mmu.c 62.7 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
J
Jeremy Fitzhardinge 已提交
50

51 52
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
53 54
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
55
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
56
#include <asm/mmu_context.h>
57
#include <asm/setup.h>
58
#include <asm/paravirt.h>
59
#include <asm/e820.h>
60
#include <asm/linkage.h>
61
#include <asm/page.h>
62
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
63
#include <asm/pat.h>
A
Andrew Jones 已提交
64
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
65 66

#include <asm/xen/hypercall.h>
67
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
68

69
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
70 71
#include <xen/page.h>
#include <xen/interface/xen.h>
72
#include <xen/interface/hvm/hvm_op.h>
73
#include <xen/interface/version.h>
74
#include <xen/interface/memory.h>
75
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
76

77
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
78
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
79 80
#include "debugfs.h"

A
Alex Nixon 已提交
81 82
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
83
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
84 85 86
 */
DEFINE_SPINLOCK(xen_reservation_lock);

87
#ifdef CONFIG_X86_32
88 89 90 91 92
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
93 94
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
95
#endif
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


119 120 121 122 123 124
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

125 126 127 128 129 130 131
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

132
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
133
{
134
	unsigned long address = (unsigned long)vaddr;
135
	unsigned int level;
136 137
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
138

139 140 141 142 143 144 145 146
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
147

148 149 150
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
151
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
152
}
153
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
154 155 156 157 158

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
159
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
160

161
	pte = lookup_address(address, &level);
162 163
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
164 165 166 167 168 169 170 171 172 173 174

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
175
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
176

177
	pte = lookup_address(address, &level);
178 179
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
180 181 182 183 184 185 186 187

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


188
static bool xen_page_pinned(void *ptr)
189 190 191 192 193 194
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

195
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 197 198 199
{
	struct multicall_space mcs;
	struct mmu_update *u;

200 201
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

202 203 204 205
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
206
	u->ptr = virt_to_machine(ptep).maddr;
207 208
	u->val = pte_val_ma(pteval);

209
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 211 212

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
213 214
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

215
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
216
{
J
Jeremy Fitzhardinge 已提交
217 218
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
219

220 221
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
222
	if (mcs.mc != NULL) {
223
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
224
	} else {
225 226 227
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
228 229

	u = mcs.args;
230 231 232
	*u = *update;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void xen_extend_mmuext_op(const struct mmuext_op *op)
{
	struct multicall_space mcs;
	struct mmuext_op *u;

	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));

	if (mcs.mc != NULL) {
		mcs.mc->args[1]++;
	} else {
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}

	u = mcs.args;
	*u = *op;
}

251
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 253 254 255 256 257 258
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

259 260
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
261
	u.val = pmd_val_ma(val);
262
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
263 264 265 266

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
267 268
}

269
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270
{
271 272
	trace_xen_mmu_set_pmd(ptr, val);

273 274
	/* If page is not pinned, we can just update the entry
	   directly */
275
	if (!xen_page_pinned(ptr)) {
276 277 278 279 280 281 282
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
283 284 285 286 287 288
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
289
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
290 291
}

292
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
293
{
294
	struct mmu_update u;
295

296 297
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
298

299
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
300

301 302 303
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
304

305
	xen_mc_issue(PARAVIRT_LAZY_MMU);
306

307 308 309
	return true;
}

310
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311
{
312 313 314 315 316 317 318 319 320 321 322 323 324 325
	if (!xen_batched_set_pte(ptep, pteval)) {
		/*
		 * Could call native_set_pte() here and trap and
		 * emulate the PTE write but with 32-bit guests this
		 * needs two traps (one for each of the two 32-bit
		 * words in the PTE) so do one hypercall directly
		 * instead.
		 */
		struct mmu_update u;

		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
		u.val = pte_val_ma(pteval);
		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
326 327
}

328 329 330 331 332 333
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

334
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
335 336
		    pte_t *ptep, pte_t pteval)
{
337 338
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
339 340
}

