book3s_hv_nested.c 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright IBM Corporation, 2018
 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
 *	   Paul Mackerras <paulus@ozlabs.org>
 *
 * Description: KVM functions specific to running nested KVM-HV guests
 * on Book3S processors (specifically POWER9 and later).
 */

#include <linux/kernel.h>
#include <linux/kvm_host.h>
13
#include <linux/llist.h>
14 15

#include <asm/kvm_ppc.h>
16
#include <asm/kvm_book3s.h>
17 18 19
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
20 21
#include <asm/pte-walk.h>
#include <asm/reg.h>
22 23 24 25

static struct patb_entry *pseries_partition_tb;

static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
26
static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	hr->pcr = vc->pcr;
	hr->dpdes = vc->dpdes;
	hr->hfscr = vcpu->arch.hfscr;
	hr->tb_offset = vc->tb_offset;
	hr->dawr0 = vcpu->arch.dawr;
	hr->dawrx0 = vcpu->arch.dawrx;
	hr->ciabr = vcpu->arch.ciabr;
	hr->purr = vcpu->arch.purr;
	hr->spurr = vcpu->arch.spurr;
	hr->ic = vcpu->arch.ic;
	hr->vtb = vc->vtb;
	hr->srr0 = vcpu->arch.shregs.srr0;
	hr->srr1 = vcpu->arch.shregs.srr1;
	hr->sprg[0] = vcpu->arch.shregs.sprg0;
	hr->sprg[1] = vcpu->arch.shregs.sprg1;
	hr->sprg[2] = vcpu->arch.shregs.sprg2;
	hr->sprg[3] = vcpu->arch.shregs.sprg3;
	hr->pidr = vcpu->arch.pid;
	hr->cfar = vcpu->arch.cfar;
	hr->ppr = vcpu->arch.ppr;
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static void byteswap_pt_regs(struct pt_regs *regs)
{
	unsigned long *addr = (unsigned long *) regs;

	for (; addr < ((unsigned long *) (regs + 1)); addr++)
		*addr = swab64(*addr);
}

static void byteswap_hv_regs(struct hv_guest_state *hr)
{
	hr->version = swab64(hr->version);
	hr->lpid = swab32(hr->lpid);
	hr->vcpu_token = swab32(hr->vcpu_token);
	hr->lpcr = swab64(hr->lpcr);
	hr->pcr = swab64(hr->pcr);
	hr->amor = swab64(hr->amor);
	hr->dpdes = swab64(hr->dpdes);
	hr->hfscr = swab64(hr->hfscr);
	hr->tb_offset = swab64(hr->tb_offset);
	hr->dawr0 = swab64(hr->dawr0);
	hr->dawrx0 = swab64(hr->dawrx0);
	hr->ciabr = swab64(hr->ciabr);
	hr->hdec_expiry = swab64(hr->hdec_expiry);
	hr->purr = swab64(hr->purr);
	hr->spurr = swab64(hr->spurr);
	hr->ic = swab64(hr->ic);
	hr->vtb = swab64(hr->vtb);
	hr->hdar = swab64(hr->hdar);
	hr->hdsisr = swab64(hr->hdsisr);
	hr->heir = swab64(hr->heir);
	hr->asdr = swab64(hr->asdr);
	hr->srr0 = swab64(hr->srr0);
	hr->srr1 = swab64(hr->srr1);
	hr->sprg[0] = swab64(hr->sprg[0]);
	hr->sprg[1] = swab64(hr->sprg[1]);
	hr->sprg[2] = swab64(hr->sprg[2]);
	hr->sprg[3] = swab64(hr->sprg[3]);
	hr->pidr = swab64(hr->pidr);
	hr->cfar = swab64(hr->cfar);
	hr->ppr = swab64(hr->ppr);
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap,
				 struct hv_guest_state *hr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	hr->dpdes = vc->dpdes;
	hr->hfscr = vcpu->arch.hfscr;
	hr->purr = vcpu->arch.purr;
	hr->spurr = vcpu->arch.spurr;
	hr->ic = vcpu->arch.ic;
	hr->vtb = vc->vtb;
	hr->srr0 = vcpu->arch.shregs.srr0;
	hr->srr1 = vcpu->arch.shregs.srr1;
	hr->sprg[0] = vcpu->arch.shregs.sprg0;
	hr->sprg[1] = vcpu->arch.shregs.sprg1;
	hr->sprg[2] = vcpu->arch.shregs.sprg2;
	hr->sprg[3] = vcpu->arch.shregs.sprg3;
	hr->pidr = vcpu->arch.pid;
	hr->cfar = vcpu->arch.cfar;
	hr->ppr = vcpu->arch.ppr;
	switch (trap) {
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		hr->hdar = vcpu->arch.fault_dar;
		hr->hdsisr = vcpu->arch.fault_dsisr;
		hr->asdr = vcpu->arch.fault_gpa;
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		hr->asdr = vcpu->arch.fault_gpa;
		break;
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		hr->heir = vcpu->arch.emul_inst;
		break;
	}
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
{
	/*
	 * Don't let L1 enable features for L2 which we've disabled for L1,
	 * but preserve the interrupt cause field.
	 */
	hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr);

