huge_memory.c 81.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65
static struct page *get_huge_zero_page(void)
66 67 68 69
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70
		return READ_ONCE(huge_zero_page);
71 72

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73
			HPAGE_PMD_ORDER);
74 75
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76
		return NULL;
77 78
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
79
	preempt_disable();
80
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81
		preempt_enable();
82
		__free_pages(zero_page, compound_order(zero_page));
83 84 85 86 87 88
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
89
	return READ_ONCE(huge_zero_page);
90 91
}

92
static void put_huge_zero_page(void)
93
{
94 95 96 97 98
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

121 122
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
123
{
124 125 126
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
127

128 129 130
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
131
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 133
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
134
		__free_pages(zero_page, compound_order(zero_page));
135
		return HPAGE_PMD_NR;
136 137 138
	}

	return 0;
139 140
}

141
static struct shrinker huge_zero_page_shrinker = {
142 143
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
144 145 146
	.seeks = DEFAULT_SEEKS,
};

147 148 149 150
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
151 152 153 154 155 156
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
157
}
158

159 160 161 162
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
163
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
179 180

	if (ret > 0) {
181
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
182 183 184 185
		if (err)
			ret = err;
	}
	return ret;
186 187 188 189
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

190
ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 192 193
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
194 195
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
196
}
197

198
ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 200 201 202
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
203 204 205 206 207 208 209 210 211 212
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
213
		set_bit(flag, &transparent_hugepage_flags);
214
	else
215 216 217 218 219 220 221 222
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
223
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 227 228 229 230 231
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232
}
233

234 235 236 237
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
238 239 240 241 242 243 244 245 246 247 248 249
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 251 252 253 254 255
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
272 273 274 275
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

276 277 278
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
279
	return single_hugepage_flag_show(kobj, attr, buf,
280 281 282 283 284
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
285
	return single_hugepage_flag_store(kobj, attr, buf, count,
286 287 288 289
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 291 292 293 294 295 296 297 298

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

299 300 301 302
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
303
	return single_hugepage_flag_show(kobj, attr, buf,
304 305 306 307 308 309
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
310
	return single_hugepage_flag_store(kobj, attr, buf, count,
311 312 313 314 315 316 317 318 319
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
320
	&use_zero_page_attr.attr,
321
	&hpage_pmd_size_attr.attr,
322
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 324
	&shmem_enabled_attr.attr,
#endif
325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
486 487
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
488 489 490 491 492 493 494 495 496 497 498 499 500
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

544 545
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
546
{
J
Jan Kara 已提交
547
	struct vm_area_struct *vma = vmf->vma;
548
	struct mem_cgroup *memcg;
549
	pgtable_t pgtable;
J
Jan Kara 已提交
550
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551
	vm_fault_t ret = 0;
552

553
	VM_BUG_ON_PAGE(!PageCompound(page), page);
554

555
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 557 558 559
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
560

K
Kirill A. Shutemov 已提交
561
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562
	if (unlikely(!pgtable)) {
563 564
		ret = VM_FAULT_OOM;
		goto release;
565
	}
566

567
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 569 570 571 572
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
573 574
	__SetPageUptodate(page);

J
Jan Kara 已提交
575 576
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
577
		goto unlock_release;
578 579
	} else {
		pmd_t entry;
580

581 582 583 584
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

585 586
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
587
			vm_fault_t ret2;
588

J
Jan Kara 已提交
589
			spin_unlock(vmf->ptl);
590
			mem_cgroup_cancel_charge(page, memcg, true);
591
			put_page(page);
K
Kirill A. Shutemov 已提交
592
			pte_free(vma->vm_mm, pgtable);
593 594 595
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
596 597
		}

598
		entry = mk_huge_pmd(page, vma->vm_page_prot);
599
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600
		page_add_new_anon_rmap(page, vma, haddr, true);
601
		mem_cgroup_commit_charge(page, memcg, false, true);
602
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
603 604
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
605
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
607
		spin_unlock(vmf->ptl);
608
		count_vm_event(THP_FAULT_ALLOC);
609 610
	}

611
	return 0;
612 613 614 615 616 617 618 619 620
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

621 622
}

623
/*
624 625 626 627 628 629 630
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
631
 */
632
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633
{
634
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635