T
Tej 已提交
341 342
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
343
{
344
	/* Just return the pte as-is.  We preserve the bits on commit */
345
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
346 347 348 349 350 351
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
352
	struct mmu_update u;
353

354
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
355
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
356

357
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
358
	u.val = pte_val_ma(pte);
359
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
360

361
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
362 363
}

J
Jeremy Fitzhardinge 已提交
364 365
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
366
{
J
Jeremy Fitzhardinge 已提交
367
	if (val & _PAGE_PRESENT) {
368
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
369 370
		unsigned long pfn = mfn_to_pfn(mfn);

J
Jeremy Fitzhardinge 已提交
371
		pteval_t flags = val & PTE_FLAGS_MASK;
372 373 374 375
		if (unlikely(pfn == ~0))
			val = flags & ~_PAGE_PRESENT;
		else
			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
376
	}
J
Jeremy Fitzhardinge 已提交
377

J
Jeremy Fitzhardinge 已提交
378
	return val;
J
Jeremy Fitzhardinge 已提交
379 380
}

J
Jeremy Fitzhardinge 已提交
381
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
382
{
J
Jeremy Fitzhardinge 已提交
383
	if (val & _PAGE_PRESENT) {
384
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
385
		pteval_t flags = val & PTE_FLAGS_MASK;
386
		unsigned long mfn;
387

388 389 390 391
		if (!xen_feature(XENFEAT_auto_translated_physmap))
			mfn = get_phys_to_machine(pfn);
		else
			mfn = pfn;
392 393 394 395 396 397 398 399 400
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
401 402 403 404 405 406 407 408 409 410 411
		} else {
			/*
			 * Paramount to do this test _after_ the
			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
			 * IDENTITY_FRAME_BIT resolves to true.
			 */
			mfn &= ~FOREIGN_FRAME_BIT;
			if (mfn & IDENTITY_FRAME_BIT) {
				mfn &= ~IDENTITY_FRAME_BIT;
				flags |= _PAGE_IOMAP;
			}
412 413
		}
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
414 415
	}

J
Jeremy Fitzhardinge 已提交
416
	return val;
J
Jeremy Fitzhardinge 已提交
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

433
static pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
434
{
J
Jeremy Fitzhardinge 已提交
435
	pteval_t pteval = pte.pte;
436
#if 0
J
Jeremy Fitzhardinge 已提交
437 438 439 440 441
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
442
#endif
J
Jeremy Fitzhardinge 已提交
443 444 445 446
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
447
}
448
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
449

450
static pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
451
{
J
Jeremy Fitzhardinge 已提交
452
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
453
}
454
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
455

J
Jeremy Fitzhardinge 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
 * 6    PAT PCD          UC-      UC     UC-
 * 7    PAT PCD PWT      UC       UC     UC
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

481
static pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
482
{
483
	phys_addr_t addr = (pte & PTE_PFN_MASK);
484
#if 0
J
Jeremy Fitzhardinge 已提交
485 486 487 488 489 490 491 492 493 494 495 496
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}
497
#endif
498 499 500 501 502 503 504 505
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
506
		pte = iomap_pte(pte);
507 508
	} else {
		pte &= ~_PAGE_IOMAP;
509
		pte = pte_pfn_to_mfn(pte);
510
	}
511

J
Jeremy Fitzhardinge 已提交
512
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
513
}
514
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
515

516
static pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
517
{
J
Jeremy Fitzhardinge 已提交
518 519
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
520
}
521
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
522

523
static pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
524
{
J
Jeremy Fitzhardinge 已提交
525
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
526
}
527
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
528

529
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
530
{
531
	struct mmu_update u;
532

J
Jeremy Fitzhardinge 已提交
533 534
	preempt_disable();

535 536
	xen_mc_batch();

537 538
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
539
	u.val = pud_val_ma(val);
540
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
541 542 543 544

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
545 546
}

547
static void xen_set_pud(pud_t *ptr, pud_t val)
548
{
549 550
	trace_xen_mmu_set_pud(ptr, val);