	/* Don't let data address watchpoint match in hypervisor state */
	hr->dawrx0 &= ~DAWRX_HYP;

	/* Don't let completed instruction address breakpt match in HV state */
	if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
		hr->ciabr &= ~CIABR_PRIV;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	vc->pcr = hr->pcr;
	vc->dpdes = hr->dpdes;
	vcpu->arch.hfscr = hr->hfscr;
	vcpu->arch.dawr = hr->dawr0;
	vcpu->arch.dawrx = hr->dawrx0;
	vcpu->arch.ciabr = hr->ciabr;
	vcpu->arch.purr = hr->purr;
	vcpu->arch.spurr = hr->spurr;
	vcpu->arch.ic = hr->ic;
	vc->vtb = hr->vtb;
	vcpu->arch.shregs.srr0 = hr->srr0;
	vcpu->arch.shregs.srr1 = hr->srr1;
	vcpu->arch.shregs.sprg0 = hr->sprg[0];
	vcpu->arch.shregs.sprg1 = hr->sprg[1];
	vcpu->arch.shregs.sprg2 = hr->sprg[2];
	vcpu->arch.shregs.sprg3 = hr->sprg[3];
	vcpu->arch.pid = hr->pidr;
	vcpu->arch.cfar = hr->cfar;
	vcpu->arch.ppr = hr->ppr;
}

void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
				   struct hv_guest_state *hr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	vc->dpdes = hr->dpdes;
	vcpu->arch.hfscr = hr->hfscr;
	vcpu->arch.purr = hr->purr;
	vcpu->arch.spurr = hr->spurr;
	vcpu->arch.ic = hr->ic;
	vc->vtb = hr->vtb;
	vcpu->arch.fault_dar = hr->hdar;
	vcpu->arch.fault_dsisr = hr->hdsisr;
	vcpu->arch.fault_gpa = hr->asdr;
	vcpu->arch.emul_inst = hr->heir;
	vcpu->arch.shregs.srr0 = hr->srr0;
	vcpu->arch.shregs.srr1 = hr->srr1;
	vcpu->arch.shregs.sprg0 = hr->sprg[0];
	vcpu->arch.shregs.sprg1 = hr->sprg[1];
	vcpu->arch.shregs.sprg2 = hr->sprg[2];
	vcpu->arch.shregs.sprg3 = hr->sprg[3];
	vcpu->arch.pid = hr->pidr;
	vcpu->arch.cfar = hr->cfar;
	vcpu->arch.ppr = hr->ppr;
}

long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
{
	long int err, r;
	struct kvm_nested_guest *l2;
	struct pt_regs l2_regs, saved_l1_regs;
	struct hv_guest_state l2_hv, saved_l1_hv;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 hv_ptr, regs_ptr;
	u64 hdec_exp;
	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
	u64 mask;
	unsigned long lpcr;

	if (vcpu->kvm->arch.l1_ptcr == 0)
		return H_NOT_AVAILABLE;

	/* copy parameters in */
	hv_ptr = kvmppc_get_gpr(vcpu, 4);
	err = kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv,
				  sizeof(struct hv_guest_state));
	if (err)
		return H_PARAMETER;
220 221
	if (kvmppc_need_byteswap(vcpu))
		byteswap_hv_regs(&l2_hv);
222 223 224 225 226 227 228 229
	if (l2_hv.version != HV_GUEST_STATE_VERSION)
		return H_P2;

	regs_ptr = kvmppc_get_gpr(vcpu, 5);
	err = kvm_vcpu_read_guest(vcpu, regs_ptr, &l2_regs,
				  sizeof(struct pt_regs));
	if (err)
		return H_PARAMETER;
230 231
	if (kvmppc_need_byteswap(vcpu))
		byteswap_pt_regs(&l2_regs);
232 233 234
	if (l2_hv.vcpu_token >= NR_CPUS)
		return H_PARAMETER;

