intel_ddi.c 91.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H and S */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
136
	{ 0x80009010, 0x000000C0, 0x1 },
137 138
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
139
	{ 0x80007011, 0x000000C0, 0x1 },
140
	{ 0x00002016, 0x000000DF, 0x0 },
141
	{ 0x80005012, 0x000000C0, 0x1 },
142 143
};

144 145
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146
	{ 0x0000201B, 0x000000A2, 0x0 },
147
	{ 0x00005012, 0x00000088, 0x0 },
148
	{ 0x80007011, 0x000000CD, 0x0 },
149
	{ 0x80009010, 0x000000C0, 0x1 },
150
	{ 0x0000201B, 0x0000009D, 0x0 },
151 152
	{ 0x80005012, 0x000000C0, 0x1 },
	{ 0x80007011, 0x000000C0, 0x1 },
153
	{ 0x00002016, 0x00000088, 0x0 },
154
	{ 0x80005012, 0x000000C0, 0x1 },
155 156
};

157 158
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 160
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
161
	{ 0x80007011, 0x000000CD, 0x0 },
162
	{ 0x80009010, 0x000000C0, 0x3 },
163
	{ 0x00000018, 0x0000009D, 0x0 },
164 165
	{ 0x80005012, 0x000000C0, 0x3 },
	{ 0x80007011, 0x000000C0, 0x3 },
166
	{ 0x00000018, 0x00000088, 0x0 },
167
	{ 0x80005012, 0x000000C0, 0x3 },
168 169 170
};

/*
171
 * Skylake H and S
172 173
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204
/*
205
 * Skylake Y
206 207
 * eDP 1.4 low vswing translation parameters
 */
208
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 210 211 212 213 214 215 216 217 218 219
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake U, H and S */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
229
	{ 0x80006012, 0x000000CD, 0x1 },
230
	{ 0x00000018, 0x000000DF, 0x0 },
231 232 233
	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x1 },
	{ 0x80000018, 0x000000C0, 0x1 },
234 235
};

236 237
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 239
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
240
	{ 0x80007011, 0x000000CB, 0x3 },
241 242 243
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
244
	{ 0x80006013, 0x000000C0, 0x3 },
245
	{ 0x00000018, 0x0000008A, 0x0 },
246 247 248
	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x3 },
	{ 0x80000018, 0x000000C0, 0x3 },
249 250
};

251 252 253 254 255 256 257 258 259 260
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
261 262 263 264 265 266 267 268 269
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
					/* Idx	NT mV diff	db  */
	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
};

287 288 289 290 291
/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
292 293 294 295 296 297 298 299 300
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 302 303
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

304 305
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
				    u32 level, enum port port, int type);
306

307 308 309
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
310
{
311
	struct drm_encoder *encoder = &intel_encoder->base;
312

313 314
	switch (intel_encoder->type) {
	case INTEL_OUTPUT_DP_MST:
315 316
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
317 318 319 320 321
		break;
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_EDP:
	case INTEL_OUTPUT_HDMI:
	case INTEL_OUTPUT_UNKNOWN:
322 323
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
324 325
		break;
	case INTEL_OUTPUT_ANALOG:
326 327
		*dig_port = NULL;
		*port = PORT_E;
328 329 330 331
		break;
	default:
		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
		break;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

345
static const struct ddi_buf_trans *
346
skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
347
{
348
	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
349
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
350
		return skl_y_ddi_translations_dp;
351
	} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
352
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
353
		return skl_u_ddi_translations_dp;
354 355
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
356
		return skl_ddi_translations_dp;
357 358 359
	}
}

360
static const struct ddi_buf_trans *
361
skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
362
{
363
	if (dev_priv->edp_low_vswing) {
364
		if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
365
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
366
			return skl_y_ddi_translations_edp;
367
		} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
368
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
369
			return skl_u_ddi_translations_edp;
370 371
		} else {
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
372
			return skl_ddi_translations_edp;
373 374
		}
	}
375

376
	return skl_get_buf_trans_dp(dev_priv, n_entries);
377 378 379
}

static const struct ddi_buf_trans *
380
skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
381
{
382
	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
383
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
384
		return skl_y_ddi_translations_hdmi;
385 386
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
387
		return skl_ddi_translations_hdmi;
388 389 390
	}
}