636
	/* Always do synchronous compaction */
637
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
638
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
639 640

	/* Kick kcompactd and fail quickly */
641
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 644

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
645
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
646 647 648
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
649 650

	/* Only do synchronous compaction if madvised */
651
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
652 653
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
654

655
	return GFP_TRANSHUGE_LIGHT;
656 657
}

658
/* Caller must hold page table lock. */
659
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
660
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
661
		struct page *zero_page)
662 663
{
	pmd_t entry;
A
Andrew Morton 已提交
664 665
	if (!pmd_none(*pmd))
		return false;
666
	entry = mk_pmd(zero_page, vma->vm_page_prot);
667
	entry = pmd_mkhuge(entry);
668 669
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
670
	set_pmd_at(mm, haddr, pmd, entry);
671
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
672
	return true;
673 674
}

675
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
676
{
J
Jan Kara 已提交
677
	struct vm_area_struct *vma = vmf->vma;
678
	gfp_t gfp;
679
	struct page *page;
J
Jan Kara 已提交
680
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
681

682
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
683
		return VM_FAULT_FALLBACK;
684 685
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
686
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
687
		return VM_FAULT_OOM;
J
Jan Kara 已提交
688
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
689
			!mm_forbids_zeropage(vma->vm_mm) &&
690 691 692 693
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
694
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
695
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
696
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
697
			return VM_FAULT_OOM;
698
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
699
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
700
			pte_free(vma->vm_mm, pgtable);
701
			count_vm_event(THP_FAULT_FALLBACK);
702
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
703
		}
J
Jan Kara 已提交
704
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
705 706
		ret = 0;
		set = false;
J
Jan Kara 已提交
707
		if (pmd_none(*vmf->pmd)) {
708 709 710 711
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
712 713
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
714 715
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
716
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
717 718
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
719 720 721
				set = true;
			}
		} else
J
Jan Kara 已提交
722
			spin_unlock(vmf->ptl);
723
		if (!set)
K
Kirill A. Shutemov 已提交
724
			pte_free(vma->vm_mm, pgtable);
725
		return ret;
726
	}
727 728
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
729 730
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
731
		return VM_FAULT_FALLBACK;
732
	}
733
	prep_transhuge_page(page);
J
Jan Kara 已提交
734
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
735 736
}

737
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
738 739
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
740 741 742 743 744 745
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
746 747 748
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
749
	if (write) {
750 751
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
752
	}
753 754 755

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
756
		mm_inc_nr_ptes(mm);
757 758
	}

759 760
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
761 762 763
	spin_unlock(ptl);
}

764
vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
765
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
766 767
{
	pgprot_t pgprot = vma->vm_page_prot;
768
	pgtable_t pgtable = NULL;
M
Matthew Wilcox 已提交
769 770 771 772 773
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
774 775
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
776 777 778 779 780 781
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
782

783 784 785 786 787 788
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

789 790
	track_pfn_insert(vma, &pgprot, pfn);

791
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
792
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
793
}
794
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
795

796
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
797
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
798
{
799
	if (likely(vma->vm_flags & VM_WRITE))
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
816 817
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
818 819 820 821 822 823
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
	spin_unlock(ptl);
}

824
vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
825 826 827 828 829 830 831 832
			pud_t *pud, pfn_t pfn, bool write)
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
833 834
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

850
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
851
		pmd_t *pmd, int flags)
852 853 854
{
	pmd_t _pmd;

855 856 857
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
858
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
859
				pmd, _pmd, flags & FOLL_WRITE))
860 861 862 863
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
864
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
865 866 867 868 869 870 871
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

872 873 874 875 876 877
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

878
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 880 881 882 883 884 885 886
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
887
		touch_pmd(vma, addr, pmd, flags);
888 889 890 891 892 893 894 895 896

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 898
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
899 900 901 902 903 904 905
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

906 907 908 909
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
910
	spinlock_t *dst_ptl, *src_ptl;
911 912
	struct page *src_page;
	pmd_t pmd;
913
	pgtable_t pgtable = NULL;
914
	int ret = -ENOMEM;
915

916 917 918 919 920 921 922
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
923