551 552
	/* If page is not pinned, we can just update the entry
	   directly */
553
	if (!xen_page_pinned(ptr)) {
554 555 556 557 558 559 560
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

561
#ifdef CONFIG_X86_PAE
562
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
563
{
564
	trace_xen_mmu_set_pte_atomic(ptep, pte);
565
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
566 567
}

568
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
569
{
570
	trace_xen_mmu_pte_clear(mm, addr, ptep);
571 572
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
573 574
}

575
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
576
{
577
	trace_xen_mmu_pmd_clear(pmdp);
578
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
579
}
580
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
581

582
static pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
583
{
J
Jeremy Fitzhardinge 已提交
584
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
585
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
586
}
587
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
588

589
#if PAGETABLE_LEVELS == 4
590
static pudval_t xen_pud_val(pud_t pud)
591 592 593
{
	return pte_mfn_to_pfn(pud.pud);
}
594
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
595

596
static pud_t xen_make_pud(pudval_t pud)
597 598 599 600 601
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
602
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
603

604
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
605
{
606 607 608
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
609

610 611 612 613 614 615
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
616

617 618 619 620 621 622
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
623 624 625

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
626
	xen_extend_mmu_update(&u);
627 628 629 630 631 632 633 634 635
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
636
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
637 638 639 640 641 642
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
643 644 645 646 647 648

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

649
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
650
{
651 652
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

653 654
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

655 656
	/* If page is not pinned, we can just update the entry
	   directly */
657
	if (!xen_page_pinned(ptr)) {
658
		*ptr = val;
659
		if (user_ptr) {
660
			WARN_ON(xen_page_pinned(user_ptr));
661 662
			*user_ptr = val;
		}
663 664 665
		return;
	}

666 667 668 669 670 671 672 673 674
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
675 676 677
}
#endif	/* PAGETABLE_LEVELS == 4 */

678
/*
679 680 681 682 683 684 685 686 687 688 689 690 691 692
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
693 694 695 696
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
697
{
698
	int flush = 0;
699 700 701
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
702

703 704 705
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
706 707

	if (xen_feature(XENFEAT_auto_translated_physmap))
708 709
		return 0;

710 711 712 713 714
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
715
	hole_low = pgd_index(USER_LIMIT);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
731
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
732

733 734
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
735

736
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
737
			continue;
738

739
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
740 741

		if (PTRS_PER_PUD > 1) /* not folded */
742
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
743

744
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
745 746
			pmd_t *pmd;

747 748 749
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
750

751
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
752
				continue;
753

754
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
755 756

			if (PTRS_PER_PMD > 1) /* not folded */
757
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
758

759 760 761 762 763 764 765
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
766

767
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
768 769
					continue;

770
				pte = pmd_page(pmd[pmdidx]);
771
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
772 773 774
			}
		}
	}
775

776
out:
777 778
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
779
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
780 781

	return flush;
J
Jeremy Fitzhardinge 已提交
782 783
}

I
Ian Campbell 已提交
784 785 786 787 788 789 790 791
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

792 793
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
794
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
795 796 797
{
	spinlock_t *ptl = NULL;

798
#if USE_SPLIT_PTLOCKS
799
	ptl = __pte_lockptr(page);
800
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
801 802 803 804 805
#endif

	return ptl;
}

806
static void xen_pte_unlock(void *v)
807 808 809 810 811 812 813
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
814
	struct mmuext_op op;
815

816 817 818 819
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);

	xen_extend_mmuext_op(&op);
820 821
}

822 823
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
824
{
825
	unsigned pgfl = TestSetPagePinned(page);
826 827 828 829 830 831 832 833 834 835 836 837
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
838
		spinlock_t *ptl;
839 840 841

		flush = 0;

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
862 863
		ptl = NULL;
		if (level == PT_PTE)
864
			ptl = xen_pte_lock(page, mm);
865

866 867
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
868 869
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

870
		if (ptl) {
871 872 873 874
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
875
			xen_mc_callback(xen_pte_unlock, ptl);
876
		}
877 878 879 880
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
881

