ccp-ops.c 45.8 KB
Newer Older
1 2 3
/*
 * AMD Cryptographic Coprocessor (CCP) driver
 *
4
 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5 6
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7
 * Author: Gary R Hook <gary.hook@amd.com>
8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <crypto/scatterwalk.h>
19
#include <linux/ccp.h>
20 21 22

#include "ccp-dev.h"

23
/* SHA initial context values */
24
static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
25 26
	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
27
	cpu_to_be32(SHA1_H4),
28 29
};

30
static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
31 32 33 34 35 36
	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
};

37
static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
38 39 40 41 42 43
	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
};

44 45 46
#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
					ccp_gen_jobid(ccp) : 0)

47 48 49 50 51 52 53 54 55 56 57 58 59 60
static u32 ccp_gen_jobid(struct ccp_device *ccp)
{
	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
}

static void ccp_sg_free(struct ccp_sg_workarea *wa)
{
	if (wa->dma_count)
		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);

	wa->dma_count = 0;
}

static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
61
				struct scatterlist *sg, u64 len,
62 63 64 65 66 67 68 69
				enum dma_data_direction dma_dir)
{
	memset(wa, 0, sizeof(*wa));

	wa->sg = sg;
	if (!sg)
		return 0;

70 71 72 73
	wa->nents = sg_nents_for_len(sg, len);
	if (wa->nents < 0)
		return wa->nents;

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	wa->bytes_left = len;
	wa->sg_used = 0;

	if (len == 0)
		return 0;

	if (dma_dir == DMA_NONE)
		return 0;

	wa->dma_sg = sg;
	wa->dma_dev = dev;
	wa->dma_dir = dma_dir;
	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
	if (!wa->dma_count)
		return -ENOMEM;

	return 0;
}

static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
{
95
	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	if (!wa->sg)
		return;

	wa->sg_used += nbytes;
	wa->bytes_left -= nbytes;
	if (wa->sg_used == wa->sg->length) {
		wa->sg = sg_next(wa->sg);
		wa->sg_used = 0;
	}
}

static void ccp_dm_free(struct ccp_dm_workarea *wa)
{
	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
		if (wa->address)
			dma_pool_free(wa->dma_pool, wa->address,
				      wa->dma.address);
	} else {
		if (wa->dma.address)
			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
					 wa->dma.dir);
		kfree(wa->address);
	}

	wa->address = NULL;
	wa->dma.address = 0;
}

static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
				struct ccp_cmd_queue *cmd_q,
				unsigned int len,
				enum dma_data_direction dir)
{
	memset(wa, 0, sizeof(*wa));

	if (!len)
		return 0;

	wa->dev = cmd_q->ccp->dev;
	wa->length = len;

	if (len <= CCP_DMAPOOL_MAX_SIZE) {
		wa->dma_pool = cmd_q->dma_pool;

		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
					     &wa->dma.address);
		if (!wa->address)
			return -ENOMEM;

		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;

		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
	} else {
		wa->address = kzalloc(len, GFP_KERNEL);
		if (!wa->address)
			return -ENOMEM;

		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
						 dir);
		if (!wa->dma.address)
			return -ENOMEM;

		wa->dma.length = len;
	}
	wa->dma.dir = dir;

	return 0;
}

static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
			    struct scatterlist *sg, unsigned int sg_offset,
			    unsigned int len)
{
	WARN_ON(!wa->address);

	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
				 0);
}

static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
			    struct scatterlist *sg, unsigned int sg_offset,
			    unsigned int len)
{
	WARN_ON(!wa->address);

	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
				 1);
}

186 187 188 189
static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
				   struct scatterlist *sg,
				   unsigned int len, unsigned int se_len,
				   bool sign_extend)
190
{
191
	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
192 193
	u8 buffer[CCP_REVERSE_BUF_SIZE];

194 195
	if (WARN_ON(se_len > sizeof(buffer)))
		return -EINVAL;
196 197 198 199 200

	sg_offset = len;
	dm_offset = 0;
	nbytes = len;
	while (nbytes) {
201 202
		sb_len = min_t(unsigned int, nbytes, se_len);
		sg_offset -= sb_len;
203

204 205 206
		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 0);
		for (i = 0; i < sb_len; i++)
			wa->address[dm_offset + i] = buffer[sb_len - i - 1];
207

208 209
		dm_offset += sb_len;
		nbytes -= sb_len;
210

211
		if ((sb_len != se_len) && sign_extend) {
212 213 214
			/* Must sign-extend to nearest sign-extend length */
			if (wa->address[dm_offset - 1] & 0x80)
				memset(wa->address + dm_offset, 0xff,
215
				       se_len - sb_len);
216 217
		}
	}
218 219

	return 0;
220 221 222 223 224 225
}

static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
				    struct scatterlist *sg,
				    unsigned int len)
{
226
	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
227 228 229 230 231 232
	u8 buffer[CCP_REVERSE_BUF_SIZE];

	sg_offset = 0;
	dm_offset = len;
	nbytes = len;
	while (nbytes) {
233 234
		sb_len = min_t(unsigned int, nbytes, sizeof(buffer));
		dm_offset -= sb_len;
235

236 237 238
		for (i = 0; i < sb_len; i++)
			buffer[sb_len - i - 1] = wa->address[dm_offset + i];
		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 1);
239

240 241
		sg_offset += sb_len;
		nbytes -= sb_len;
242 243 244 245 246 247 248 249 250 251
	}
}

static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
{
	ccp_dm_free(&data->dm_wa);
	ccp_sg_free(&data->sg_wa);
}

static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
252
			 struct scatterlist *sg, u64 sg_len,
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
			 unsigned int dm_len,
			 enum dma_data_direction dir)
{
	int ret;

	memset(data, 0, sizeof(*data));

	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
				   dir);
	if (ret)
		goto e_err;

	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
	if (ret)
		goto e_err;

	return 0;

e_err:
	ccp_free_data(data, cmd_q);

	return ret;
}

static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
{
	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
	unsigned int buf_count, nbytes;