391 392 393
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
394 395 396 397
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
398
void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
399
{
400
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
401
	u32 iboost_bit = 0;
402
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
403
	    size;
404 405
	int hdmi_level;
	enum port port;
406 407 408 409 410
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
411

412 413 414
	port = intel_ddi_get_encoder_port(encoder);
	hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;

415
	if (IS_BROXTON(dev_priv)) {
416
		if (encoder->type != INTEL_OUTPUT_HDMI)
417 418 419
			return;

		/* Vswing programming for HDMI */
420
		bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
421 422
					INTEL_OUTPUT_HDMI);
		return;
423 424 425
	}

	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
426
		ddi_translations_fdi = NULL;
427
		ddi_translations_dp =
428
				skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
429
		ddi_translations_edp =
430
				skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
431
		ddi_translations_hdmi =
432
				skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
433
		hdmi_default_entry = 8;
434 435 436 437
		/* If we're boosting the current, set bit 31 of trans1 */
		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
			iboost_bit = 1<<31;
438 439 440 441

		if (WARN_ON(port != PORT_A &&
			    port != PORT_E && n_edp_entries > 9))
			n_edp_entries = 9;
442
	} else if (IS_BROADWELL(dev_priv)) {
443 444
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
445
		ddi_translations_edp = bdw_ddi_translations_edp;
446
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
447 448
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
449
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
450
		hdmi_default_entry = 7;
451
	} else if (IS_HASWELL(dev_priv)) {
452 453
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
454
		ddi_translations_edp = hsw_ddi_translations_dp;
455
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
456
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
457
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
458
		hdmi_default_entry = 6;
459 460
	} else {
		WARN(1, "ddi translation table missing\n");
461
		ddi_translations_edp = bdw_ddi_translations_dp;
462 463
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
464
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
465 466
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
467
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
468
		hdmi_default_entry = 7;
469 470
	}

471 472
	switch (encoder->type) {
	case INTEL_OUTPUT_EDP:
473
		ddi_translations = ddi_translations_edp;
474
		size = n_edp_entries;
475
		break;
476 477
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_HDMI:
478
		ddi_translations = ddi_translations_dp;
479
		size = n_dp_entries;
480
		break;
481 482
	case INTEL_OUTPUT_ANALOG:
		ddi_translations = ddi_translations_fdi;
483
		size = n_dp_entries;
484 485 486 487
		break;
	default:
		BUG();
	}
488

489 490 491 492 493
	for (i = 0; i < size; i++) {
		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
			   ddi_translations[i].trans1 | iboost_bit);
		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
			   ddi_translations[i].trans2);
494
	}
495

496
	if (encoder->type != INTEL_OUTPUT_HDMI)
497 498
		return;

499 500 501
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
502
		hdmi_level = hdmi_default_entry;
503

504
	/* Entry 9 is for HDMI: */
505 506 507 508
	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
		   ddi_translations_hdmi[hdmi_level].trans2);
509 510
}

511 512 513
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
514
	i915_reg_t reg = DDI_BUF_CTL(port);
515 516
	int i;

517
	for (i = 0; i < 16; i++) {
518 519 520 521 522 523
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
539
	struct intel_encoder *encoder;
540
	u32 temp, i, rx_ctl_val;
541

542 543 544 545 546
	for_each_encoder_on_crtc(dev, crtc, encoder) {
		WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
		intel_prepare_ddi_buffer(encoder);
	}

547 548 549 550
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
551 552
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
553
	 */
554
	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
555 556 557 558
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
559
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
560
		     FDI_RX_PLL_ENABLE |
561
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
562 563
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
	POSTING_READ(FDI_RX_CTL(PIPE_A));
564 565 566 567
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
568
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
569 570

	/* Configure Port Clock Select */
571 572
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
573 574 575

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
576
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
577 578 579 580 581 582 583
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

584 585 586 587
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
588
		I915_WRITE(DDI_BUF_CTL(PORT_E),
589
			   DDI_BUF_CTL_ENABLE |
590
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
591
			   DDI_BUF_TRANS_SELECT(i / 2));
592
		POSTING_READ(DDI_BUF_CTL(PORT_E));
593 594 595

		udelay(600);

596
		/* Program PCH FDI Receiver TU */
597
		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
598 599 600