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	/* translate lpid */
	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
	if (!l2)
		return H_PARAMETER;
	if (!l2->l1_gr_to_hr) {
		mutex_lock(&l2->tlb_lock);
		kvmhv_update_ptbl_cache(l2);
		mutex_unlock(&l2->tlb_lock);
	}

	/* save l1 values of things */
	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
	saved_l1_regs = vcpu->arch.regs;
	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);

	/* convert TB values/offsets to host (L0) values */
	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
	vc->tb_offset += l2_hv.tb_offset;

	/* set L1 state to L2 state */
	vcpu->arch.nested = l2;
	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
	vcpu->arch.regs = l2_regs;
	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
		LPCR_LPES | LPCR_MER;
	lpcr = (vc->lpcr & ~mask) | (l2_hv.lpcr & mask);
262
	sanitise_hv_regs(vcpu, &l2_hv);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	restore_hv_regs(vcpu, &l2_hv);

	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
	do {
		if (mftb() >= hdec_exp) {
			vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
			r = RESUME_HOST;
			break;
		}
		r = kvmhv_run_single_vcpu(vcpu->arch.kvm_run, vcpu, hdec_exp,
					  lpcr);
	} while (is_kvmppc_resume_guest(r));

	/* save L2 state for return */
	l2_regs = vcpu->arch.regs;
	l2_regs.msr = vcpu->arch.shregs.msr;
	delta_purr = vcpu->arch.purr - l2_hv.purr;
	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
	delta_ic = vcpu->arch.ic - l2_hv.ic;
	delta_vtb = vc->vtb - l2_hv.vtb;
	save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv);

	/* restore L1 state */
	vcpu->arch.nested = NULL;
	vcpu->arch.regs = saved_l1_regs;
	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
	/* set L1 MSR TS field according to L2 transaction state */
	if (l2_regs.msr & MSR_TS_MASK)
		vcpu->arch.shregs.msr |= MSR_TS_S;
	vc->tb_offset = saved_l1_hv.tb_offset;
	restore_hv_regs(vcpu, &saved_l1_hv);
	vcpu->arch.purr += delta_purr;
	vcpu->arch.spurr += delta_spurr;
	vcpu->arch.ic += delta_ic;
	vc->vtb += delta_vtb;

	kvmhv_put_nested(l2);

	/* copy l2_hv_state and regs back to guest */
303 304 305 306
	if (kvmppc_need_byteswap(vcpu)) {
		byteswap_hv_regs(&l2_hv);
		byteswap_pt_regs(&l2_regs);
	}
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	err = kvm_vcpu_write_guest(vcpu, hv_ptr, &l2_hv,
				   sizeof(struct hv_guest_state));
	if (err)
		return H_AUTHORITY;
	err = kvm_vcpu_write_guest(vcpu, regs_ptr, &l2_regs,
				   sizeof(struct pt_regs));
	if (err)
		return H_AUTHORITY;

	if (r == -EINTR)
		return H_INTERRUPT;

	return vcpu->arch.trap;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
long kvmhv_nested_init(void)
{
	long int ptb_order;
	unsigned long ptcr;
	long rc;

	if (!kvmhv_on_pseries())
		return 0;
	if (!radix_enabled())
		return -ENODEV;

	/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
	ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
	if (ptb_order < 8)
		ptb_order = 8;
	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
				       GFP_KERNEL);
	if (!pseries_partition_tb) {
		pr_err("kvm-hv: failed to allocated nested partition table\n");
		return -ENOMEM;
	}

	ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
	if (rc != H_SUCCESS) {
		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
		       rc);
		kfree(pseries_partition_tb);
		pseries_partition_tb = NULL;
		return -ENODEV;
	}

	return 0;
}

void kvmhv_nested_exit(void)
{
	/*
	 * N.B. the kvmhv_on_pseries() test is there because it enables
	 * the compiler to remove the call to plpar_hcall_norets()
	 * when CONFIG_PPC_PSERIES=n.
	 */
	if (kvmhv_on_pseries() && pseries_partition_tb) {
		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
		kfree(pseries_partition_tb);
		pseries_partition_tb = NULL;
	}
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static void kvmhv_flush_lpid(unsigned int lpid)
{
	long rc;

	if (!kvmhv_on_pseries()) {
		radix__flush_tlb_lpid(lpid);
		return;
	}

	rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
				lpid, TLBIEL_INVAL_SET_LPID);
	if (rc)
		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
}

386 387
void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
{
388
	if (!kvmhv_on_pseries()) {
389
		mmu_partition_table_set_entry(lpid, dw0, dw1);
390
		return;
391
	}
392 393 394 395 396