	/* Clear the buffer if setting it */
	if (!from)
		memset(dm_wa->address, 0, dm_wa->length);

	if (!sg_wa->sg)
		return 0;

290 291 292 293 294
	/* Perform the copy operation
	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
	 *   an unsigned int
	 */
	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
295 296 297 298 299 300
	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
				 nbytes, from);

	/* Update the structures and generate the count */
	buf_count = 0;
	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
301 302 303
		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
			     dm_wa->length - buf_count);
		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

		buf_count += nbytes;
		ccp_update_sg_workarea(sg_wa, nbytes);
	}

	return buf_count;
}

static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
{
	return ccp_queue_buf(data, 0);
}

static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
{
	return ccp_queue_buf(data, 1);
}

static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
			     struct ccp_op *op, unsigned int block_size,
			     bool blocksize_op)
{
	unsigned int sg_src_len, sg_dst_len, op_len;

	/* The CCP can only DMA from/to one address each per operation. This
	 * requires that we find the smallest DMA area between the source
330 331
	 * and destination. The resulting len values will always be <= UINT_MAX
	 * because the dma length is an unsigned int.
332
	 */
333 334
	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
335 336

	if (dst) {
337 338
		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
339
		op_len = min(sg_src_len, sg_dst_len);
340
	} else {
341
		op_len = sg_src_len;
342
	}
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	/* The data operation length will be at least block_size in length
	 * or the smaller of available sg room remaining for the source or
	 * the destination
	 */
	op_len = max(op_len, block_size);

	/* Unless we have to buffer data, there's no reason to wait */
	op->soc = 0;

	if (sg_src_len < block_size) {
		/* Not enough data in the sg element, so it
		 * needs to be buffered into a blocksize chunk
		 */
		int cp_len = ccp_fill_queue_buf(src);

		op->soc = 1;
		op->src.u.dma.address = src->dm_wa.dma.address;
		op->src.u.dma.offset = 0;
		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
	} else {
		/* Enough data in the sg element, but we need to
		 * adjust for any previously copied data
		 */
		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
		op->src.u.dma.offset = src->sg_wa.sg_used;
		op->src.u.dma.length = op_len & ~(block_size - 1);

		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
	}

	if (dst) {
		if (sg_dst_len < block_size) {
			/* Not enough room in the sg element or we're on the
			 * last piece of data (when using padding), so the
			 * output needs to be buffered into a blocksize chunk
			 */
			op->soc = 1;
			op->dst.u.dma.address = dst->dm_wa.dma.address;
			op->dst.u.dma.offset = 0;
			op->dst.u.dma.length = op->src.u.dma.length;
		} else {
			/* Enough room in the sg element, but we need to
			 * adjust for any previously used area
			 */
			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
			op->dst.u.dma.offset = dst->sg_wa.sg_used;
			op->dst.u.dma.length = op->src.u.dma.length;
		}
	}
}

static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
			     struct ccp_op *op)
{
	op->init = 0;

	if (dst) {
		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
			ccp_empty_queue_buf(dst);
		else
			ccp_update_sg_workarea(&dst->sg_wa,
					       op->dst.u.dma.length);
	}
}

409 410 411
static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
			       u32 byte_swap, bool from)
412 413 414 415 416 417 418 419 420 421 422
{
	struct ccp_op op;

	memset(&op, 0, sizeof(op));

	op.cmd_q = cmd_q;
	op.jobid = jobid;
	op.eom = 1;

	if (from) {
		op.soc = 1;
423 424
		op.src.type = CCP_MEMTYPE_SB;
		op.src.u.sb = sb;
425 426 427 428 429 430 431
		op.dst.type = CCP_MEMTYPE_SYSTEM;
		op.dst.u.dma.address = wa->dma.address;
		op.dst.u.dma.length = wa->length;
	} else {
		op.src.type = CCP_MEMTYPE_SYSTEM;
		op.src.u.dma.address = wa->dma.address;
		op.src.u.dma.length = wa->length;
432 433
		op.dst.type = CCP_MEMTYPE_SB;
		op.dst.u.sb = sb;
434 435 436 437
	}

	op.u.passthru.byte_swap = byte_swap;

438
	return cmd_q->ccp->vdata->perform->passthru(&op);
439 440
}

441 442 443
static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
			  u32 byte_swap)
444
{
445
	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
446 447
}

448 449 450
static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
			    u32 byte_swap)
451
{
452
	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
}

static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
				struct ccp_cmd *cmd)
{
	struct ccp_aes_engine *aes = &cmd->u.aes;
	struct ccp_dm_workarea key, ctx;
	struct ccp_data src;
	struct ccp_op op;
	unsigned int dm_offset;
	int ret;

	if (!((aes->key_len == AES_KEYSIZE_128) ||
	      (aes->key_len == AES_KEYSIZE_192) ||
	      (aes->key_len == AES_KEYSIZE_256)))
		return -EINVAL;

	if (aes->src_len & (AES_BLOCK_SIZE - 1))
		return -EINVAL;

	if (aes->iv_len != AES_BLOCK_SIZE)
		return -EINVAL;

	if (!aes->key || !aes->iv || !aes->src)
		return -EINVAL;

	if (aes->cmac_final) {
		if (aes->cmac_key_len != AES_BLOCK_SIZE)
			return -EINVAL;

		if (!aes->cmac_key)
			return -EINVAL;
	}

487 488
	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
489 490 491 492

	ret = -EIO;
	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
493
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
494 495
	op.sb_key = cmd_q->sb_key;
	op.sb_ctx = cmd_q->sb_ctx;
496 497 498 499 500
	op.init = 1;
	op.u.aes.type = aes->type;
	op.u.aes.mode = aes->mode;
	op.u.aes.action = aes->action;

501
	/* All supported key sizes fit in a single (32-byte) SB entry
502 503 504 505 506
	 * and must be in little endian format. Use the 256-bit byte
	 * swap passthru option to convert from big endian to little
	 * endian.
	 */
	ret = ccp_init_dm_workarea(&key, cmd_q,
507
				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
508 509 510 511
				   DMA_TO_DEVICE);
	if (ret)
		return ret;