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
601 602
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
603 604 605 606 607

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
608
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
609
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
610 611
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
612 613 614

		/* Wait for FDI auto training time */
		udelay(5);
615 616 617

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
618
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
619 620
			break;
		}
621

622 623 624 625 626 627 628
		/*
		 * Leave things enabled even if we failed to train FDI.
		 * Results in less fireworks from the state checker.
		 */
		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
			DRM_ERROR("FDI link training failed!\n");
			break;
629
		}
630

631 632 633 634 635
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

636
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
637 638 639 640 641 642 643
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
644 645

		rx_ctl_val &= ~FDI_RX_ENABLE;
646 647
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
648 649

		/* Reset FDI_RX_MISC pwrdn lanes */
650
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
651 652
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
653 654
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
655 656
	}

657 658 659 660 661 662
	/* Enable normal pixel sending for FDI */
	I915_WRITE(DP_TP_CTL(PORT_E),
		   DP_TP_CTL_FDI_AUTOTRAIN |
		   DP_TP_CTL_LINK_TRAIN_NORMAL |
		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
		   DP_TP_CTL_ENABLE);
663
}
664

665 666 667 668 669 670 671
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
672
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
673
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
690 691
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
692 693 694 695 696

	BUG_ON(ret == NULL);
	return ret;
}

697
struct intel_encoder *
698
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
699
{
700 701 702
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
703 704
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
705
	int num_encoders = 0;
706
	int i;
707

708 709
	state = crtc_state->base.state;

710 711
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
712 713
			continue;

714
		ret = to_intel_encoder(connector_state->best_encoder);
715
		num_encoders++;
716 717 718 719 720 721 722 723 724
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

725
#define LC_FREQ 2700
726
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
727 728 729 730 731 732 733 734 735 736 737

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

738 739 740 741 742
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
743

744
struct hsw_wrpll_rnp {
745 746 747
	unsigned p, n2, r2;
};

748
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
749
{
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
818

819 820 821
	return budget;
}

822 823 824
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
825 826
{
	uint64_t a, b, c, d, diff, diff_best;
827

828 829 830 831 832 833 834
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
852 853 854
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

881 882
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				   i915_reg_t reg)
883 884 885 886 887 888
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
889 890 891
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
892 893 894 895 896 897 898
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
899
	case WRPLL_PLL_LCPLL:
900 901 902 903 904 905 906 907 908 909 910
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

911 912
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
913 914
}

915 916 917
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
918
	i915_reg_t cfgcr1_reg, cfgcr2_reg;
919 920 921
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

922 923
	cfgcr1_reg = DPLL_CFGCR1(dpll);
	cfgcr2_reg = DPLL_CFGCR2(dpll);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
995 996

static void skl_ddi_clock_get(struct intel_encoder *encoder,
997
				struct intel_crtc_state *pipe_config)
998 999 1000 1001 1002
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1003
	dpll = pipe_config->ddi_pll_sel;
1004 1005 1006 1007 1008 1009

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1010 1011
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1012 1013

		switch (link_clock) {
1014
		case DPLL_CTRL1_LINK_RATE_810:
1015 1016
			link_clock = 81000;
			break;
1017
		case DPLL_CTRL1_LINK_RATE_1080:
1018 1019
			link_clock = 108000;
			break;
1020
		case DPLL_CTRL1_LINK_RATE_1350:
1021 1022
			link_clock = 135000;
			break;
1023
		case DPLL_CTRL1_LINK_RATE_1620:
1024 1025
			link_clock = 162000;
			break;
1026
		case DPLL_CTRL1_LINK_RATE_2160:
1027 1028
			link_clock = 216000;
			break;
1029
		case DPLL_CTRL1_LINK_RATE_2700:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1041
	ddi_dotclock_get(pipe_config);
1042 1043
}

1044
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1045
			      struct intel_crtc_state *pipe_config)
1046 1047 1048 1049 1050
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1051
	val = pipe_config->ddi_pll_sel;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1063
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1064 1065
		break;
	case PORT_CLK_SEL_WRPLL2:
1066
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1088
	ddi_dotclock_get(pipe_config);
1089 1090
}

1091 1092 1093
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1114 1115 1116 1117 1118 1119 1120 1121 1122
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1123
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1124