	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
	/* L0 will do the necessary barriers */
	kvmhv_flush_lpid(lpid);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
}

static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
{
	unsigned long dw0;

	dw0 = PATB_HR | radix__get_tree_size() |
		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
}

void kvmhv_vm_nested_init(struct kvm *kvm)
{
	kvm->arch.max_nested_lpid = -1;
}

/*
 * Handle the H_SET_PARTITION_TABLE hcall.
 * r4 = guest real address of partition table + log_2(size) - 12
 * (formatted as for the PTCR).
 */
long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
	int srcu_idx;
	long ret = H_SUCCESS;

	srcu_idx = srcu_read_lock(&kvm->srcu);
	/*
	 * Limit the partition table to 4096 entries (because that's what
	 * hardware supports), and check the base address.
	 */
	if ((ptcr & PRTS_MASK) > 12 - 8 ||
	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
		ret = H_PARAMETER;
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	if (ret == H_SUCCESS)
		kvm->arch.l1_ptcr = ptcr;
	return ret;
}

/*
 * Reload the partition table entry for a guest.
 * Caller must hold gp->tlb_lock.
 */
static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
{
	int ret;
	struct patb_entry ptbl_entry;
	unsigned long ptbl_addr;
	struct kvm *kvm = gp->l1_host;

	ret = -EFAULT;
	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8)))
		ret = kvm_read_guest(kvm, ptbl_addr,
				     &ptbl_entry, sizeof(ptbl_entry));
	if (ret) {
		gp->l1_gr_to_hr = 0;
		gp->process_table = 0;
	} else {
		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
	}
	kvmhv_set_nested_ptbl(gp);
}

struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
{
	struct kvm_nested_guest *gp;
	long shadow_lpid;

	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
	if (!gp)
		return NULL;
	gp->l1_host = kvm;
	gp->l1_lpid = lpid;
	mutex_init(&gp->tlb_lock);
	gp->shadow_pgtable = pgd_alloc(kvm->mm);
	if (!gp->shadow_pgtable)
		goto out_free;
	shadow_lpid = kvmppc_alloc_lpid();
	if (shadow_lpid < 0)
		goto out_free2;
	gp->shadow_lpid = shadow_lpid;

484 485
	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));

486 487 488 489 490 491 492 493 494 495 496 497 498 499
	return gp;

 out_free2:
	pgd_free(kvm->mm, gp->shadow_pgtable);
 out_free:
	kfree(gp);
	return NULL;
}

/*
 * Free up any resources allocated for a nested guest.
 */
static void kvmhv_release_nested(struct kvm_nested_guest *gp)
{
500 501 502 503 504 505 506 507 508 509 510 511
	struct kvm *kvm = gp->l1_host;

	if (gp->shadow_pgtable) {
		/*
		 * No vcpu is using this struct and no call to
		 * kvmhv_get_nested can find this struct,
		 * so we don't need to hold kvm->mmu_lock.
		 */
		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
					  gp->shadow_lpid);
		pgd_free(kvm->mm, gp->shadow_pgtable);
	}
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
	kvmppc_free_lpid(gp->shadow_lpid);
	kfree(gp);
}

static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
{
	struct kvm *kvm = gp->l1_host;
	int lpid = gp->l1_lpid;
	long ref;

	spin_lock(&kvm->mmu_lock);
	if (gp == kvm->arch.nested_guests[lpid]) {
		kvm->arch.nested_guests[lpid] = NULL;
		if (lpid == kvm->arch.max_nested_lpid) {
			while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
				;
			kvm->arch.max_nested_lpid = lpid;
		}
		--gp->refcnt;
	}
	ref = gp->refcnt;
	spin_unlock(&kvm->mmu_lock);
	if (ref == 0)
		kvmhv_release_nested(gp);
}

/*
 * Free up all nested resources allocated for this guest.
 * This is called with no vcpus of the guest running, when
 * switching the guest to HPT mode or when destroying the
 * guest.
 */
void kvmhv_release_all_nested(struct kvm *kvm)
{
	int i;
	struct kvm_nested_guest *gp;
	struct kvm_nested_guest *freelist = NULL;
550 551
	struct kvm_memory_slot *memslot;
	int srcu_idx;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	spin_lock(&kvm->mmu_lock);
	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
		gp = kvm->arch.nested_guests[i];
		if (!gp)
			continue;
		kvm->arch.nested_guests[i] = NULL;
		if (--gp->refcnt == 0) {
			gp->next = freelist;
			freelist = gp;
		}
	}
	kvm->arch.max_nested_lpid = -1;
	spin_unlock(&kvm->mmu_lock);
	while ((gp = freelist) != NULL) {
		freelist = gp->next;
		kvmhv_release_nested(gp);
	}
570 571 572 573 574

	srcu_idx = srcu_read_lock(&kvm->srcu);
	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
		kvmhv_free_memslot_nest_rmap(memslot);
	srcu_read_unlock(&kvm->srcu, srcu_idx);
575 576 577
}