512
	dm_offset = CCP_SB_BYTES - aes->key_len;
513
	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
514 515
	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
			     CCP_PASSTHRU_BYTESWAP_256BIT);
516 517 518 519 520
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_key;
	}

521
	/* The AES context fits in a single (32-byte) SB entry and
522 523 524 525
	 * must be in little endian format. Use the 256-bit byte swap
	 * passthru option to convert from big endian to little endian.
	 */
	ret = ccp_init_dm_workarea(&ctx, cmd_q,
526
				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
527 528 529 530
				   DMA_BIDIRECTIONAL);
	if (ret)
		goto e_key;

531
	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
532
	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
533 534
	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			     CCP_PASSTHRU_BYTESWAP_256BIT);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_ctx;
	}

	/* Send data to the CCP AES engine */
	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
	if (ret)
		goto e_ctx;

	while (src.sg_wa.bytes_left) {
		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
		if (aes->cmac_final && !src.sg_wa.bytes_left) {
			op.eom = 1;

			/* Push the K1/K2 key to the CCP now */
552 553 554
			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
					       op.sb_ctx,
					       CCP_PASSTHRU_BYTESWAP_256BIT);
555 556 557 558 559 560 561
			if (ret) {
				cmd->engine_error = cmd_q->cmd_error;
				goto e_src;
			}

			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
					aes->cmac_key_len);
562 563
			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
					     CCP_PASSTHRU_BYTESWAP_256BIT);
564 565 566 567 568 569
			if (ret) {
				cmd->engine_error = cmd_q->cmd_error;
				goto e_src;
			}
		}

570
		ret = cmd_q->ccp->vdata->perform->aes(&op);
571 572 573 574 575 576 577 578 579 580 581
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_src;
		}

		ccp_process_data(&src, NULL, &op);
	}

	/* Retrieve the AES context - convert from LE to BE using
	 * 32-byte (256-bit) byteswapping
	 */
582 583
	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			       CCP_PASSTHRU_BYTESWAP_256BIT);
584 585 586 587 588 589
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_src;
	}

	/* ...but we only need AES_BLOCK_SIZE bytes */
590
	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);

e_src:
	ccp_free_data(&src, cmd_q);

e_ctx:
	ccp_dm_free(&ctx);

e_key:
	ccp_dm_free(&key);

	return ret;
}

static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_aes_engine *aes = &cmd->u.aes;
	struct ccp_dm_workarea key, ctx;
	struct ccp_data src, dst;
	struct ccp_op op;
	unsigned int dm_offset;
	bool in_place = false;
	int ret;

	if (aes->mode == CCP_AES_MODE_CMAC)
		return ccp_run_aes_cmac_cmd(cmd_q, cmd);

	if (!((aes->key_len == AES_KEYSIZE_128) ||
	      (aes->key_len == AES_KEYSIZE_192) ||
	      (aes->key_len == AES_KEYSIZE_256)))
		return -EINVAL;

	if (((aes->mode == CCP_AES_MODE_ECB) ||
	     (aes->mode == CCP_AES_MODE_CBC) ||
	     (aes->mode == CCP_AES_MODE_CFB)) &&
	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
		return -EINVAL;

	if (!aes->key || !aes->src || !aes->dst)
		return -EINVAL;

	if (aes->mode != CCP_AES_MODE_ECB) {
		if (aes->iv_len != AES_BLOCK_SIZE)
			return -EINVAL;

		if (!aes->iv)
			return -EINVAL;
	}

640 641
	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
642 643 644 645

	ret = -EIO;
	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
646
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
647 648
	op.sb_key = cmd_q->sb_key;
	op.sb_ctx = cmd_q->sb_ctx;
649 650 651 652 653
	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
	op.u.aes.type = aes->type;
	op.u.aes.mode = aes->mode;
	op.u.aes.action = aes->action;

654
	/* All supported key sizes fit in a single (32-byte) SB entry
655 656 657 658 659
	 * and must be in little endian format. Use the 256-bit byte
	 * swap passthru option to convert from big endian to little
	 * endian.
	 */
	ret = ccp_init_dm_workarea(&key, cmd_q,
660
				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
661 662 663 664
				   DMA_TO_DEVICE);
	if (ret)
		return ret;

665
	dm_offset = CCP_SB_BYTES - aes->key_len;
666
	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
667 668
	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
			     CCP_PASSTHRU_BYTESWAP_256BIT);
669 670 671 672 673
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_key;
	}

674
	/* The AES context fits in a single (32-byte) SB entry and
675 676 677 678
	 * must be in little endian format. Use the 256-bit byte swap
	 * passthru option to convert from big endian to little endian.
	 */
	ret = ccp_init_dm_workarea(&ctx, cmd_q,
679
				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
680 681 682 683 684
				   DMA_BIDIRECTIONAL);
	if (ret)
		goto e_key;

	if (aes->mode != CCP_AES_MODE_ECB) {
685
		/* Load the AES context - convert to LE */
686
		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
687
		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
688 689
		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
				     CCP_PASSTHRU_BYTESWAP_256BIT);
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_ctx;
		}
	}

	/* Prepare the input and output data workareas. For in-place
	 * operations we need to set the dma direction to BIDIRECTIONAL
	 * and copy the src workarea to the dst workarea.
	 */
	if (sg_virt(aes->src) == sg_virt(aes->dst))
		in_place = true;

	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
			    AES_BLOCK_SIZE,
			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
	if (ret)
		goto e_ctx;

709
	if (in_place) {
710
		dst = src;
711
	} else {
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
		if (ret)
			goto e_src;
	}

	/* Send data to the CCP AES engine */
	while (src.sg_wa.bytes_left) {
		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
		if (!src.sg_wa.bytes_left) {
			op.eom = 1;

			/* Since we don't retrieve the AES context in ECB
			 * mode we have to wait for the operation to complete
			 * on the last piece of data
			 */
			if (aes->mode == CCP_AES_MODE_ECB)
				op.soc = 1;
		}