1125
	ddi_dotclock_get(pipe_config);
1126 1127
}

1128
void intel_ddi_clock_get(struct intel_encoder *encoder,
1129
			 struct intel_crtc_state *pipe_config)
1130
{
1131 1132 1133 1134
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1135
	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1136
		skl_ddi_clock_get(encoder, pipe_config);
1137 1138
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1139 1140
}

1141
static void
1142 1143
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1144 1145 1146
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1147
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1148 1149 1150 1151
	unsigned budget;

	freq2k = clock / 100;

1152
	budget = hsw_wrpll_get_budget_for_freq(clock);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1196 1197
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1198 1199
		}
	}
1200

1201 1202 1203
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1204 1205
}

1206
static bool
1207
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1208
		   struct intel_crtc_state *crtc_state,
1209
		   struct intel_encoder *intel_encoder)
1210
{
1211 1212
	int clock = crtc_state->port_clock;

1213
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1214
		struct intel_shared_dpll *pll;
1215
		uint32_t val;
1216
		unsigned p, n2, r2;
1217

1218
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1219

1220
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1221 1222 1223
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1224 1225 1226
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1227
		crtc_state->dpll_hw_state.wrpll = val;
1228

1229
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1230 1231 1232 1233
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1234
		}
1235

1236
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	} else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
		struct drm_atomic_state *state = crtc_state->base.state;
		struct intel_shared_dpll_config *spll =
			&intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];

		if (spll->crtc_mask &&
		    WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
			return false;

		crtc_state->shared_dpll = DPLL_ID_SPLL;
		spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
		spll->crtc_mask |= 1 << intel_crtc->pipe;
1249 1250 1251 1252 1253
	}

	return true;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1421
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1422
	params->dco_fraction =
1423 1424
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1425 1426
}

1427
static bool
1428 1429 1430 1431
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1432 1433 1434
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1464 1465 1466 1467 1468 1469 1470
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1471 1472
			}
		}
1473

1474
skip_remaining_dividers:
1475 1476 1477 1478 1479 1480
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1481 1482
	}

1483 1484
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1485
		return false;
1486
	}
1487

1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1496 1497

	return true;
1498 1499 1500 1501
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1502
		   struct intel_crtc_state *crtc_state,
1503
		   struct intel_encoder *intel_encoder)
1504 1505 1506
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;
1507
	int clock = crtc_state->port_clock;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1521 1522
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1534 1535
		switch (crtc_state->port_clock / 2) {
		case 81000:
1536
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1537
			break;
1538
		case 135000:
1539
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1540
			break;
1541
		case 270000:
1542
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1543 1544 1545 1546 1547 1548 1549
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1550 1551 1552
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1553 1554 1555
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1556

1557
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1558 1559 1560 1561 1562 1563 1564
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1565
	crtc_state->ddi_pll_sel = pll->id + 1;
1566 1567 1568

	return true;
}
1569

1570 1571
/* bxt clock parameters */
struct bxt_clk_div {
1572
	int clock;
1573 1574 1575 1576 1577 1578 1579 1580 1581
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1582 1583 1584 1585 1586 1587 1588 1589
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1590 1591 1592 1593 1594
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
1595
		   struct intel_encoder *intel_encoder)
1596 1597 1598
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1599 1600
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1601
	uint32_t lanestagger;
1602
	int clock = crtc_state->port_clock;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1626
		vco = best_clock.vco;
1627 1628
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1629
		int i;
1630

1631 1632 1633 1634 1635 1636
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1637
		}
1638 1639 1640
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1641
	if (vco >= 6200000 && vco <= 6700000) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1660 1661
	}

1662 1663 1664
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1687
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1688
	crtc_state->dpll_hw_state.pll6 |=
1689 1690 1691
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1692

1693 1694
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1695 1696 1697
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1698

1699 1700
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1701
	crtc_state->dpll_hw_state.pcsdw12 =
1702
		LANESTAGGER_STRAP_OVRD | lanestagger;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1717 1718 1719 1720 1721 1722 1723
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1724 1725
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1726
{
1727
	struct drm_device *dev = intel_crtc->base.dev;
1728
	struct intel_encoder *intel_encoder =
1729
		intel_ddi_get_crtc_new_encoder(crtc_state);
1730

