
		completed_frames = frames_ready;
	}

	ntc = tx_ring->next_to_clean;

	for (i = 0; i < completed_frames; i++) {
		tx_bi = &tx_ring->tx_bi[ntc];

		if (tx_bi->xdpf)
			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
		else
			xsk_frames++;

		tx_bi->xdpf = NULL;
		total_bytes += tx_bi->bytecount;

		if (++ntc >= tx_ring->count)
			ntc = 0;
	}

	tx_ring->next_to_clean += completed_frames;
	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
		tx_ring->next_to_clean -= tx_ring->count;

	if (xsk_frames)
		xsk_umem_complete_tx(umem, xsk_frames);

	i40e_arm_wb(tx_ring, vsi, budget);
	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);

out_xmit:
	xmit_done = i40e_xmit_zc(tx_ring, budget);

	return work_done && xmit_done;
}

/**
 * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
 * @dev: the netdevice
 * @queue_id: queue id to wake up
 *
 * Returns <0 for errors, 0 otherwise.
 **/
int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	struct i40e_vsi *vsi = np->vsi;
	struct i40e_ring *ring;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

	if (!i40e_enabled_xdp_vsi(vsi))
		return -ENXIO;

	if (queue_id >= vsi->num_queue_pairs)
		return -ENXIO;

	if (!vsi->xdp_rings[queue_id]->xsk_umem)
		return -ENXIO;

	ring = vsi->xdp_rings[queue_id];

	/* The idea here is that if NAPI is running, mark a miss, so
	 * it will run again. If not, trigger an interrupt and
	 * schedule the NAPI from interrupt context. If NAPI would be
	 * scheduled here, the interrupt affinity would not be
	 * honored.
	 */
	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
		i40e_force_wb(vsi, ring->q_vector);

	return 0;
}
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

/**
 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
 * @xdp_ring: XDP Tx ring
 **/
void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
{
	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
	struct xdp_umem *umem = tx_ring->xsk_umem;
	struct i40e_tx_buffer *tx_bi;
	u32 xsk_frames = 0;

	while (ntc != ntu) {
		tx_bi = &tx_ring->tx_bi[ntc];

		if (tx_bi->xdpf)
			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
		else
			xsk_frames++;

		tx_bi->xdpf = NULL;

		ntc++;
		if (ntc >= tx_ring->count)
			ntc = 0;
	}

	if (xsk_frames)
		xsk_umem_complete_tx(umem, xsk_frames);
}