/* caller must hold gp->tlb_lock */
578
static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
579
{
580 581 582 583 584
	struct kvm *kvm = gp->l1_host;

	spin_lock(&kvm->mmu_lock);
	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
	spin_unlock(&kvm->mmu_lock);
585
	kvmhv_flush_lpid(gp->shadow_lpid);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	kvmhv_update_ptbl_cache(gp);
	if (gp->l1_gr_to_hr == 0)
		kvmhv_remove_nested(gp);
}

struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
					  bool create)
{
	struct kvm_nested_guest *gp, *newgp;

	if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
	    l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
		return NULL;

	spin_lock(&kvm->mmu_lock);
	gp = kvm->arch.nested_guests[l1_lpid];
	if (gp)
		++gp->refcnt;
	spin_unlock(&kvm->mmu_lock);

	if (gp || !create)
		return gp;

	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
	if (!newgp)
		return NULL;
	spin_lock(&kvm->mmu_lock);
	if (kvm->arch.nested_guests[l1_lpid]) {
		/* someone else beat us to it */
		gp = kvm->arch.nested_guests[l1_lpid];
	} else {
		kvm->arch.nested_guests[l1_lpid] = newgp;
		++newgp->refcnt;
		gp = newgp;
		newgp = NULL;
		if (l1_lpid > kvm->arch.max_nested_lpid)
			kvm->arch.max_nested_lpid = l1_lpid;
	}
	++gp->refcnt;
	spin_unlock(&kvm->mmu_lock);

	if (newgp)
		kvmhv_release_nested(newgp);

	return gp;
}

void kvmhv_put_nested(struct kvm_nested_guest *gp)
{
	struct kvm *kvm = gp->l1_host;
	long ref;

	spin_lock(&kvm->mmu_lock);
	ref = --gp->refcnt;
	spin_unlock(&kvm->mmu_lock);
	if (ref == 0)
		kvmhv_release_nested(gp);
}
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
{
	if (lpid > kvm->arch.max_nested_lpid)
		return NULL;
	return kvm->arch.nested_guests[lpid];
}

static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
{
	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
				       RMAP_NESTED_GPA_MASK));
}

void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
			    struct rmap_nested **n_rmap)
{
	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
	struct rmap_nested *cursor;
	u64 rmap, new_rmap = (*n_rmap)->rmap;

	/* Are there any existing entries? */
	if (!(*rmapp)) {
		/* No -> use the rmap as a single entry */
		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
		return;
	}

	/* Do any entries match what we're trying to insert? */
	for_each_nest_rmap_safe(cursor, entry, &rmap) {
		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
			return;
	}

	/* Do we need to create a list or just add the new entry? */
	rmap = *rmapp;
	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
		*rmapp = 0UL;
	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
		(*n_rmap)->list.next = (struct llist_node *) rmap;

	/* Set NULL so not freed by caller */
	*n_rmap = NULL;
}

static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
				   unsigned long hpa, unsigned long mask)
{
	struct kvm_nested_guest *gp;
	unsigned long gpa;
	unsigned int shift, lpid;
	pte_t *ptep;

	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
	gp = kvmhv_find_nested(kvm, lpid);
	if (!gp)
		return;

	/* Find and invalidate the pte */
	ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift);
	/* Don't spuriously invalidate ptes if the pfn has changed */
	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
}

static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
					unsigned long hpa, unsigned long mask)
{
	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
	struct rmap_nested *cursor;
	unsigned long rmap;

	for_each_nest_rmap_safe(cursor, entry, &rmap) {
		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
		kfree(cursor);
	}
}

/* called with kvm->mmu_lock held */
void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
				  struct kvm_memory_slot *memslot,
				  unsigned long gpa, unsigned long hpa,
				  unsigned long nbytes)
{
	unsigned long gfn, end_gfn;
	unsigned long addr_mask;

	if (!memslot)
		return;
	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
	end_gfn = gfn + (nbytes >> PAGE_SHIFT);

	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
	hpa &= addr_mask;

	for (; gfn < end_gfn; gfn++) {
		unsigned long *rmap = &memslot->arch.rmap[gfn];
		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
	}
}

static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
{
	unsigned long page;

	for (page = 0; page < free->npages; page++) {
		unsigned long rmap, *rmapp = &free->arch.rmap[page];
		struct rmap_nested *cursor;
		struct llist_node *entry;

		entry = llist_del_all((struct llist_head *) rmapp);
		for_each_nest_rmap_safe(cursor, entry, &rmap)
			kfree(cursor);
	}
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
					struct kvm_nested_guest *gp,
					long gpa, int *shift_ret)
{
	struct kvm *kvm = vcpu->kvm;
	bool ret = false;
	pte_t *ptep;
	int shift;

	spin_lock(&kvm->mmu_lock);
	ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift);
	if (!shift)
		shift = PAGE_SHIFT;
	if (ptep && pte_present(*ptep)) {
		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
		ret = true;
	}
	spin_unlock(&kvm->mmu_lock);

	if (shift_ret)
		*shift_ret = shift;
	return ret;
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static inline int get_ric(unsigned int instr)
{
	return (instr >> 18) & 0x3;
}

static inline int get_prs(unsigned int instr)
{
	return (instr >> 17) & 0x1;
}

static inline int get_r(unsigned int instr)
{
	return (instr >> 16) & 0x1;
}

static inline int get_lpid(unsigned long r_val)
{
	return r_val & 0xffffffff;
}

static inline int get_is(unsigned long r_val)
{
	return (r_val >> 10) & 0x3;
}

static inline int get_ap(unsigned long r_val)
{
	return (r_val >> 5) & 0x7;
}

static inline long get_epn(unsigned long r_val)
{
	return r_val >> 12;
}

static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
					int ap, long epn)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_nested_guest *gp;
	long npages;
	int shift, shadow_shift;
	unsigned long addr;

	shift = ap_to_shift(ap);
	addr = epn << 12;
	if (shift < 0)
		/* Invalid ap encoding */
		return -EINVAL;

	addr &= ~((1UL << shift) - 1);
	npages = 1UL << (shift - PAGE_SHIFT);

	gp = kvmhv_get_nested(kvm, lpid, false);
	if (!gp) /* No such guest -> nothing to do */
		return 0;
	mutex_lock(&gp->tlb_lock);

	/* There may be more than one host page backing this single guest pte */
	do {
		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);

		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
		addr += 1UL << shadow_shift;
	} while (npages > 0);

	mutex_unlock(&gp->tlb_lock);
	kvmhv_put_nested(gp);
	return 0;
}

static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
				     struct kvm_nested_guest *gp, int ric)
{
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&gp->tlb_lock);
	switch (ric) {
	case 0:
		/* Invalidate TLB */
		spin_lock(&kvm->mmu_lock);
		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
					  gp->shadow_lpid);
869
		kvmhv_flush_lpid(gp->shadow_lpid);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		spin_unlock(&kvm->mmu_lock);
		break;
	case 1:
		/*
		 * Invalidate PWC
		 * We don't cache this -> nothing to do
		 */
		break;
	case 2:
		/* Invalidate TLB, PWC and caching of partition table entries */
		kvmhv_flush_nested(gp);
		break;
	default:
		break;
	}
	mutex_unlock(&gp->tlb_lock);
}

static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_nested_guest *gp;
	int i;

	spin_lock(&kvm->mmu_lock);
	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
		gp = kvm->arch.nested_guests[i];
		if (gp) {
			spin_unlock(&kvm->mmu_lock);
			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
			spin_lock(&kvm->mmu_lock);
		}
	}
	spin_unlock(&kvm->mmu_lock);
}

static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
				    unsigned long rsval, unsigned long rbval)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_nested_guest *gp;
	int r, ric, prs, is, ap;
	int lpid;
	long epn;
	int ret = 0;

	ric = get_ric(instr);
	prs = get_prs(instr);
	r = get_r(instr);
	lpid = get_lpid(rsval);
	is = get_is(rbval);

	/*
	 * These cases are invalid and are not handled:
	 * r   != 1 -> Only radix supported
	 * prs == 1 -> Not HV privileged
	 * ric == 3 -> No cluster bombs for radix
	 * is  == 1 -> Partition scoped translations not associated with pid
	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
	 */
	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
	    ((!is) && (ric == 1 || ric == 2)))
		return -EINVAL;

	switch (is) {
	case 0:
		/*
		 * We know ric == 0
		 * Invalidate TLB for a given target address
		 */
		epn = get_epn(rbval);
		ap = get_ap(rbval);
		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
		break;
	case 2:
		/* Invalidate matching LPID */
		gp = kvmhv_get_nested(kvm, lpid, false);
		if (gp) {
			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
			kvmhv_put_nested(gp);
		}
		break;
	case 3:
		/* Invalidate ALL LPIDs */
		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