1731
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1732
		return skl_ddi_pll_select(intel_crtc, crtc_state,
1733
					  intel_encoder);
1734 1735
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1736
					  intel_encoder);
1737
	else
1738
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1739
					  intel_encoder);
1740 1741
}

1742 1743 1744 1745 1746
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1747
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1748 1749 1750
	int type = intel_encoder->type;
	uint32_t temp;

1751
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1752
		temp = TRANS_MSA_SYNC_CLK;
1753
		switch (intel_crtc->config->pipe_bpp) {
1754
		case 18:
1755
			temp |= TRANS_MSA_6_BPC;
1756 1757
			break;
		case 24:
1758
			temp |= TRANS_MSA_8_BPC;
1759 1760
			break;
		case 30:
1761
			temp |= TRANS_MSA_10_BPC;
1762 1763
			break;
		case 36:
1764
			temp |= TRANS_MSA_12_BPC;
1765 1766
			break;
		default:
1767
			BUG();
1768
		}
1769
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1770 1771 1772
	}
}

1773 1774 1775 1776 1777
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1778
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1779 1780 1781 1782 1783 1784 1785 1786 1787
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1788
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1789 1790 1791
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1792
	struct drm_encoder *encoder = &intel_encoder->base;
1793 1794
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1795
	enum pipe pipe = intel_crtc->pipe;
1796
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1797
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1798
	int type = intel_encoder->type;
1799 1800
	uint32_t temp;

1801 1802
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1803
	temp |= TRANS_DDI_SELECT_PORT(port);
1804

1805
	switch (intel_crtc->config->pipe_bpp) {
1806
	case 18:
1807
		temp |= TRANS_DDI_BPC_6;
1808 1809
		break;
	case 24:
1810
		temp |= TRANS_DDI_BPC_8;
1811 1812
		break;
	case 30:
1813
		temp |= TRANS_DDI_BPC_10;
1814 1815
		break;
	case 36:
1816
		temp |= TRANS_DDI_BPC_12;
1817 1818
		break;
	default:
1819
		BUG();
1820
	}
1821

1822
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1823
		temp |= TRANS_DDI_PVSYNC;
1824
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1825
		temp |= TRANS_DDI_PHSYNC;
1826

1827 1828 1829
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1830 1831 1832 1833
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1834
			if (IS_HASWELL(dev) &&
1835 1836
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1837 1838 1839
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1853
	if (type == INTEL_OUTPUT_HDMI) {
1854
		if (intel_crtc->config->has_hdmi_sink)
1855
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1856
		else
1857
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1858

1859
	} else if (type == INTEL_OUTPUT_ANALOG) {
1860
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1861
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1862 1863 1864 1865 1866

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1867 1868 1869 1870 1871
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

1872
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1873 1874 1875 1876 1877 1878 1879
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1880

1881
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1882
	} else {
1883 1884
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1885 1886
	}

1887
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1888
}
1889

1890 1891
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1892
{
1893
	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1894 1895
	uint32_t val = I915_READ(reg);

1896
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1897
	val |= TRANS_DDI_PORT_NONE;
1898
	I915_WRITE(reg, val);
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1910
	enum intel_display_power_domain power_domain;
1911 1912
	uint32_t tmp;

1913
	power_domain = intel_display_port_power_domain(intel_encoder);
1914
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1915 1916
		return false;

1917 1918 1919 1920 1921 1922
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1923
		cpu_transcoder = (enum transcoder) pipe;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1936 1937 1938 1939
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1940 1941 1942 1943 1944 1945 1946 1947 1948

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1949 1950 1951 1952 1953
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1954
	enum port port = intel_ddi_get_encoder_port(encoder);
1955
	enum intel_display_power_domain power_domain;
1956 1957 1958
	u32 tmp;
	int i;

1959
	power_domain = intel_display_port_power_domain(encoder);
1960
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1961 1962
		return false;

1963
	tmp = I915_READ(DDI_BUF_CTL(port));
1964 1965 1966 1967

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

1968 1969
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
1991 1992 1993
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

1994 1995 1996
				*pipe = i;
				return true;
			}
1997 1998 1999
		}
	}

2000
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2001

2002
	return false;
2003 2004
}

2005 2006 2007
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
2008 2009
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2010 2011
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2012
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2013