882 883 884
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
885
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
886
{
887 888
	trace_xen_mmu_pgd_pin(mm, pgd);

889
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
890

I
Ian Campbell 已提交
891
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
892
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
893
		xen_mc_issue(0);
894

895
		kmap_flush_unused();
896

J
Jeremy Fitzhardinge 已提交
897 898
		xen_mc_batch();
	}
899

900 901 902 903 904 905 906
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
907
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
908 909
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
910 911 912
		}
	}
#else /* CONFIG_X86_32 */
913 914
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
915
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
916
		     PT_PMD);
917
#endif
918
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
919
#endif /* CONFIG_X86_64 */
920
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
921 922
}

923 924 925 926 927
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

928 929 930 931 932
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
933 934 935 936
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
937 938 939 940
 */
void xen_mm_pin_all(void)
{
	struct page *page;
941

A
Andrea Arcangeli 已提交
942
	spin_lock(&pgd_lock);
943

944 945
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
946
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
947 948 949 950
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
951
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
952 953
}

954 955 956 957 958
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
959
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
960
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
961
{
962 963 964
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
965

966
static void __init xen_mark_init_mm_pinned(void)
967
{
968
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
969
}
J
Jeremy Fitzhardinge 已提交
970

971 972
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
973
{
974
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
975

976 977 978
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
979 980 981
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

982 983 984 985 986 987 988
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
989
		if (level == PT_PTE) {
990
			ptl = xen_pte_lock(page, mm);
991

992 993
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
994 995 996
		}

		mcs = __xen_mc_entry(0);
997 998 999

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
1000 1001 1002 1003
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
1004
			xen_mc_callback(xen_pte_unlock, ptl);
1005
		}
1006 1007 1008
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
1009 1010
}

1011
/* Release a pagetables pages back as normal RW */
1012
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1013
{
1014 1015
	trace_xen_mmu_pgd_unpin(mm, pgd);

1016 1017
	xen_mc_batch();

1018
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1019

1020 1021 1022 1023 1024
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1025 1026
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1027
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1028 1029 1030 1031
		}
	}
#endif

1032 1033
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1034
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1035
		       PT_PMD);
1036
#endif
1037

I
Ian Campbell 已提交
1038
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1039 1040 1041

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1042

1043 1044 1045 1046 1047
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1048 1049 1050 1051 1052 1053 1054 1055
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
1056
	spin_lock(&pgd_lock);
1057 1058 1059 1060

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1061
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1062 1063 1064 1065
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
1066
	spin_unlock(&pgd_lock);
1067 1068
}

1069
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
1070
{
1071
	spin_lock(&next->page_table_lock);
1072
	xen_pgd_pin(next);
1073
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1074 1075
}

1076
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1077
{
1078
	spin_lock(&mm->page_table_lock);
1079
	xen_pgd_pin(mm);
1080
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1081 1082 1083
}


J
Jeremy Fitzhardinge 已提交
1084 1085 1086 1087 1088 1089
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1090
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1091

1092
	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1093

1094
	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1095
		leave_mm(smp_processor_id());
1096 1097 1098

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1099
	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1100
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1101
}
J
Jeremy Fitzhardinge 已提交
1102

1103
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1104
{
1105
	cpumask_var_t mask;
1106 1107
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1108 1109 1110 1111 1112
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1113 1114 1115
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1116 1117
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1118
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1119 1120 1121 1122 1123 1124
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1125
	cpumask_copy(mask, mm_cpumask(mm));
1126 1127 1128 1129 1130 1131 1132 1133

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1134
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1135 1136
	}

1137 1138 1139
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1140 1141
}
#else
1142
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1163
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1164 1165
{
	get_cpu();		/* make sure we don't move around */
1166
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1167
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1168

1169
	spin_lock(&mm->page_table_lock);
1170 1171

	/* pgd may not be pinned in the error exit path of execve */
1172
	if (xen_page_pinned(mm->pgd))
1173
		xen_pgd_unpin(mm);
1174

1175
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1176
}
J
Jeremy Fitzhardinge 已提交
1177

1178 1179
static void xen_post_allocator_init(void);

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
{
	/* reserve the range used */
	native_pagetable_reserve(start, end);

	/* set as RW the rest */
	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
			PFN_PHYS(pgt_buf_top));
	while (end < PFN_PHYS(pgt_buf_top)) {
		make_lowmem_page_readwrite(__va(end));
		end += PAGE_SIZE;
	}
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_X86_64
static void __init xen_cleanhighmap(unsigned long vaddr,
				    unsigned long vaddr_end)
{
	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);

	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
	 * We include the PMD passed in on _both_ boundaries. */
	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
			pmd++, vaddr += PMD_SIZE) {
		if (pmd_none(*pmd))
			continue;
		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
			set_pmd(pmd, __pmd(0));
	}
	/* In case we did something silly, we should crash in this function
	 * instead of somewhere later and be confusing. */
	xen_mc_flush();
}
#endif
1215
static void __init xen_pagetable_init(void)
1216
{
1217 1218 1219 1220
#ifdef CONFIG_X86_64
	unsigned long size;
	unsigned long addr;
#endif
1221
	paging_init();
1222
	xen_setup_shared_info();
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
#ifdef CONFIG_X86_64
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		unsigned long new_mfn_list;

		size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));

		/* On 32-bit, we get zero so this never gets executed. */
		new_mfn_list = xen_revector_p2m_tree();
		if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
			/* using __ka address and sticking INVALID_P2M_ENTRY! */
			memset((void *)xen_start_info->mfn_list, 0xff, size);

			/* We should be in __ka space. */
			BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
			addr = xen_start_info->mfn_list;
			/* We roundup to the PMD, which means that if anybody at this stage is
			 * using the __ka address of xen_start_info or xen_start_info->shared_info
			 * they are in going to crash. Fortunatly we have already revectored
			 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
			size = roundup(size, PMD_SIZE);
			xen_cleanhighmap(addr, addr + size);

1245
			size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1246 1247 1248
			memblock_free(__pa(xen_start_info->mfn_list), size);
			/* And revector! Bye bye old array */
			xen_start_info->mfn_list = new_mfn_list;
1249 1250
		} else
			goto skip;
1251
	}
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	/* At this stage, cleanup_highmap has already cleaned __ka space
	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
	 * the ramdisk). We continue on, erasing PMD entries that point to page
	 * tables - do note that they are accessible at this stage via __va.
	 * For good measure we also round up to the PMD - which means that if
	 * anybody is using __ka address to the initial boot-stack - and try
	 * to use it - they are going to crash. The xen_start_info has been
	 * taken care of already in xen_setup_kernel_pagetable. */
	addr = xen_start_info->pt_base;
	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);

	xen_cleanhighmap(addr, addr + size);
	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
#ifdef DEBUG
	/* This is superflous and is not neccessary, but you know what
	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
	 * anything at this stage. */
	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
#endif
1271
skip:
1272
#endif
1273
	xen_post_allocator_init();
1274 1275 1276
}
static void xen_write_cr2(unsigned long cr2)
{
1277
	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1278 1279 1280 1281
}

static unsigned long xen_read_cr2(void)
{
1282
	return this_cpu_read(xen_vcpu)->arch.cr2;
1283 1284 1285 1286
}

unsigned long xen_read_cr2_direct(void)
{
1287
	return this_cpu_read(xen_vcpu_info.arch.cr2);
1288 1289 1290 1291 1292 1293 1294
}

static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1295 1296
	trace_xen_mmu_flush_tlb(0);

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1315 1316
	trace_xen_mmu_flush_tlb_single(addr);

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
1331 1332
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
1333 1334 1335
{
	struct {
		struct mmuext_op op;
1336
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1337
		DECLARE_BITMAP(mask, num_processors);
1338 1339 1340
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1341 1342 1343
	} *args;
	struct multicall_space mcs;

1344
	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1345

1346 1347
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1348 1349 1350 1351 1352 1353 1354 1355 1356

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

1357
	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1358
	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1359
		args->op.cmd = MMUEXT_INVLPG_MULTI;
1360
		args->op.arg1.linear_addr = start;
1361 1362 1363 1364 1365 1366 1367 1368 1369
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
1370
	return this_cpu_read(xen_cr3);
1371 1372 1373 1374
}

static void set_current_cr3(void *v)
{
1375
	this_cpu_write(xen_current_cr3, (unsigned long)v);
1376 1377 1378 1379
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
1380
	struct mmuext_op op;
1381 1382
	unsigned long mfn;

1383 1384
	trace_xen_mmu_write_cr3(kernel, cr3);

1385 1386 1387 1388 1389 1390 1391
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

1392 1393
	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op.arg1.mfn = mfn;
1394

1395
	xen_extend_mmuext_op(&op);
1396 1397

	if (kernel) {
1398
		this_cpu_write(xen_cr3, cr3);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}

static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
1414
	this_cpu_write(xen_cr3, cr3);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1473
#ifdef CONFIG_X86_32
1474
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1475 1476 1477 1478 1479
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1480 1481 1482 1483

	return pte;
}
#else /* CONFIG_X86_64 */
1484
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1485 1486
{
	unsigned long pfn = pte_pfn(pte);
1487 1488 1489 1490

	/*
	 * If the new pfn is within the range of the newly allocated
	 * kernel pagetable, and it isn't being mapped into an
1491 1492
	 * early_ioremap fixmap slot as a freshly allocated page, make sure
	 * it is RO.
1493
	 */
1494
	if (((!is_early_ioremap_ptep(ptep) &&
1495
			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1496
			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1497
		pte = pte_wrprotect(pte);
1498 1499 1500

	return pte;
}
1501
#endif /* CONFIG_X86_64 */
1502

1503 1504 1505 1506
/*
 * Init-time set_pte while constructing initial pagetables, which
 * doesn't allow RO page table pages to be remapped RW.
 *
1507 1508 1509 1510
 * If there is no MFN for this PFN then this page is initially
 * ballooned out so clear the PTE (as in decrease_reservation() in
 * drivers/xen/balloon.c).
 *
1511 1512 1513 1514 1515 1516
 * Many of these PTE updates are done on unpinned and writable pages
 * and doing a hypercall for these is unnecessary and expensive.  At
 * this point it is not possible to tell if a page is pinned or not,
 * so always write the PTE directly and rely on Xen trapping and
 * emulating any updates as necessary.
 */
1517
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1518
{
1519 1520 1521 1522
	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
		pte = mask_rw_pte(ptep, pte);
	else
		pte = __pte_ma(0);
1523

1524
	native_set_pte(ptep, pte);
1525
}
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1536 1537
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1538
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1548
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1549
{
1550 1551 1552 1553 1554 1555 1556 1557
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1558
static void __init xen_release_pte_init(unsigned long pfn)
1559
{
1560
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1561 1562 1563
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1564
static void __init xen_release_pmd_init(unsigned long pfn)
1565
{
1566
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct multicall_space mcs;
	struct mmuext_op *op;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = cmd;
	op->arg1.mfn = pfn_to_mfn(pfn);

	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
}

static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
{
	struct multicall_space mcs;
	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);

	mcs = __xen_mc_entry(0);
	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
				pfn_pte(pfn, prot), 0);
}

1592 1593
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
1594 1595
static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
				    unsigned level)
1596
{
1597 1598
	bool pinned = PagePinned(virt_to_page(mm->pgd));

1599
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1600

1601
	if (pinned) {
1602
		struct page *page = pfn_to_page(pfn);
1603 1604 1605 1606

		SetPagePinned(page);

		if (!PageHighMem(page)) {
1607 1608 1609 1610
			xen_mc_batch();

			__set_pfn_prot(pfn, PAGE_KERNEL_RO);

1611
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1612 1613 1614
				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
1634
static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1635 1636
{
	struct page *page = pfn_to_page(pfn);
1637
	bool pinned = PagePinned(page);
1638