/*
 * This handles the H_TLB_INVALIDATE hcall.
 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
 * (r6) rB contents.
 */
long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
{
	int ret;

	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
	if (ret)
		return H_PARAMETER;
	return H_SUCCESS;
}

980 981 982 983 984
/* Used to convert a nested guest real address to a L1 guest real address */
static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
				       struct kvm_nested_guest *gp,
				       unsigned long n_gpa, unsigned long dsisr,
				       struct kvmppc_pte *gpte_p)
985
{
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
	int ret;

	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
					 &fault_addr);

	if (ret) {
		/* We didn't find a pte */
		if (ret == -EINVAL) {
			/* Unsupported mmu config */
			flags |= DSISR_UNSUPP_MMU;
		} else if (ret == -ENOENT) {
			/* No translation found */
			flags |= DSISR_NOHPTE;
		} else if (ret == -EFAULT) {
			/* Couldn't access L1 real address */
			flags |= DSISR_PRTABLE_FAULT;
			vcpu->arch.fault_gpa = fault_addr;
		} else {
			/* Unknown error */
			return ret;
		}
		goto forward_to_l1;
	} else {
		/* We found a pte -> check permissions */
		if (dsisr & DSISR_ISSTORE) {
			/* Can we write? */
			if (!gpte_p->may_write) {
				flags |= DSISR_PROTFAULT;
				goto forward_to_l1;
			}
		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
			/* Can we execute? */
			if (!gpte_p->may_execute) {
				flags |= SRR1_ISI_N_OR_G;
				goto forward_to_l1;
			}
		} else {
			/* Can we read? */
			if (!gpte_p->may_read && !gpte_p->may_write) {
				flags |= DSISR_PROTFAULT;
				goto forward_to_l1;
			}
		}
	}

	return 0;

forward_to_l1:
	vcpu->arch.fault_dsisr = flags;
	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
		vcpu->arch.shregs.msr &= ~0x783f0000ul;
		vcpu->arch.shregs.msr |= flags;
	}
1040 1041
	return RESUME_HOST;
}
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
				       struct kvm_nested_guest *gp,
				       unsigned long n_gpa,
				       struct kvmppc_pte gpte,
				       unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
	bool writing = !!(dsisr & DSISR_ISSTORE);
	u64 pgflags;
	bool ret;

	/* Are the rc bits set in the L1 partition scoped pte? */
	pgflags = _PAGE_ACCESSED;
	if (writing)
		pgflags |= _PAGE_DIRTY;
	if (pgflags & ~gpte.rc)
		return RESUME_HOST;

	spin_lock(&kvm->mmu_lock);
	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
	ret = kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, writing,
				     gpte.raddr, kvm->arch.lpid);
	spin_unlock(&kvm->mmu_lock);
	if (!ret)
		return -EINVAL;

	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
	ret = kvmppc_hv_handle_set_rc(kvm, gp->shadow_pgtable, writing, n_gpa,
				      gp->shadow_lpid);
	if (!ret)
		return -EINVAL;
	return 0;
}

static inline int kvmppc_radix_level_to_shift(int level)
{
	switch (level) {
	case 2:
		return PUD_SHIFT;
	case 1:
		return PMD_SHIFT;
	default:
		return PAGE_SHIFT;
	}
}

static inline int kvmppc_radix_shift_to_level(int shift)
{
	if (shift == PUD_SHIFT)
		return 2;
	if (shift == PMD_SHIFT)
		return 1;
	if (shift == PAGE_SHIFT)
		return 0;
	WARN_ON_ONCE(1);
	return 0;
}

/* called with gp->tlb_lock held */
static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
					  struct kvm_nested_guest *gp)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_memory_slot *memslot;
1107
	struct rmap_nested *n_rmap;
1108 1109 1110 1111 1112
	struct kvmppc_pte gpte;
	pte_t pte, *pte_p;
	unsigned long mmu_seq;
	unsigned long dsisr = vcpu->arch.fault_dsisr;
	unsigned long ea = vcpu->arch.fault_dar;
1113
	unsigned long *rmapp;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	unsigned long n_gpa, gpa, gfn, perm = 0UL;
	unsigned int shift, l1_shift, level;
	bool writing = !!(dsisr & DSISR_ISSTORE);
	bool kvm_ro = false;
	long int ret;

	if (!gp->l1_gr_to_hr) {
		kvmhv_update_ptbl_cache(gp);
		if (!gp->l1_gr_to_hr)
			return RESUME_HOST;
	}