2014 2015 2016
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2017 2018 2019 2020 2021
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2022
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2023

2024 2025 2026
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2027 2028
}

2029 2030
static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
			       u32 level, enum port port, int type)
2031 2032 2033
{
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
2034
	uint8_t dp_iboost, hdmi_iboost;
2035 2036 2037
	int n_entries;
	u32 reg;

2038 2039 2040 2041
	/* VBT may override standard boost values */
	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;

2042
	if (type == INTEL_OUTPUT_DISPLAYPORT) {
2043 2044 2045
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
2046
			ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
2047
			iboost = ddi_translations[level].i_boost;
2048
		}
2049
	} else if (type == INTEL_OUTPUT_EDP) {
2050 2051 2052
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
2053
			ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
2054 2055 2056 2057 2058

			if (WARN_ON(port != PORT_A &&
				    port != PORT_E && n_entries > 9))
				n_entries = 9;

2059
			iboost = ddi_translations[level].i_boost;
2060
		}
2061
	} else if (type == INTEL_OUTPUT_HDMI) {
2062 2063 2064
		if (hdmi_iboost) {
			iboost = hdmi_iboost;
		} else {
2065
			ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
2066
			iboost = ddi_translations[level].i_boost;
2067
		}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

2090 2091
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
				    u32 level, enum port port, int type)
2092 2093 2094 2095 2096
{
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

2097 2098 2099 2100 2101
	if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
		ddi_translations = bxt_ddi_translations_edp;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT
			|| type == INTEL_OUTPUT_EDP) {
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2139
	val &= ~SCALE_DCOMP_METHOD;
2140
	if (ddi_translations[level].enable)
2141 2142 2143 2144 2145
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2207
	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
2208 2209 2210 2211 2212 2213 2214 2215 2216
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

2217 2218 2219 2220
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
		skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
	else if (IS_BROXTON(dev_priv))
		bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
2221 2222 2223 2224

	return DDI_BUF_TRANS_SELECT(level);
}

2225 2226
void intel_ddi_clk_select(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config)
2227
{
2228 2229
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = intel_ddi_get_encoder_port(encoder);
2230

2231 2232
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
		uint32_t dpll = pipe_config->ddi_pll_sel;
2233 2234
		uint32_t val;

2235 2236 2237 2238
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
2239
		if (encoder->type == INTEL_OUTPUT_EDP) {
2240 2241 2242 2243 2244 2245
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2246
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2247
			val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2248 2249 2250 2251 2252 2253

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2254 2255 2256 2257 2258 2259 2260 2261
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2262

2263 2264 2265
	} else if (INTEL_INFO(dev_priv)->gen < 9) {
		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2266
	}
2267 2268 2269 2270 2271
}

static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
	struct drm_encoder *encoder = &intel_encoder->base;
2272
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
2273 2274 2275
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2276 2277

	intel_prepare_ddi_buffer(intel_encoder);
2278 2279 2280 2281 2282 2283 2284

	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
		intel_edp_panel_on(intel_dp);
	}

	intel_ddi_clk_select(intel_encoder, crtc->config);
2285

2286
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2287
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2288

2289 2290
		intel_dp_set_link_params(intel_dp, crtc->config);

2291
		intel_ddi_init_dp_buf_reg(intel_encoder);
2292 2293 2294

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
2295
		if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
2296
			intel_dp_stop_link_train(intel_dp);
2297 2298 2299 2300
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

		intel_hdmi->set_infoframes(encoder,
2301 2302
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2303
	}
2304 2305
}

P
Paulo Zanoni 已提交
2306
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2307 2308
{
	struct drm_encoder *encoder = &intel_encoder->base;
2309 2310
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2311
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2312
	int type = intel_encoder->type;
2313
	uint32_t val;
2314
	bool wait = false;
2315 2316 2317 2318 2319

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2320
		wait = true;
2321
	}
2322

2323 2324 2325 2326 2327 2328 2329 2330
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2331
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2332
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2333
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2334
		intel_edp_panel_vdd_on(intel_dp);
2335
		intel_edp_panel_off(intel_dp);
2336 2337
	}

2338
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2339 2340
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2341
	else if (INTEL_INFO(dev)->gen < 9)
2342
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2343 2344
}