732
		ret = cmd_q->ccp->vdata->perform->aes(&op);
733 734 735 736 737 738 739 740 741 742 743 744
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_dst;
		}

		ccp_process_data(&src, &dst, &op);
	}

	if (aes->mode != CCP_AES_MODE_ECB) {
		/* Retrieve the AES context - convert from LE to BE using
		 * 32-byte (256-bit) byteswapping
		 */
745 746
		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
				       CCP_PASSTHRU_BYTESWAP_256BIT);
747 748 749 750 751 752
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_dst;
		}

		/* ...but we only need AES_BLOCK_SIZE bytes */
753
		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
	}

e_dst:
	if (!in_place)
		ccp_free_data(&dst, cmd_q);

e_src:
	ccp_free_data(&src, cmd_q);

e_ctx:
	ccp_dm_free(&ctx);

e_key:
	ccp_dm_free(&key);

	return ret;
}

static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
			       struct ccp_cmd *cmd)
{
	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
	struct ccp_dm_workarea key, ctx;
	struct ccp_data src, dst;
	struct ccp_op op;
	unsigned int unit_size, dm_offset;
	bool in_place = false;
	int ret;

	switch (xts->unit_size) {
	case CCP_XTS_AES_UNIT_SIZE_16:
		unit_size = 16;
		break;
	case CCP_XTS_AES_UNIT_SIZE_512:
		unit_size = 512;
		break;
	case CCP_XTS_AES_UNIT_SIZE_1024:
		unit_size = 1024;
		break;
	case CCP_XTS_AES_UNIT_SIZE_2048:
		unit_size = 2048;
		break;
	case CCP_XTS_AES_UNIT_SIZE_4096:
		unit_size = 4096;
		break;

	default:
		return -EINVAL;
	}

	if (xts->key_len != AES_KEYSIZE_128)
		return -EINVAL;

	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
		return -EINVAL;

	if (xts->iv_len != AES_BLOCK_SIZE)
		return -EINVAL;

	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
		return -EINVAL;

817 818
	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
819 820 821 822

	ret = -EIO;
	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
823
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
824 825
	op.sb_key = cmd_q->sb_key;
	op.sb_ctx = cmd_q->sb_ctx;
826 827 828 829
	op.init = 1;
	op.u.xts.action = xts->action;
	op.u.xts.unit_size = xts->unit_size;

830
	/* All supported key sizes fit in a single (32-byte) SB entry
831 832 833 834 835
	 * and must be in little endian format. Use the 256-bit byte
	 * swap passthru option to convert from big endian to little
	 * endian.
	 */
	ret = ccp_init_dm_workarea(&key, cmd_q,
836
				   CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
837 838 839 840
				   DMA_TO_DEVICE);
	if (ret)
		return ret;

841
	dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
842 843
	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
844 845
	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
			     CCP_PASSTHRU_BYTESWAP_256BIT);
846 847 848 849 850
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_key;
	}

851
	/* The AES context fits in a single (32-byte) SB entry and
852 853 854 855
	 * for XTS is already in little endian format so no byte swapping
	 * is needed.
	 */
	ret = ccp_init_dm_workarea(&ctx, cmd_q,
856
				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
857 858 859 860 861
				   DMA_BIDIRECTIONAL);
	if (ret)
		goto e_key;

	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
862 863
	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			     CCP_PASSTHRU_BYTESWAP_NOOP);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_ctx;
	}

	/* Prepare the input and output data workareas. For in-place
	 * operations we need to set the dma direction to BIDIRECTIONAL
	 * and copy the src workarea to the dst workarea.
	 */
	if (sg_virt(xts->src) == sg_virt(xts->dst))
		in_place = true;

	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
			    unit_size,
			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
	if (ret)
		goto e_ctx;

882
	if (in_place) {
883
		dst = src;
884
	} else {
885 886 887 888 889 890 891 892 893 894 895 896
		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
				    unit_size, DMA_FROM_DEVICE);
		if (ret)
			goto e_src;
	}

	/* Send data to the CCP AES engine */
	while (src.sg_wa.bytes_left) {
		ccp_prepare_data(&src, &dst, &op, unit_size, true);
		if (!src.sg_wa.bytes_left)
			op.eom = 1;

897
		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
898 899 900 901 902 903 904 905 906 907 908
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_dst;
		}

		ccp_process_data(&src, &dst, &op);
	}

	/* Retrieve the AES context - convert from LE to BE using
	 * 32-byte (256-bit) byteswapping
	 */
909 910
	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			       CCP_PASSTHRU_BYTESWAP_256BIT);
911 912 913 914 915 916
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_dst;
	}

	/* ...but we only need AES_BLOCK_SIZE bytes */
917
	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);

e_dst:
	if (!in_place)
		ccp_free_data(&dst, cmd_q);

e_src:
	ccp_free_data(&src, cmd_q);

e_ctx:
	ccp_dm_free(&ctx);

e_key:
	ccp_dm_free(&key);

	return ret;
}

static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_sha_engine *sha = &cmd->u.sha;
	struct ccp_dm_workarea ctx;
	struct ccp_data src;
	struct ccp_op op;
942 943 944 945 946 947
	unsigned int ioffset, ooffset;
	unsigned int digest_size;
	int sb_count;
	const void *init;
	u64 block_size;
	int ctx_size;
948 949
	int ret;

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	switch (sha->type) {
	case CCP_SHA_TYPE_1:
		if (sha->ctx_len < SHA1_DIGEST_SIZE)
			return -EINVAL;
		block_size = SHA1_BLOCK_SIZE;
		break;
	case CCP_SHA_TYPE_224:
		if (sha->ctx_len < SHA224_DIGEST_SIZE)
			return -EINVAL;
		block_size = SHA224_BLOCK_SIZE;
		break;
	case CCP_SHA_TYPE_256:
		if (sha->ctx_len < SHA256_DIGEST_SIZE)
			return -EINVAL;
		block_size = SHA256_BLOCK_SIZE;
		break;
	default:
967
		return -EINVAL;
968
	}
969 970 971 972

	if (!sha->ctx)
		return -EINVAL;