924 925 926
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
927 928 929

	ret = -EAGAIN;
	pmd = *src_pmd;
930 931 932 933 934 935 936 937 938

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
939 940
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
941 942
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
943
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
944
		mm_inc_nr_ptes(dst_mm);
945
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
946 947 948 949 950 951
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

952
	if (unlikely(!pmd_trans_huge(pmd))) {
953 954 955
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
956
	/*
957
	 * When page table lock is held, the huge zero pmd should not be
958 959 960 961
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
962
		struct page *zero_page;
963 964 965 966 967
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
968
		zero_page = mm_get_huge_zero_page(dst_mm);
969
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
970
				zero_page);
971 972 973
		ret = 0;
		goto out_unlock;
	}
974

975 976 977 978 979
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
980
	mm_inc_nr_ptes(dst_mm);
981
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
982 983 984 985 986 987 988

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
989 990
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
991 992 993 994
out:
	return ret;
}

995 996
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
997
		pud_t *pud, int flags)
998 999 1000
{
	pud_t _pud;

1001 1002 1003
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1004
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1005
				pud, _pud, flags & FOLL_WRITE))
1006 1007 1008 1009
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1010
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1011 1012 1013 1014 1015 1016 1017
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1018
	if (flags & FOLL_WRITE && !pud_write(*pud))
1019 1020 1021 1022 1023 1024 1025 1026
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1027
		touch_pud(vma, addr, pud, flags);
1028 1029 1030 1031 1032 1033 1034 1035 1036

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1037 1038
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1105
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1106 1107 1108
{
	pmd_t entry;
	unsigned long haddr;
1109
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1110

J
Jan Kara 已提交
1111 1112
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1113 1114 1115
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1116 1117
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1118
	haddr = vmf->address & HPAGE_PMD_MASK;
1119
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1120
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1121 1122

unlock:
J
Jan Kara 已提交
1123
	spin_unlock(vmf->ptl);
1124 1125
}

1126 1127
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1128
{
J
Jan Kara 已提交
1129 1130
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1131
	struct mem_cgroup *memcg;
1132 1133
	pgtable_t pgtable;
	pmd_t _pmd;
1134 1135
	int i;
	vm_fault_t ret = 0;
1136
	struct page **pages;
1137 1138
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1139

1140 1141
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1142 1143 1144 1145 1146 1147
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1148
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1149
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1150
		if (unlikely(!pages[i] ||
1151
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1152
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1153
			if (pages[i])
1154
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1155
			while (--i >= 0) {
1156 1157
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1158 1159
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1160 1161
				put_page(pages[i]);
			}
1162 1163 1164 1165
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1166
		set_page_private(pages[i], (unsigned long)memcg);
1167 1168 1169 1170
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1171
				   haddr + PAGE_SIZE * i, vma);
1172 1173 1174 1175
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1176 1177
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1178
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1179

J
Jan Kara 已提交
1180 1181
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1182
		goto out_free_pages;
1183
	VM_BUG_ON_PAGE(!PageHead(page), page);
1184

1185 1186 1187 1188 1189 1190
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1191
	 * See Documentation/vm/mmu_notifier.rst
1192
	 */
J
Jan Kara 已提交
1193
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1194

J
Jan Kara 已提交
1195
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1196
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1197 1198

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1199
		pte_t entry;
1200 1201
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1202 1203
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1204
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1205
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1206
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1207 1208 1209 1210
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1211 1212 1213 1214
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1215
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1216
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1217
	spin_unlock(vmf->ptl);
1218

1219 1220 1221 1222 1223 1224
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1225

1226 1227 1228 1229 1230 1231 1232
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1233
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1234
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1235
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1236 1237
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1238
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1239
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1240
	}
1241 1242 1243 1244
	kfree(pages);
	goto out;
}

1245
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1246
{
J
Jan Kara 已提交
1247
	struct vm_area_struct *vma = vmf->vma;
1248
	struct page *page = NULL, *new_page;
1249
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1250
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1251 1252
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1253
	gfp_t huge_gfp;			/* for allocation and charge */
1254
	vm_fault_t ret = 0;
1255