P
Paulo Zanoni 已提交
2345
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2346
{
2347
	struct drm_encoder *encoder = &intel_encoder->base;
2348 2349
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2350
	struct drm_device *dev = encoder->dev;
2351
	struct drm_i915_private *dev_priv = dev->dev_private;
2352 2353
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2354

2355
	if (type == INTEL_OUTPUT_HDMI) {
2356 2357 2358
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2359 2360 2361 2362
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2363
		I915_WRITE(DDI_BUF_CTL(port),
2364 2365
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2366 2367 2368
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2369
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2370 2371
			intel_dp_stop_link_train(intel_dp);

2372
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2373
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2374
		intel_edp_drrs_enable(intel_dp);
2375
	}
2376

2377
	if (intel_crtc->config->has_audio) {
2378
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2379
		intel_audio_codec_enable(intel_encoder);
2380
	}
2381 2382
}

P
Paulo Zanoni 已提交
2383
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2384
{
2385
	struct drm_encoder *encoder = &intel_encoder->base;
2386 2387
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388
	int type = intel_encoder->type;
2389 2390
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2391

2392
	if (intel_crtc->config->has_audio) {
2393
		intel_audio_codec_disable(intel_encoder);
2394 2395
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2396

2397 2398 2399
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2400
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2401
		intel_psr_disable(intel_dp);
2402
		intel_edp_backlight_off(intel_dp);
2403
	}
2404
}
P
Paulo Zanoni 已提交
2405

2406
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2407 2408
			       struct intel_shared_dpll *pll)
{
2409
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2410 2411 2412 2413
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2414
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2415
				struct intel_shared_dpll *pll)
2416 2417 2418 2419 2420 2421 2422 2423
{
	I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
2424 2425 2426 2427 2428 2429 2430 2431
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
2445 2446 2447
{
	uint32_t val;

2448
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2449 2450 2451 2452 2453 2454 2455 2456
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	return val & SPLL_PLL_ENABLE;
}


2473
static const char * const hsw_ddi_pll_names[] = {
2474 2475
	"WRPLL 1",
	"WRPLL 2",
2476
	"SPLL"
2477 2478
};

2479
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2480
{
2481 2482
	int i;

2483
	dev_priv->num_shared_dpll = 3;
2484

2485
	for (i = 0; i < 2; i++) {
2486 2487
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2488 2489
		dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
		dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2490
		dev_priv->shared_dplls[i].get_hw_state =
2491
			hsw_ddi_wrpll_get_hw_state;
2492
	}
2493 2494 2495 2496 2497 2498 2499 2500

	/* SPLL is special, but needs to be initialized anyway.. */
	dev_priv->shared_dplls[i].id = i;
	dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
	dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
	dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
	dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;

2501 2502
}

2503 2504 2505 2506 2507 2508 2509
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
2510
	i915_reg_t ctl, cfgcr1, cfgcr2;
2511 2512 2513 2514 2515 2516 2517
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
2518 2519
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2520 2521 2522
	},
	{
		/* DPLL 2 */
2523
		.ctl = WRPLL_CTL(0),
2524 2525
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2526 2527 2528
	},
	{
		/* DPLL 3 */
2529
		.ctl = WRPLL_CTL(1),
2530 2531
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2548
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2814 2815
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2816
	temp |= pll->config.hw_state.pll9;
2817 2818 2819 2820 2821 2822 2823
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2824 2825 2826 2827 2828

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2829 2830
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2881 2882
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2883 2884 2885
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2886
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2887 2888
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2889
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2890 2891
	hw_state->pll1 &= PORT_PLL_N_MASK;

2892
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2893 2894
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2895
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2896 2897
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2898
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2899 2900 2901 2902
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2903
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2904 2905
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2906 2907 2908
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2909
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2910 2911 2912
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2913 2914 2915 2916 2917 2918
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2919
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2920 2921 2922
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2923
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2944 2945 2946 2947 2948
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2949
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2950
		skl_shared_dplls_init(dev_priv);
2951 2952
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2953 2954
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2955

2956
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2957 2958 2959
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2960
		dev_priv->skl_boot_cdclk = cdclk_freq;
2961 2962
		if (skl_sanitize_cdclk(dev_priv))
			DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
2963 2964
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
2965 2966
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
2967
		broxton_ddi_phy_init(dev);
2968 2969 2970 2971 2972 2973 2974 2975 2976
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
2977

2978 2979 2980
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
2981
}
2982

2983
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
2984
{
2985 2986 2987
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
2988
	enum port port = intel_dig_port->port;
2989
	uint32_t val;
2990
	bool wait = false;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

3010
	val = DP_TP_CTL_ENABLE |
3011
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3012 3013 3014 3015 3016 3017 3018
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
3019 3020 3021 3022 3023 3024 3025 3026 3027
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
3028

3029 3030 3031 3032 3033 3034 3035 3036
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

3037
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3038
	val &= ~FDI_RX_ENABLE;
3039
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3040

3041
	val = I915_READ(FDI_RX_MISC(PIPE_A));
3042 3043
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3044
	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3045

3046
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3047
	val &= ~FDI_PCDCLK;
3048
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3049

3050
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3051
	val &= ~FDI_RX_PLL_ENABLE;
3052
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3053 3054
}

L
Libin Yang 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
				 struct intel_crtc *intel_crtc)
{
	u32 temp;

	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
			return true;
	}
	return false;
}

3068
void intel_ddi_get_config(struct intel_encoder *encoder,
3069
			  struct intel_crtc_state *pipe_config)
3070 3071 3072
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3073
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3074
	struct intel_hdmi *intel_hdmi;
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3087
	pipe_config->base.adjusted_mode.flags |= flags;
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3105 3106 3107

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3108
		pipe_config->has_hdmi_sink = true;
3109 3110
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

3111
		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3112
			pipe_config->has_infoframe = true;
3113
		break;
3114 3115 3116 3117 3118 3119
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
3120 3121
		pipe_config->lane_count =
			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3122 3123 3124 3125 3126
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3127

L
Libin Yang 已提交
3128 3129
	pipe_config->has_audio =
		intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3150

3151
	intel_ddi_clock_get(encoder, pipe_config);
3152 3153
}

P
Paulo Zanoni 已提交
3154 3155 3156 3157 3158 3159
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3160
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3161
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3162
{
3163
	int type = encoder->type;
3164
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3165

3166
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3167

3168 3169 3170
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3171
	if (type == INTEL_OUTPUT_HDMI)
3172
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3173
	else
3174
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3175 3176 3177 3178 3179 3180
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3181 3182 3183 3184 3185 3186
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3187
	connector = intel_connector_alloc();
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3206
	connector = intel_connector_alloc();
3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3216 3217
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3218
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3219 3220 3221
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3222
	bool init_hdmi, init_dp;
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	int max_lanes;

	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
		switch (port) {
		case PORT_A:
			max_lanes = 4;
			break;
		case PORT_E:
			max_lanes = 0;
			break;
		default:
			max_lanes = 4;
			break;
		}
	} else {
		switch (port) {
		case PORT_A:
			max_lanes = 2;
			break;
		case PORT_E:
			max_lanes = 2;
			break;
		default:
			max_lanes = 4;
			break;
		}
	}
3250 3251 3252 3253 3254

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3255
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3256
			      port_name(port));
3257
		return;
3258
	}
P
Paulo Zanoni 已提交
3259

3260
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3270
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3271 3272 3273 3274 3275
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3276
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3277 3278

	intel_dig_port->port = port;
3279
	dev_priv->dig_port_map[port] = intel_encoder;
3280 3281 3282
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
3283
	intel_dig_port->max_lanes = max_lanes;
P
Paulo Zanoni 已提交
3284

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	/*
	 * Bspec says that DDI_A_4_LANES is the only supported configuration
	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
	 * wasn't lit up at boot.  Force this bit on in our internal
	 * configuration so that we use the proper lane count for our
	 * calculations.
	 */
	if (IS_BROXTON(dev) && port == PORT_A) {
		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
		}
	}

P
Paulo Zanoni 已提交
3299
	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3300
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3301
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3302

3303 3304 3305
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3306

3307
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3308 3309 3310 3311
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
3312
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3313 3314 3315
			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
		else
			dev_priv->hotplug.irq_port[port] = intel_dig_port;
3316
	}
3317

3318 3319
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3320 3321 3322
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3323
	}
3324 3325 3326 3327 3328 3329

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3330
}