1639
	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1640

1641
	if (pinned) {
1642
		if (!PageHighMem(page)) {
1643 1644
			xen_mc_batch();

1645
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1646 1647 1648 1649 1650
				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);

			__set_pfn_prot(pfn, PAGE_KERNEL);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1721
/* Set the page permissions on an identity-mapped pages */
1722 1723 1724 1725 1726 1727 1728 1729
static void set_page_prot(void *addr, pgprot_t prot)
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
		BUG();
}
1730
#ifdef CONFIG_X86_32
1731
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1732 1733 1734 1735 1736
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1737 1738 1739
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1750
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1763 1764 1765 1766 1767
#ifdef CONFIG_X86_32
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;
#endif

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}
1781
#endif
1782 1783 1784 1785 1786 1787
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1788
		machine_to_phys_nr = mapping.max_mfn + 1;
1789
	} else {
1790
		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1791
	}
1792
#ifdef CONFIG_X86_32
1793 1794
	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
		< machine_to_phys_mapping);
1795
#endif
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
				 unsigned long addr)
{
	if (*pt_base == PFN_DOWN(__pa(addr))) {
		set_page_prot((void *)addr, PAGE_KERNEL);
		clear_page((void *)addr);
		(*pt_base)++;
	}
	if (*pt_end == PFN_DOWN(__pa(addr))) {
		set_page_prot((void *)addr, PAGE_KERNEL);
		clear_page((void *)addr);
		(*pt_end)--;
	}
}
1823
/*
L
Lucas De Marchi 已提交
1824
 * Set up the initial kernel pagetable.
1825 1826 1827 1828 1829 1830 1831 1832 1833
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
 */
1834
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1835 1836 1837
{
	pud_t *l3;
	pmd_t *l2;
1838 1839 1840
	unsigned long addr[3];
	unsigned long pt_base, pt_end;
	unsigned i;
1841

1842 1843 1844 1845 1846 1847
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1848 1849 1850
	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
	pt_end = pt_base + xen_start_info->nr_pt_frames;

1851 1852 1853 1854
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

	/* Pre-constructed entries are in pfn, so convert to mfn */
1855 1856
	/* L4[272] -> level3_ident_pgt
	 * L4[511] -> level3_kernel_pgt */
1857
	convert_pfn_mfn(init_level4_pgt);
1858 1859

	/* L3_i[0] -> level2_ident_pgt */
1860
	convert_pfn_mfn(level3_ident_pgt);
1861 1862
	/* L3_k[510] -> level2_kernel_pgt
	 * L3_i[511] -> level2_fixmap_pgt */
1863 1864
	convert_pfn_mfn(level3_kernel_pgt);

1865
	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1866 1867 1868
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

1869 1870 1871
	addr[0] = (unsigned long)pgd;
	addr[1] = (unsigned long)l3;
	addr[2] = (unsigned long)l2;
1872 1873 1874 1875 1876 1877
	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
	 * Both L4[272][0] and L4[511][511] have entries that point to the same
	 * L2 (PMD) tables. Meaning that if you modify it in __va space
	 * it will be also modified in the __ka space! (But if you just
	 * modify the PMD table to point to other PTE's or none, then you
	 * are OK - which is what cleanup_highmap does) */
1878
	copy_page(level2_ident_pgt, l2);
1879
	/* Graft it onto L4[511][511] */
1880
	copy_page(level2_kernel_pgt, l2);
1881

1882
	/* Get [511][510] and graft that in level2_fixmap_pgt */
1883 1884
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1885
	copy_page(level2_fixmap_pgt, l2);
1886 1887
	/* Note that we don't do anything with level1_fixmap_pgt which
	 * we don't need. */
1888 1889 1890 1891 1892 1893

	/* Make pagetable pieces RO */
	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1894
	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

	/* Pin down new L4 */
	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
			  PFN_DOWN(__pa_symbol(init_level4_pgt)));

	/* Unpin Xen-provided one */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	/*
	 * At this stage there can be no user pgd, and no page
	 * structure to attach it to, so make sure we just set kernel
	 * pgd.
	 */
	xen_mc_batch();
1911
	__xen_write_cr3(true, __pa(init_level4_pgt));
1912 1913
	xen_mc_issue(PARAVIRT_LAZY_CPU);

1914 1915 1916 1917 1918 1919 1920 1921
	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
	 * the initial domain. For guests using the toolstack, they are in:
	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
	 * rip out the [L4] (pgd), but for guests we shave off three pages.
	 */
	for (i = 0; i < ARRAY_SIZE(addr); i++)
		check_pt_base(&pt_base, &pt_end, addr[i]);
1922

1923 1924
	/* Our (by three pages) smaller Xen pagetable that we are using */
	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1925 1926
	/* Revector the xen_start_info */
	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1927 1928
}
#else	/* !CONFIG_X86_64 */
1929 1930 1931
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1932
static void __init xen_write_cr3_init(unsigned long cr3)
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1951
	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
1967

1968
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1969 1970 1971
{
	pmd_t *kernel_pmd;

1972 1973
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1974

1975 1976 1977
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
1978 1979

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1980
	copy_page(initial_kernel_pmd, kernel_pmd);
1981

1982
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1983

1984
	copy_page(initial_page_table, pgd);
1985 1986
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1987

1988 1989
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1990 1991 1992 1993
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

1994 1995 1996
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
1997

1998
	memblock_reserve(__pa(xen_start_info->pt_base),
1999
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2000 2001 2002
}
#endif	/* CONFIG_X86_64 */

2003 2004
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

2005
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2024
	case VVAR_PAGE:
2025
#endif
2026 2027 2028
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
2029 2030 2031
		pte = pfn_pte(phys, prot);
		break;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
2044
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2045 2046 2047
		break;
#endif

2048 2049 2050
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
2051 2052
		pte = mfn_pte(phys, prot);
		break;
2053 2054 2055 2056 2057

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
2058 2059 2060 2061 2062 2063 2064
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
2065 2066
	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
	    idx == VVAR_PAGE) {
2067 2068 2069 2070 2071 2072
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

2073
static void __init xen_post_allocator_init(void)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
{
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

2099 2100
static void xen_leave_lazy_mmu(void)
{
2101
	preempt_disable();
2102 2103
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
2104
	preempt_enable();
2105
}
2106

2107
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2108 2109 2110 2111
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
2112 2113 2114
#ifdef CONFIG_X86_32
	.write_cr3 = xen_write_cr3_init,
#else
2115
	.write_cr3 = xen_write_cr3,
2116
#endif
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2131 2132
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2133 2134 2135 2136 2137 2138 2139 2140

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2141 2142
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2143

2144 2145
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2146 2147 2148 2149 2150 2151 2152 2153

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2154 2155
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2156 2157

#if PAGETABLE_LEVELS == 4
2158 2159
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2160 2161
	.set_pgd = xen_set_pgd_hyper,

2162 2163
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2164 2165 2166 2167 2168 2169 2170 2171
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2172
		.leave = xen_leave_lazy_mmu,
2173 2174 2175 2176 2177
	},

	.set_fixmap = xen_set_fixmap,
};

2178 2179
void __init xen_init_mmu_ops(void)
{
2180
	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2181
	x86_init.paging.pagetable_init = xen_pagetable_init;
2182
	pv_mmu_ops = xen_mmu_ops;
2183

2184
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2185
}
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2207
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
				 unsigned int address_bits)
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2380
}
2381
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2382

2383
#ifdef CONFIG_XEN_PVHVM
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
}
2415
#endif
2416

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

2431
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
			       unsigned long mfn, int nr,
			       pgprot_t prot, unsigned domid)
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

2449 2450 2451
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return -EINVAL;

2452 2453
	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

2454 2455
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

2470 2471
		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
		if (err < 0)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

	flush_tlb_all();

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);