J
Jan Kara 已提交
1256
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1257
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1258 1259
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1260 1261
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 1263 1264
		goto out_unlock;

	page = pmd_page(orig_pmd);
1265
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1266 1267
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1268
	 * part.
1269
	 */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1283 1284
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1285
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1286 1287
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1288
		ret |= VM_FAULT_WRITE;
1289
		unlock_page(page);
1290 1291
		goto out_unlock;
	}
1292
	unlock_page(page);
1293
	get_page(page);
J
Jan Kara 已提交
1294
	spin_unlock(vmf->ptl);
1295
alloc:
1296
	if (transparent_hugepage_enabled(vma) &&
1297
	    !transparent_hugepage_debug_cow()) {
1298 1299
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1300
	} else
1301 1302
		new_page = NULL;

1303 1304 1305
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1306
		if (!page) {
J
Jan Kara 已提交
1307
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1308
			ret |= VM_FAULT_FALLBACK;
1309
		} else {
J
Jan Kara 已提交
1310
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1311
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1312
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1313 1314
				ret |= VM_FAULT_FALLBACK;
			}
1315
			put_page(page);
1316
		}
1317
		count_vm_event(THP_FAULT_FALLBACK);
1318 1319 1320
		goto out;
	}

1321
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1322
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1323
		put_page(new_page);
J
Jan Kara 已提交
1324
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1325
		if (page)
1326
			put_page(page);
1327
		ret |= VM_FAULT_FALLBACK;
1328
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1329 1330 1331
		goto out;
	}

1332 1333
	count_vm_event(THP_FAULT_ALLOC);

1334
	if (!page)
1335
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1336
	else
1337 1338
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1339 1340
	__SetPageUptodate(new_page);

1341 1342
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1343
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1344

J
Jan Kara 已提交
1345
	spin_lock(vmf->ptl);
1346
	if (page)
1347
		put_page(page);
J
Jan Kara 已提交
1348 1349
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1350
		mem_cgroup_cancel_charge(new_page, memcg, true);
1351
		put_page(new_page);
1352
		goto out_mn;
A
Andrea Arcangeli 已提交
1353
	} else {
1354
		pmd_t entry;
1355
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1356
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1357
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1358
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1359
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1360
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1361 1362
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363
		if (!page) {
K
Kirill A. Shutemov 已提交
1364
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1365
		} else {
1366
			VM_BUG_ON_PAGE(!PageHead(page), page);
1367
			page_remove_rmap(page, true);
1368 1369
			put_page(page);
		}
1370 1371
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1372
	spin_unlock(vmf->ptl);
1373
out_mn:
1374 1375 1376 1377 1378 1379
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1380 1381
out:
	return ret;
1382
out_unlock:
J
Jan Kara 已提交
1383
	spin_unlock(vmf->ptl);
1384
	return ret;
1385 1386
}

1387 1388 1389 1390 1391 1392
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1393
	return pmd_write(pmd) ||
1394 1395 1396
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1397
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1398 1399 1400 1401
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1402
	struct mm_struct *mm = vma->vm_mm;
1403 1404
	struct page *page = NULL;

1405
	assert_spin_locked(pmd_lockptr(mm, pmd));
1406

1407
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1408 1409
		goto out;

1410 1411 1412 1413
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1414
	/* Full NUMA hinting faults to serialise migration in fault paths */
1415
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1416 1417
		goto out;

1418
	page = pmd_page(*pmd);
1419
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1420
	if (flags & FOLL_TOUCH)
1421
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1422
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1423 1424 1425 1426
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1427 1428
		 * For anon THP:
		 *
1429 1430 1431 1432 1433 1434 1435
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1436 1437 1438 1439 1440 1441
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1442
		 */
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1454
	}
1455
skip_mlock:
1456
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1457
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1458
	if (flags & FOLL_GET)
1459
		get_page(page);
1460 1461 1462 1463 1464

out:
	return page;
}

1465
/* NUMA hinting page fault entry point for trans huge pmds */
1466
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1467
{
J
Jan Kara 已提交
1468
	struct vm_area_struct *vma = vmf->vma;
1469
	struct anon_vma *anon_vma = NULL;
1470
	struct page *page;
J
Jan Kara 已提交
1471
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1472
	int page_nid = -1, this_nid = numa_node_id();
1473
	int target_nid, last_cpupid = -1;
1474 1475
	bool page_locked;
	bool migrated = false;
1476
	bool was_writable;
1477
	int flags = 0;
1478