973
	if (!sha->final && (sha->src_len & (block_size - 1)))
974 975
		return -EINVAL;

976 977
	/* The version 3 device can't handle zero-length input */
	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
978

979 980 981
		if (!sha->src_len) {
			unsigned int digest_len;
			const u8 *sha_zero;
982

983 984 985
			/* Not final, just return */
			if (!sha->final)
				return 0;
986

987 988 989 990 991
			/* CCP can't do a zero length sha operation so the
			 * caller must buffer the data.
			 */
			if (sha->msg_bits)
				return -EINVAL;
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			/* The CCP cannot perform zero-length sha operations
			 * so the caller is required to buffer data for the
			 * final operation. However, a sha operation for a
			 * message with a total length of zero is valid so
			 * known values are required to supply the result.
			 */
			switch (sha->type) {
			case CCP_SHA_TYPE_1:
				sha_zero = sha1_zero_message_hash;
				digest_len = SHA1_DIGEST_SIZE;
				break;
			case CCP_SHA_TYPE_224:
				sha_zero = sha224_zero_message_hash;
				digest_len = SHA224_DIGEST_SIZE;
				break;
			case CCP_SHA_TYPE_256:
				sha_zero = sha256_zero_message_hash;
				digest_len = SHA256_DIGEST_SIZE;
				break;
			default:
				return -EINVAL;
			}
1015

1016 1017 1018 1019 1020
			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
						 digest_len, 1);

			return 0;
		}
1021 1022
	}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	/* Set variables used throughout */
	switch (sha->type) {
	case CCP_SHA_TYPE_1:
		digest_size = SHA1_DIGEST_SIZE;
		init = (void *) ccp_sha1_init;
		ctx_size = SHA1_DIGEST_SIZE;
		sb_count = 1;
		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
		else
			ooffset = ioffset = 0;
		break;
	case CCP_SHA_TYPE_224:
		digest_size = SHA224_DIGEST_SIZE;
		init = (void *) ccp_sha224_init;
		ctx_size = SHA256_DIGEST_SIZE;
		sb_count = 1;
		ioffset = 0;
		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
		else
			ooffset = 0;
		break;
	case CCP_SHA_TYPE_256:
		digest_size = SHA256_DIGEST_SIZE;
		init = (void *) ccp_sha256_init;
		ctx_size = SHA256_DIGEST_SIZE;
		sb_count = 1;
		ooffset = ioffset = 0;
		break;
	default:
		ret = -EINVAL;
		goto e_data;
	}
1057

1058 1059 1060 1061 1062
	/* For zero-length plaintext the src pointer is ignored;
	 * otherwise both parts must be valid
	 */
	if (sha->src_len && !sha->src)
		return -EINVAL;
1063 1064 1065

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
1066 1067
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1068 1069 1070
	op.u.sha.type = sha->type;
	op.u.sha.msg_bits = sha->msg_bits;

1071
	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1072 1073 1074
				   DMA_BIDIRECTIONAL);
	if (ret)
		return ret;
1075 1076 1077 1078 1079
	if (sha->first) {
		switch (sha->type) {
		case CCP_SHA_TYPE_1:
		case CCP_SHA_TYPE_224:
		case CCP_SHA_TYPE_256:
1080
			memcpy(ctx.address + ioffset, init, ctx_size);
1081 1082 1083 1084 1085
			break;
		default:
			ret = -EINVAL;
			goto e_ctx;
		}
1086
	} else {
1087 1088 1089
		/* Restore the context */
		ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
				sb_count * CCP_SB_BYTES);
1090
	}
1091

1092 1093
	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			     CCP_PASSTHRU_BYTESWAP_256BIT);
1094 1095 1096 1097 1098
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_ctx;
	}

1099 1100 1101 1102 1103 1104
	if (sha->src) {
		/* Send data to the CCP SHA engine; block_size is set above */
		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
				    block_size, DMA_TO_DEVICE);
		if (ret)
			goto e_ctx;
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		while (src.sg_wa.bytes_left) {
			ccp_prepare_data(&src, NULL, &op, block_size, false);
			if (sha->final && !src.sg_wa.bytes_left)
				op.eom = 1;

			ret = cmd_q->ccp->vdata->perform->sha(&op);
			if (ret) {
				cmd->engine_error = cmd_q->cmd_error;
				goto e_data;
			}
1116

1117 1118 1119 1120
			ccp_process_data(&src, NULL, &op);
		}
	} else {
		op.eom = 1;
1121
		ret = cmd_q->ccp->vdata->perform->sha(&op);
1122 1123 1124 1125 1126 1127 1128 1129 1130
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_data;
		}
	}

	/* Retrieve the SHA context - convert from LE to BE using
	 * 32-byte (256-bit) byteswapping to BE
	 */
1131 1132
	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
			       CCP_PASSTHRU_BYTESWAP_256BIT);
1133 1134 1135 1136 1137
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_data;
	}

1138 1139
	if (sha->final) {
		/* Finishing up, so get the digest */
1140 1141 1142 1143
		switch (sha->type) {
		case CCP_SHA_TYPE_1:
		case CCP_SHA_TYPE_224:
		case CCP_SHA_TYPE_256:
1144 1145 1146
			ccp_get_dm_area(&ctx, ooffset,
					sha->ctx, 0,
					digest_size);
1147 1148 1149
			break;
		default:
			ret = -EINVAL;
1150
			goto e_ctx;
1151
		}
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	} else {
		/* Stash the context */
		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
				sb_count * CCP_SB_BYTES);
	}

	if (sha->final && sha->opad) {
		/* HMAC operation, recursively perform final SHA */
		struct ccp_cmd hmac_cmd;
		struct scatterlist sg;
		u8 *hmac_buf;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

		if (sha->opad_len != block_size) {
			ret = -EINVAL;
			goto e_data;
		}

		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
		if (!hmac_buf) {
			ret = -ENOMEM;
			goto e_data;
		}
		sg_init_one(&sg, hmac_buf, block_size + digest_size);

		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		switch (sha->type) {
		case CCP_SHA_TYPE_1:
		case CCP_SHA_TYPE_224:
		case CCP_SHA_TYPE_256:
			memcpy(hmac_buf + block_size,
			       ctx.address + ooffset,
			       digest_size);
			break;
		default:
			ret = -EINVAL;
			goto e_ctx;
		}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
		hmac_cmd.engine = CCP_ENGINE_SHA;
		hmac_cmd.u.sha.type = sha->type;
		hmac_cmd.u.sha.ctx = sha->ctx;
		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
		hmac_cmd.u.sha.src = &sg;
		hmac_cmd.u.sha.src_len = block_size + digest_size;
		hmac_cmd.u.sha.opad = NULL;
		hmac_cmd.u.sha.opad_len = 0;
		hmac_cmd.u.sha.first = 1;
		hmac_cmd.u.sha.final = 1;
		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;

		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
		if (ret)
			cmd->engine_error = hmac_cmd.engine_error;

		kfree(hmac_buf);
	}

1210
e_data:
1211 1212
	if (sha->src)
		ccp_free_data(&src, cmd_q);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

e_ctx:
	ccp_dm_free(&ctx);

	return ret;
}

static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
	struct ccp_dm_workarea exp, src;
	struct ccp_data dst;
	struct ccp_op op;
1226
	unsigned int sb_count, i_len, o_len;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	int ret;

	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
		return -EINVAL;

	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
		return -EINVAL;

	/* The RSA modulus must precede the message being acted upon, so
	 * it must be copied to a DMA area where the message and the
	 * modulus can be concatenated.  Therefore the input buffer
	 * length required is twice the output buffer length (which
	 * must be a multiple of 256-bits).
	 */
	o_len = ((rsa->key_size + 255) / 256) * 32;
	i_len = o_len * 2;

1244
	sb_count = o_len / CCP_SB_BYTES;
1245 1246 1247 1248

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1249 1250
	op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);

1251
	if (!op.sb_key)
1252 1253
		return -EIO;

1254
	/* The RSA exponent may span multiple (32-byte) SB entries and must
1255 1256 1257 1258 1259 1260 1261
	 * be in little endian format. Reverse copy each 32-byte chunk
	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
	 * and each byte within that chunk and do not perform any byte swap
	 * operations on the passthru operation.
	 */
	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
	if (ret)
1262
		goto e_sb;
1263

1264
	ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1265
				      CCP_SB_BYTES, false);
1266 1267
	if (ret)
		goto e_exp;
1268 1269
	ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
			     CCP_PASSTHRU_BYTESWAP_NOOP);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_exp;
	}

	/* Concatenate the modulus and the message. Both the modulus and
	 * the operands must be in little endian format.  Since the input
	 * is in big endian format it must be converted.
	 */
	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
	if (ret)
		goto e_exp;

1283
	ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1284
				      CCP_SB_BYTES, false);
1285 1286
	if (ret)
		goto e_src;
1287
	src.address += o_len;	/* Adjust the address for the copy operation */
1288
	ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1289
				      CCP_SB_BYTES, false);
1290 1291
	if (ret)
		goto e_src;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	src.address -= o_len;	/* Reset the address to original value */

	/* Prepare the output area for the operation */
	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
			    o_len, DMA_FROM_DEVICE);
	if (ret)
		goto e_src;

	op.soc = 1;
	op.src.u.dma.address = src.dma.address;
	op.src.u.dma.offset = 0;
	op.src.u.dma.length = i_len;
	op.dst.u.dma.address = dst.dm_wa.dma.address;
	op.dst.u.dma.offset = 0;
	op.dst.u.dma.length = o_len;

	op.u.rsa.mod_size = rsa->key_size;
	op.u.rsa.input_len = i_len;

1311
	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_dst;
	}

	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);

e_dst:
	ccp_free_data(&dst, cmd_q);

e_src:
	ccp_dm_free(&src);

e_exp:
	ccp_dm_free(&exp);

1328
e_sb:
1329
	cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	return ret;
}

static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
				struct ccp_cmd *cmd)
{
	struct ccp_passthru_engine *pt = &cmd->u.passthru;
	struct ccp_dm_workarea mask;
	struct ccp_data src, dst;
	struct ccp_op op;
	bool in_place = false;
	unsigned int i;
1343
	int ret = 0;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
		return -EINVAL;

	if (!pt->src || !pt->dst)
		return -EINVAL;

	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
			return -EINVAL;
		if (!pt->mask)
			return -EINVAL;
	}

1358
	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1359 1360 1361

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
1362
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1363 1364 1365

	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
		/* Load the mask */
1366
		op.sb_key = cmd_q->sb_key;
1367 1368

		ret = ccp_init_dm_workarea(&mask, cmd_q,
1369 1370
					   CCP_PASSTHRU_SB_COUNT *
					   CCP_SB_BYTES,
1371 1372 1373 1374 1375
					   DMA_TO_DEVICE);
		if (ret)
			return ret;

		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1376 1377
		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
				     CCP_PASSTHRU_BYTESWAP_NOOP);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_mask;
		}
	}

	/* Prepare the input and output data workareas. For in-place
	 * operations we need to set the dma direction to BIDIRECTIONAL
	 * and copy the src workarea to the dst workarea.
	 */
	if (sg_virt(pt->src) == sg_virt(pt->dst))
		in_place = true;

	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
			    CCP_PASSTHRU_MASKSIZE,
			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
	if (ret)
		goto e_mask;

1397
	if (in_place) {
1398
		dst = src;
1399
	} else {
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
		if (ret)
			goto e_src;
	}

	/* Send data to the CCP Passthru engine
	 *   Because the CCP engine works on a single source and destination
	 *   dma address at a time, each entry in the source scatterlist
	 *   (after the dma_map_sg call) must be less than or equal to the
	 *   (remaining) length in the destination scatterlist entry and the
	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
	 */
	dst.sg_wa.sg_used = 0;
	for (i = 1; i <= src.sg_wa.dma_count; i++) {
		if (!dst.sg_wa.sg ||
		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
			ret = -EINVAL;
			goto e_dst;
		}

		if (i == src.sg_wa.dma_count) {
			op.eom = 1;
			op.soc = 1;
		}

		op.src.type = CCP_MEMTYPE_SYSTEM;
		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
		op.src.u.dma.offset = 0;
		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);

		op.dst.type = CCP_MEMTYPE_SYSTEM;
		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1433 1434
		op.dst.u.dma.offset = dst.sg_wa.sg_used;
		op.dst.u.dma.length = op.src.u.dma.length;
1435

1436
		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			goto e_dst;
		}

		dst.sg_wa.sg_used += src.sg_wa.sg->length;
		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
			dst.sg_wa.sg_used = 0;
		}
		src.sg_wa.sg = sg_next(src.sg_wa.sg);
	}

e_dst:
	if (!in_place)
		ccp_free_data(&dst, cmd_q);

e_src:
	ccp_free_data(&src, cmd_q);

e_mask:
	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
		ccp_dm_free(&mask);

	return ret;
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
				      struct ccp_cmd *cmd)
{
	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
	struct ccp_dm_workarea mask;
	struct ccp_op op;
	int ret;

	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
		return -EINVAL;

	if (!pt->src_dma || !pt->dst_dma)
		return -EINVAL;

	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
			return -EINVAL;
		if (!pt->mask)
			return -EINVAL;
	}

1485
	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1486 1487 1488 1489 1490 1491 1492

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
	op.jobid = ccp_gen_jobid(cmd_q->ccp);

	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
		/* Load the mask */
1493
		op.sb_key = cmd_q->sb_key;
1494 1495 1496 1497 1498

		mask.length = pt->mask_len;
		mask.dma.address = pt->mask;
		mask.dma.length = pt->mask_len;

1499
		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
				     CCP_PASSTHRU_BYTESWAP_NOOP);
		if (ret) {
			cmd->engine_error = cmd_q->cmd_error;
			return ret;
		}
	}

	/* Send data to the CCP Passthru engine */
	op.eom = 1;
	op.soc = 1;

	op.src.type = CCP_MEMTYPE_SYSTEM;
	op.src.u.dma.address = pt->src_dma;
	op.src.u.dma.offset = 0;
	op.src.u.dma.length = pt->src_len;

	op.dst.type = CCP_MEMTYPE_SYSTEM;
	op.dst.u.dma.address = pt->dst_dma;
	op.dst.u.dma.offset = 0;
	op.dst.u.dma.length = pt->src_len;

1521
	ret = cmd_q->ccp->vdata->perform->passthru(&op);
1522 1523 1524 1525 1526 1527
	if (ret)
		cmd->engine_error = cmd_q->cmd_error;

	return ret;
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
	struct ccp_dm_workarea src, dst;
	struct ccp_op op;
	int ret;
	u8 *save;

	if (!ecc->u.mm.operand_1 ||
	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
		return -EINVAL;

	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
		if (!ecc->u.mm.operand_2 ||
		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
			return -EINVAL;

	if (!ecc->u.mm.result ||
	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
		return -EINVAL;

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
1551
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	/* Concatenate the modulus and the operands. Both the modulus and
	 * the operands must be in little endian format.  Since the input
	 * is in big endian format it must be converted and placed in a
	 * fixed length buffer.
	 */
	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
				   DMA_TO_DEVICE);
	if (ret)
		return ret;

	/* Save the workarea address since it is updated in order to perform
	 * the concatenation
	 */
	save = src.address;

	/* Copy the ECC modulus */
1569 1570 1571 1572
	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
				      CCP_ECC_OPERAND_SIZE, false);
	if (ret)
		goto e_src;
1573 1574 1575
	src.address += CCP_ECC_OPERAND_SIZE;

	/* Copy the first operand */
1576 1577 1578 1579 1580
	ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
				      ecc->u.mm.operand_1_len,
				      CCP_ECC_OPERAND_SIZE, false);
	if (ret)
		goto e_src;
1581 1582 1583 1584
	src.address += CCP_ECC_OPERAND_SIZE;

	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
		/* Copy the second operand */
1585 1586 1587 1588 1589
		ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
					      ecc->u.mm.operand_2_len,
					      CCP_ECC_OPERAND_SIZE, false);
		if (ret)
			goto e_src;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		src.address += CCP_ECC_OPERAND_SIZE;
	}

	/* Restore the workarea address */
	src.address = save;

	/* Prepare the output area for the operation */
	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
				   DMA_FROM_DEVICE);
	if (ret)
		goto e_src;

	op.soc = 1;
	op.src.u.dma.address = src.dma.address;
	op.src.u.dma.offset = 0;
	op.src.u.dma.length = src.length;
	op.dst.u.dma.address = dst.dma.address;
	op.dst.u.dma.offset = 0;
	op.dst.u.dma.length = dst.length;

	op.u.ecc.function = cmd->u.ecc.function;

1612
	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_dst;
	}

	ecc->ecc_result = le16_to_cpup(
		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
		ret = -EIO;
		goto e_dst;
	}

	/* Save the ECC result */
	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);

e_dst:
	ccp_dm_free(&dst);

e_src:
	ccp_dm_free(&src);

	return ret;
}

static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
	struct ccp_dm_workarea src, dst;
	struct ccp_op op;
	int ret;
	u8 *save;

	if (!ecc->u.pm.point_1.x ||
	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
	    !ecc->u.pm.point_1.y ||
	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
		return -EINVAL;

	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
		if (!ecc->u.pm.point_2.x ||
		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
		    !ecc->u.pm.point_2.y ||
		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
			return -EINVAL;
	} else {
		if (!ecc->u.pm.domain_a ||
		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
			return -EINVAL;

		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
			if (!ecc->u.pm.scalar ||
			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
				return -EINVAL;
	}

	if (!ecc->u.pm.result.x ||
	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
	    !ecc->u.pm.result.y ||
	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
		return -EINVAL;

	memset(&op, 0, sizeof(op));
	op.cmd_q = cmd_q;
1676
	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	/* Concatenate the modulus and the operands. Both the modulus and
	 * the operands must be in little endian format.  Since the input
	 * is in big endian format it must be converted and placed in a
	 * fixed length buffer.
	 */
	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
				   DMA_TO_DEVICE);
	if (ret)
		return ret;

	/* Save the workarea address since it is updated in order to perform
	 * the concatenation
	 */
	save = src.address;

	/* Copy the ECC modulus */
1694 1695 1696 1697
	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
				      CCP_ECC_OPERAND_SIZE, false);
	if (ret)
		goto e_src;
1698 1699 1700
	src.address += CCP_ECC_OPERAND_SIZE;

	/* Copy the first point X and Y coordinate */
1701 1702 1703 1704 1705
	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
				      ecc->u.pm.point_1.x_len,
				      CCP_ECC_OPERAND_SIZE, false);
	if (ret)
		goto e_src;
1706
	src.address += CCP_ECC_OPERAND_SIZE;
1707 1708 1709 1710 1711
	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
				      ecc->u.pm.point_1.y_len,
				      CCP_ECC_OPERAND_SIZE, false);
	if (ret)
		goto e_src;
1712 1713
	src.address += CCP_ECC_OPERAND_SIZE;

1714
	/* Set the first point Z coordinate to 1 */
1715
	*src.address = 0x01;
1716 1717 1718 1719
	src.address += CCP_ECC_OPERAND_SIZE;

	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
		/* Copy the second point X and Y coordinate */
1720 1721 1722 1723 1724
		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
					      ecc->u.pm.point_2.x_len,
					      CCP_ECC_OPERAND_SIZE, false);
		if (ret)
			goto e_src;
1725
		src.address += CCP_ECC_OPERAND_SIZE;
1726 1727 1728 1729 1730
		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
					      ecc->u.pm.point_2.y_len,
					      CCP_ECC_OPERAND_SIZE, false);
		if (ret)
			goto e_src;
1731 1732
		src.address += CCP_ECC_OPERAND_SIZE;

1733
		/* Set the second point Z coordinate to 1 */
1734
		*src.address = 0x01;
1735 1736 1737
		src.address += CCP_ECC_OPERAND_SIZE;
	} else {
		/* Copy the Domain "a" parameter */
1738 1739 1740 1741 1742
		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
					      ecc->u.pm.domain_a_len,
					      CCP_ECC_OPERAND_SIZE, false);
		if (ret)
			goto e_src;
1743 1744 1745 1746
		src.address += CCP_ECC_OPERAND_SIZE;

		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
			/* Copy the scalar value */
1747 1748 1749 1750 1751 1752
			ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
						      ecc->u.pm.scalar_len,
						      CCP_ECC_OPERAND_SIZE,
						      false);
			if (ret)
				goto e_src;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
			src.address += CCP_ECC_OPERAND_SIZE;
		}
	}

	/* Restore the workarea address */
	src.address = save;

	/* Prepare the output area for the operation */
	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
				   DMA_FROM_DEVICE);
	if (ret)
		goto e_src;

	op.soc = 1;
	op.src.u.dma.address = src.dma.address;
	op.src.u.dma.offset = 0;
	op.src.u.dma.length = src.length;
	op.dst.u.dma.address = dst.dma.address;
	op.dst.u.dma.offset = 0;
	op.dst.u.dma.length = dst.length;

	op.u.ecc.function = cmd->u.ecc.function;

1776
	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (ret) {
		cmd->engine_error = cmd_q->cmd_error;
		goto e_dst;
	}

	ecc->ecc_result = le16_to_cpup(
		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
		ret = -EIO;
		goto e_dst;
	}

	/* Save the workarea address since it is updated as we walk through
	 * to copy the point math result
	 */
	save = dst.address;

	/* Save the ECC result X and Y coordinates */
	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
				CCP_ECC_MODULUS_BYTES);
	dst.address += CCP_ECC_OUTPUT_SIZE;
	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
				CCP_ECC_MODULUS_BYTES);
	dst.address += CCP_ECC_OUTPUT_SIZE;

	/* Restore the workarea address */
	dst.address = save;

e_dst:
	ccp_dm_free(&dst);

e_src:
	ccp_dm_free(&src);

	return ret;
}

static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	struct ccp_ecc_engine *ecc = &cmd->u.ecc;

	ecc->ecc_result = 0;

	if (!ecc->mod ||
	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
		return -EINVAL;

	switch (ecc->function) {
	case CCP_ECC_FUNCTION_MMUL_384BIT:
	case CCP_ECC_FUNCTION_MADD_384BIT:
	case CCP_ECC_FUNCTION_MINV_384BIT:
		return ccp_run_ecc_mm_cmd(cmd_q, cmd);

	case CCP_ECC_FUNCTION_PADD_384BIT:
	case CCP_ECC_FUNCTION_PMUL_384BIT:
	case CCP_ECC_FUNCTION_PDBL_384BIT:
		return ccp_run_ecc_pm_cmd(cmd_q, cmd);

	default:
		return -EINVAL;
	}
}

int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
	int ret;

	cmd->engine_error = 0;
	cmd_q->cmd_error = 0;
	cmd_q->int_rcvd = 0;
1847
	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

	switch (cmd->engine) {
	case CCP_ENGINE_AES:
		ret = ccp_run_aes_cmd(cmd_q, cmd);
		break;
	case CCP_ENGINE_XTS_AES_128:
		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
		break;
	case CCP_ENGINE_SHA:
		ret = ccp_run_sha_cmd(cmd_q, cmd);
		break;
	case CCP_ENGINE_RSA:
		ret = ccp_run_rsa_cmd(cmd_q, cmd);
		break;
	case CCP_ENGINE_PASSTHRU:
1863 1864 1865 1866
		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
		else
			ret = ccp_run_passthru_cmd(cmd_q, cmd);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		break;
	case CCP_ENGINE_ECC:
		ret = ccp_run_ecc_cmd(cmd_q, cmd);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}