	/* Convert the nested guest real address into a L1 guest real address */

	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
	if (!(dsisr & DSISR_PRTABLE_FAULT))
		n_gpa |= ea & 0xFFF;
	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);

	/*
	 * If the hardware found a translation but we don't now have a usable
	 * translation in the l1 partition-scoped tree, remove the shadow pte
	 * and let the guest retry.
	 */
	if (ret == RESUME_HOST &&
	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
		      DSISR_BAD_COPYPASTE)))
		goto inval;
	if (ret)
		return ret;

	/* Failed to set the reference/change bits */
	if (dsisr & DSISR_SET_RC) {
		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
		if (ret == RESUME_HOST)
			return ret;
		if (ret)
			goto inval;
		dsisr &= ~DSISR_SET_RC;
		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
			       DSISR_PROTFAULT)))
			return RESUME_GUEST;
	}

	/*
	 * We took an HISI or HDSI while we were running a nested guest which
	 * means we have no partition scoped translation for that. This means
	 * we need to insert a pte for the mapping into our shadow_pgtable.
	 */

	l1_shift = gpte.page_shift;
	if (l1_shift < PAGE_SHIFT) {
		/* We don't support l1 using a page size smaller than our own */
		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
			l1_shift, PAGE_SHIFT);
		return -EINVAL;
	}
	gpa = gpte.raddr;
	gfn = gpa >> PAGE_SHIFT;

	/* 1. Get the corresponding host memslot */

	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
			/* unusual error -> reflect to the guest as a DSI */
			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
			return RESUME_GUEST;
		}
		/* passthrough of emulated MMIO case... */
		pr_err("emulated MMIO passthrough?\n");
		return -EINVAL;
	}
	if (memslot->flags & KVM_MEM_READONLY) {
		if (writing) {
			/* Give the guest a DSI */
			kvmppc_core_queue_data_storage(vcpu, ea,
					DSISR_ISSTORE | DSISR_PROTFAULT);
			return RESUME_GUEST;
		}
		kvm_ro = true;
	}

	/* 2. Find the host pte for this L1 guest real address */

	/* Used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

	/* See if can find translation in our partition scoped tables for L1 */
	pte = __pte(0);
	spin_lock(&kvm->mmu_lock);
	pte_p = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
	if (!shift)
		shift = PAGE_SHIFT;
	if (pte_p)
		pte = *pte_p;
	spin_unlock(&kvm->mmu_lock);

	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
		/* No suitable pte found -> try to insert a mapping */
		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
					writing, kvm_ro, &pte, &level);
		if (ret == -EAGAIN)
			return RESUME_GUEST;
		else if (ret)
			return ret;
		shift = kvmppc_radix_level_to_shift(level);
	}

	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */

	/* The permissions is the combination of the host and l1 guest ptes */
	perm |= gpte.may_read ? 0UL : _PAGE_READ;
	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
	pte = __pte(pte_val(pte) & ~perm);

	/* What size pte can we insert? */
	if (shift > l1_shift) {
		u64 mask;
		unsigned int actual_shift = PAGE_SHIFT;
		if (PMD_SHIFT < l1_shift)
			actual_shift = PMD_SHIFT;
		mask = (1UL << shift) - (1UL << actual_shift);
		pte = __pte(pte_val(pte) | (gpa & mask));
		shift = actual_shift;
	}
	level = kvmppc_radix_shift_to_level(shift);
	n_gpa &= ~((1UL << shift) - 1);

	/* 4. Insert the pte into our shadow_pgtable */

1247 1248 1249 1250 1251 1252
	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
	if (!n_rmap)
		return RESUME_GUEST; /* Let the guest try again */
	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1253
	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1254 1255 1256
				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
	if (n_rmap)
		kfree(n_rmap);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (ret == -EAGAIN)
		ret = RESUME_GUEST;	/* Let the guest try again */

	return ret;

 inval:
	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
	return RESUME_GUEST;
}

long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
{
	struct kvm_nested_guest *gp = vcpu->arch.nested;
	long int ret;

	mutex_lock(&gp->tlb_lock);
	ret = __kvmhv_nested_page_fault(vcpu, gp);
	mutex_unlock(&gp->tlb_lock);
	return ret;
}
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
{
	int ret = -1;

	spin_lock(&kvm->mmu_lock);
	while (++lpid <= kvm->arch.max_nested_lpid) {
		if (kvm->arch.nested_guests[lpid]) {
			ret = lpid;
			break;
		}
	}
	spin_unlock(&kvm->mmu_lock);
	return ret;
}