J
Jan Kara 已提交
1479 1480
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1481 1482
		goto out_unlock;

1483 1484 1485 1486 1487
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1488 1489
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1490 1491
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1492
		spin_unlock(vmf->ptl);
1493
		put_and_wait_on_page_locked(page);
1494 1495 1496
		goto out;
	}

1497
	page = pmd_page(pmd);
1498
	BUG_ON(is_huge_zero_page(page));
1499
	page_nid = page_to_nid(page);
1500
	last_cpupid = page_cpupid_last(page);
1501
	count_vm_numa_event(NUMA_HINT_FAULTS);
1502
	if (page_nid == this_nid) {
1503
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1504 1505
		flags |= TNF_FAULT_LOCAL;
	}
1506

1507
	/* See similar comment in do_numa_page for explanation */
1508
	if (!pmd_savedwrite(pmd))
1509 1510
		flags |= TNF_NO_GROUP;

1511 1512 1513 1514
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1515 1516 1517 1518
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1519
		if (page_locked)
1520
			goto clear_pmdnuma;
1521
	}
1522

1523
	/* Migration could have started since the pmd_trans_migrating check */
1524
	if (!page_locked) {
1525 1526 1527
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1528
		spin_unlock(vmf->ptl);
1529
		put_and_wait_on_page_locked(page);
1530 1531 1532
		goto out;
	}

1533 1534 1535 1536
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1537
	get_page(page);
J
Jan Kara 已提交
1538
	spin_unlock(vmf->ptl);
1539
	anon_vma = page_lock_anon_vma_read(page);
1540

P
Peter Zijlstra 已提交
1541
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1542 1543
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1544 1545
		unlock_page(page);
		put_page(page);
1546
		page_nid = -1;
1547
		goto out_unlock;
1548
	}
1549

1550 1551 1552 1553 1554 1555 1556
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1557 1558 1559 1560 1561 1562
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1563 1564 1565 1566
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1567
	 */
1568
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1569
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1582

1583 1584
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1585
	 * and access rights restored.
1586
	 */
J
Jan Kara 已提交
1587
	spin_unlock(vmf->ptl);
1588

K
Kirill A. Shutemov 已提交
1589
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1590
				vmf->pmd, pmd, vmf->address, page, target_nid);
1591 1592
	if (migrated) {
		flags |= TNF_MIGRATED;
1593
		page_nid = target_nid;
1594 1595
	} else
		flags |= TNF_MIGRATE_FAIL;
1596

1597
	goto out;
1598
clear_pmdnuma:
1599
	BUG_ON(!PageLocked(page));
1600
	was_writable = pmd_savedwrite(pmd);
1601
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1602
	pmd = pmd_mkyoung(pmd);
1603 1604
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1605 1606
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1607
	unlock_page(page);
1608
out_unlock:
J
Jan Kara 已提交
1609
	spin_unlock(vmf->ptl);
1610 1611 1612 1613 1614

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1615
	if (page_nid != -1)
J
Jan Kara 已提交
1616
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1617
				flags);
1618

1619 1620 1621
	return 0;
}

1622 1623 1624 1625 1626
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1627 1628 1629 1630 1631 1632
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1633
	bool ret = false;
1634

1635 1636
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1637 1638
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1639
		goto out_unlocked;
1640 1641

	orig_pmd = *pmd;
1642
	if (is_huge_zero_pmd(orig_pmd))
1643 1644
		goto out;

1645 1646 1647 1648 1649 1650
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1669
		split_huge_page(page);
1670
		unlock_page(page);
1671
		put_page(page);
1672 1673 1674 1675 1676 1677 1678 1679
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1680
		pmdp_invalidate(vma, addr, pmd);
1681 1682 1683 1684 1685 1686
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1687 1688

	mark_page_lazyfree(page);
1689
	ret = true;
1690 1691 1692 1693 1694 1695
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1696 1697 1698 1699 1700 1701
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1702
	mm_dec_nr_ptes(mm);
1703 1704
}

1705
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1706
		 pmd_t *pmd, unsigned long addr)
1707
{
1708
	pmd_t orig_pmd;
1709
	spinlock_t *ptl;
1710

1711 1712
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1713 1714
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1726 1727
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1728 1729
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1730
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1731
	} else if (is_huge_zero_pmd(orig_pmd)) {
1732
		zap_deposited_table(tlb->mm, pmd);
1733
		spin_unlock(ptl);
1734
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1735
	} else {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1754
		if (PageAnon(page)) {
1755
			zap_deposited_table(tlb->mm, pmd);
1756 1757
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1758 1759
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1760
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1761
		}
1762

1763
		spin_unlock(ptl);
1764 1765
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1766
	}
1767
	return 1;
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1796
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1797
		  unsigned long new_addr, unsigned long old_end,
1798
		  pmd_t *old_pmd, pmd_t *new_pmd)
1799
{
1800
	spinlock_t *old_ptl, *new_ptl;
1801 1802
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1803
	bool force_flush = false;
1804 1805 1806

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1807
	    old_end - old_addr < HPAGE_PMD_SIZE)
1808
		return false;
1809 1810 1811 1812 1813 1814 1815

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1816
		return false;
1817 1818
	}

1819 1820 1821 1822
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1823 1824
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1825 1826 1827
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1828
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1829
		if (pmd_present(pmd))
1830
			force_flush = true;
1831
		VM_BUG_ON(!pmd_none(*new_pmd));
1832

1833
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1834
			pgtable_t pgtable;
1835 1836 1837
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1838 1839
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1840 1841
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1842 1843
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1844
		spin_unlock(old_ptl);
1845
		return true;
1846
	}
1847
	return false;
1848 1849
}

1850 1851 1852 1853 1854 1855
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1856
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1857
		unsigned long addr, pgprot_t newprot, int prot_numa)
1858 1859
{
	struct mm_struct *mm = vma->vm_mm;
1860
	spinlock_t *ptl;
1861 1862 1863
	pmd_t entry;
	bool preserve_write;
	int ret;
1864

1865
	ptl = __pmd_trans_huge_lock(pmd, vma);
1866 1867
	if (!ptl)
		return 0;
1868

1869 1870
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1885 1886
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1887 1888 1889 1890 1891 1892
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1893 1894 1895 1896 1897 1898 1899
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1900

1901 1902 1903
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1925
	entry = pmdp_invalidate(vma, addr, pmd);
1926

1927 1928 1929 1930 1931 1932 1933 1934
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1935 1936 1937 1938
	return ret;
}

/*
1939
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1940
 *
1941 1942
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1943
 */
1944
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1945
{
1946 1947
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1948 1949
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1950 1951 1952
		return ptl;
	spin_unlock(ptl);
	return NULL;
1953 1954
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2009
	count_vm_event(THP_SPLIT_PUD);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2029 2030 2031 2032 2033 2034
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2035 2036 2037
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2038 2039 2040 2041 2042 2043 2044 2045
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2046 2047 2048 2049 2050 2051
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2052
	 * See Documentation/vm/mmu_notifier.rst
2053 2054
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2073
		unsigned long haddr, bool freeze)
2074 2075 2076 2077
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2078
	pmd_t old_pmd, _pmd;
2079
	bool young, write, soft_dirty, pmd_migration = false;
2080
	unsigned long addr;
2081 2082 2083 2084 2085
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2086 2087
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2088 2089 2090

	count_vm_event(THP_SPLIT_PMD);

2091 2092
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2093 2094 2095 2096 2097 2098
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2099 2100 2101
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2102 2103
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2104 2105 2106 2107
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2108
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2109 2110
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2111 2112 2113 2114 2115 2116 2117 2118 2119
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2120 2121 2122
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2146
	if (unlikely(pmd_migration)) {
2147 2148
		swp_entry_t entry;

2149
		entry = pmd_to_swp_entry(old_pmd);
2150
		page = pfn_to_page(swp_offset(entry));
2151 2152 2153 2154
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2155
		page = pmd_page(old_pmd);
2156 2157 2158 2159 2160 2161
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2162
	VM_BUG_ON_PAGE(!page_count(page), page);
2163
	page_ref_add(page, HPAGE_PMD_NR - 1);
2164

2165 2166 2167 2168
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2169 2170 2171
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2172
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2173 2174 2175 2176 2177 2178
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2179
		if (freeze || pmd_migration) {
2180 2181 2182
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2183 2184
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2185
		} else {
2186
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2187
			entry = maybe_mkwrite(entry, vma);
2188 2189 2190 2191
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2192 2193
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2194
		}
2195
		pte = pte_offset_map(&_pmd, addr);
2196
		BUG_ON(!pte_none(*pte));
2197
		set_pte_at(mm, addr, pte, entry);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2213
		__dec_node_page_state(page, NR_ANON_THPS);
2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2223 2224

	if (freeze) {
2225
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2226 2227 2228 2229
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2230 2231 2232
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2233
		unsigned long address, bool freeze, struct page *page)
2234 2235 2236 2237 2238 2239 2240
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2241 2242 2243 2244 2245 2246 2247 2248 2249

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2250
	if (pmd_trans_huge(*pmd)) {
2251
		page = pmd_page(*pmd);
2252
		if (PageMlocked(page))
2253
			clear_page_mlock(page);
2254
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2255
		goto out;
2256
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2257
out:
2258
	spin_unlock(ptl);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2274 2275
}

2276 2277
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2278
{
2279
	pgd_t *pgd;
2280
	p4d_t *p4d;
2281
	pud_t *pud;
2282 2283
	pmd_t *pmd;

2284
	pgd = pgd_offset(vma->vm_mm, address);
2285 2286 2287
	if (!pgd_present(*pgd))
		return;

2288 2289 2290 2291 2292
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2293 2294 2295 2296
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2297

2298
	__split_huge_pmd(vma, pmd, address, freeze, page);
2299 2300
}

2301
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2314
		split_huge_pmd_address(vma, start, false, NULL);
2315 2316 2317 2318 2319 2320 2321 2322 2323

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2324
		split_huge_pmd_address(vma, end, false, NULL);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2338
			split_huge_pmd_address(next, nstart, false, NULL);
2339 2340
	}
}
2341

2342
static void unmap_page(struct page *page)
2343
{
2344
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2345
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2346
	bool unmap_success;
2347 2348 2349

	VM_BUG_ON_PAGE(!PageHead(page), page);

2350
	if (PageAnon(page))
2351
		ttu_flags |= TTU_SPLIT_FREEZE;
2352

M
Minchan Kim 已提交
2353 2354
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2355 2356
}

2357
static void remap_page(struct page *page)
2358
{
2359
	int i;
2360 2361 2362 2363 2364 2365
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2366 2367
}

2368
static void __split_huge_page_tail(struct page *head, int tail,
2369 2370 2371 2372
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2373
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2374 2375

	/*
2376 2377 2378 2379
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2380 2381 2382 2383 2384
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2385
			 (1L << PG_swapcache) |
2386 2387 2388
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2389
			 (1L << PG_workingset) |
2390
			 (1L << PG_locked) |
2391 2392
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2393

2394 2395 2396 2397 2398 2399
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2400
	/* Page flags must be visible before we make the page non-compound. */
2401 2402
	smp_wmb();

2403 2404 2405 2406 2407 2408
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2409 2410
	clear_compound_head(page_tail);

2411 2412 2413 2414
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2415 2416 2417 2418 2419 2420
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2421 2422 2423 2424 2425 2426

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2427 2428 2429
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2430
static void __split_huge_page(struct page *page, struct list_head *list,
2431
		pgoff_t end, unsigned long flags)
2432 2433 2434 2435
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2436
	int i;
2437

M
Mel Gorman 已提交
2438
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2439 2440 2441 2442

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2443
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2444
		__split_huge_page_tail(head, i, lruvec, list);
2445 2446
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2447
			ClearPageDirty(head + i);
2448
			__delete_from_page_cache(head + i, NULL);
2449 2450
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2451 2452 2453
			put_page(head + i);
		}
	}
2454 2455

	ClearPageCompound(head);
2456 2457
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2458
		/* Additional pin to swap cache */
2459 2460 2461 2462
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2463
	} else {
M
Matthew Wilcox 已提交
2464
		/* Additional pin to page cache */
2465
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2466
		xa_unlock(&head->mapping->i_pages);
2467 2468
	}

2469
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2470

2471
	remap_page(head);
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2490 2491
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2492
	int i, compound, ret;
2493 2494 2495 2496 2497 2498

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2499
	compound = compound_mapcount(page);
2500
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2501 2502
		return compound;
	ret = compound;
2503 2504
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2505 2506 2507
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2508 2509 2510 2511 2512
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2571 2572 2573 2574 2575
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2576
	/* Additional pins from page cache */
2577 2578 2579 2580 2581 2582 2583 2584 2585
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2608
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2609 2610 2611
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2612
	bool mlocked;
2613
	unsigned long flags;
2614
	pgoff_t end;
2615 2616 2617 2618 2619

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2620 2621 2622
	if (PageWriteback(page))
		return -EBUSY;

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2637
		end = -1;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2651 2652 2653 2654 2655 2656 2657 2658 2659

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2660 2661 2662
	}

	/*
2663
	 * Racy check if we can split the page, before unmap_page() will
2664 2665
	 * split PMDs
	 */
2666
	if (!can_split_huge_page(head, &extra_pins)) {
2667 2668 2669 2670
		ret = -EBUSY;
		goto out_unlock;
	}

2671
	mlocked = PageMlocked(page);
2672
	unmap_page(head);
2673 2674
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2675 2676 2677 2678
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2679
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2680
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2681 2682

	if (mapping) {
M
Matthew Wilcox 已提交
2683
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2684 2685

		/*
M
Matthew Wilcox 已提交
2686
		 * Check if the head page is present in page cache.
2687 2688
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2689 2690
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2691 2692 2693
			goto fail;
	}

2694
	/* Prevent deferred_split_scan() touching ->_refcount */
2695
	spin_lock(&pgdata->split_queue_lock);
2696 2697
	count = page_count(head);
	mapcount = total_mapcount(head);
2698
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2699
		if (!list_empty(page_deferred_list(head))) {
2700
			pgdata->split_queue_len--;
2701 2702
			list_del(page_deferred_list(head));
		}
2703
		if (mapping)
2704
			__dec_node_page_state(page, NR_SHMEM_THPS);
2705
		spin_unlock(&pgdata->split_queue_lock);
2706
		__split_huge_page(page, list, end, flags);
2707 2708 2709 2710 2711 2712
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2713
	} else {
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
M
Matthew Wilcox 已提交
2724
			xa_unlock(&mapping->i_pages);
2725
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2726
		remap_page(head);
2727 2728 2729 2730
		ret = -EBUSY;
	}

out_unlock:
2731 2732 2733 2734 2735 2736
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2737 2738 2739 2740
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2741 2742 2743

void free_transhuge_page(struct page *page)
{
2744
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2745 2746
	unsigned long flags;

2747
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2748
	if (!list_empty(page_deferred_list(page))) {
2749
		pgdata->split_queue_len--;
2750 2751
		list_del(page_deferred_list(page));
	}
2752
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2753 2754 2755 2756 2757
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2758
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2759 2760 2761 2762
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2763
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2764
	if (list_empty(page_deferred_list(page))) {
2765
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2766 2767
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2768
	}
2769
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2770 2771 2772 2773 2774
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2775
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2776
	return READ_ONCE(pgdata->split_queue_len);
2777 2778 2779 2780 2781
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2782
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2783 2784 2785 2786 2787
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2788
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2789
	/* Take pin on all head pages to avoid freeing them under us */
2790
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2791 2792
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2793 2794 2795 2796
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2797
			list_del_init(page_deferred_list(page));
2798
			pgdata->split_queue_len--;
2799
		}
2800 2801
		if (!--sc->nr_to_scan)
			break;
2802
	}
2803
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2804 2805 2806

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2807 2808
		if (!trylock_page(page))
			goto next;
2809 2810 2811 2812
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2813
next:
2814 2815 2816
		put_page(page);
	}

2817 2818 2819
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820

2821 2822 2823 2824 2825 2826 2827
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2828 2829 2830 2831 2832 2833
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2834
	.flags = SHRINKER_NUMA_AWARE,
2835
};
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2861
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2874
	pr_info("%lu of %lu THP split\n", split, total);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2885
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2886 2887 2888 2889 2890 2891 2892
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2903
	pmd_t pmdswp;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2914 2915 2916 2917
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2937 2938
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2939
	if (is_write_migration_entry(entry))
2940
		pmde = maybe_pmd_mkwrite(pmde, vma);
2941 2942

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2943 2944 2945 2946
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2947
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2948
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2949 2950 2951 2952
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif