intel_ringbuffer.c 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drv.h"
33
#include "i915_drm.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41 42 43 44 45 46
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
struct pipe_control {
	struct drm_i915_gem_object *obj;
	volatile u32 *cpu_page;
	u32 gtt_offset;
};

47 48 49 50 51 52 53 54
static inline int ring_space(struct intel_ring_buffer *ring)
{
	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
	if (space < 0)
		space += ring->size;
	return space;
}

55
static int
56
render_ring_flush(struct intel_ring_buffer *ring,
57 58
		  u32	invalidate_domains,
		  u32	flush_domains)
59
{
60
	struct drm_device *dev = ring->dev;
61
	u32 cmd;
62
	int ret;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	if ((invalidate_domains|flush_domains) &
	    I915_GEM_DOMAIN_RENDER)
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (INTEL_INFO(dev)->gen < 4) {
97
		/*
98 99
		 * On the 965, the sampler cache always gets flushed
		 * and this bit is reserved.
100
		 */
101 102 103 104 105
		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
			cmd |= MI_READ_FLUSH;
	}
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
106

107 108 109
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
110

111 112 113
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
114

115 116 117
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
118 119

	return 0;
120 121
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;


	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

static int
gen6_render_ring_flush(struct intel_ring_buffer *ring,
                         u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* Force SNB workarounds for PIPE_CONTROL flushes */
	intel_emit_post_sync_nonzero_flush(ring);

	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* lower dword */
	intel_ring_emit(ring, 0); /* uppwer dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

234
static void ring_write_tail(struct intel_ring_buffer *ring,
235
			    u32 value)
236
{
237
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
238
	I915_WRITE_TAIL(ring, value);
239 240
}

241
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
242
{
243 244
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
D
Daniel Vetter 已提交
245
			RING_ACTHD(ring->mmio_base) : ACTHD;
246 247 248 249

	return I915_READ(acthd_reg);
}

250
static int init_ring_common(struct intel_ring_buffer *ring)
251
{
252
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
253
	struct drm_i915_gem_object *obj = ring->obj;
254 255 256
	u32 head;

	/* Stop the ring if it's running. */
257
	I915_WRITE_CTL(ring, 0);
258
	I915_WRITE_HEAD(ring, 0);
259
	ring->write_tail(ring, 0);
260 261

	/* Initialize the ring. */
262
	I915_WRITE_START(ring, obj->gtt_offset);
263
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
264 265 266

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
267 268 269 270 271 272 273
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
			      ring->name,
			      I915_READ_CTL(ring),
			      I915_READ_HEAD(ring),
			      I915_READ_TAIL(ring),
			      I915_READ_START(ring));
274

275
		I915_WRITE_HEAD(ring, 0);
276

277 278 279 280 281 282 283 284 285
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
				  ring->name,
				  I915_READ_CTL(ring),
				  I915_READ_HEAD(ring),
				  I915_READ_TAIL(ring),
				  I915_READ_START(ring));
		}
286 287
	}

288
	I915_WRITE_CTL(ring,
289
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
290
			| RING_REPORT_64K | RING_VALID);
291 292

	/* If the head is still not zero, the ring is dead */
293
	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
294
	    I915_READ_START(ring) != obj->gtt_offset ||
295
	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
296 297 298 299 300 301 302 303
		DRM_ERROR("%s initialization failed "
				"ctl %08x head %08x tail %08x start %08x\n",
				ring->name,
				I915_READ_CTL(ring),
				I915_READ_HEAD(ring),
				I915_READ_TAIL(ring),
				I915_READ_START(ring));
		return -EIO;
304 305
	}

306 307
	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
		i915_kernel_lost_context(ring->dev);
308
	else {
309
		ring->head = I915_READ_HEAD(ring);
310
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
311
		ring->space = ring_space(ring);
312
	}
313

314 315 316
	return 0;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int
init_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc;
	struct drm_i915_gem_object *obj;
	int ret;

	if (ring->private)
		return 0;

	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
	if (!pc)
		return -ENOMEM;

	obj = i915_gem_alloc_object(ring->dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
337 338

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	ret = i915_gem_object_pin(obj, 4096, true);
	if (ret)
		goto err_unref;

	pc->gtt_offset = obj->gtt_offset;
	pc->cpu_page =  kmap(obj->pages[0]);
	if (pc->cpu_page == NULL)
		goto err_unpin;

	pc->obj = obj;
	ring->private = pc;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(&obj->base);
err:
	kfree(pc);
	return ret;
}

static void
cleanup_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	struct drm_i915_gem_object *obj;

	if (!ring->private)
		return;

	obj = pc->obj;
	kunmap(obj->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(&obj->base);

	kfree(pc);
	ring->private = NULL;
}

380
static int init_render_ring(struct intel_ring_buffer *ring)
381
{
382
	struct drm_device *dev = ring->dev;
383
	struct drm_i915_private *dev_priv = dev->dev_private;
384
	int ret = init_ring_common(ring);
385

386
	if (INTEL_INFO(dev)->gen > 3) {
387
		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
388
		I915_WRITE(MI_MODE, mode);
389 390 391 392
		if (IS_GEN7(dev))
			I915_WRITE(GFX_MODE_GEN7,
				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
393
	}
394

395
	if (INTEL_INFO(dev)->gen >= 5) {
396 397 398 399 400
		ret = init_pipe_control(ring);
		if (ret)
			return ret;
	}

401 402 403 404 405
	if (INTEL_INFO(dev)->gen >= 6) {
		I915_WRITE(INSTPM,
			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
	}

406 407 408
	return ret;
}

409 410 411 412 413 414 415 416
static void render_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	cleanup_pipe_control(ring);
}

417
static void
418 419 420
update_mboxes(struct intel_ring_buffer *ring,
	    u32 seqno,
	    u32 mmio_offset)
421
{
422 423 424 425
	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
			      MI_SEMAPHORE_GLOBAL_GTT |
			      MI_SEMAPHORE_REGISTER |
			      MI_SEMAPHORE_UPDATE);
426
	intel_ring_emit(ring, seqno);
427
	intel_ring_emit(ring, mmio_offset);
428 429
}

430 431 432 433 434 435 436 437 438
/**
 * gen6_add_request - Update the semaphore mailbox registers
 * 
 * @ring - ring that is adding a request
 * @seqno - return seqno stuck into the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
439 440
static int
gen6_add_request(struct intel_ring_buffer *ring,
441
		 u32 *seqno)
442
{
443 444
	u32 mbox1_reg;
	u32 mbox2_reg;
445 446 447 448 449 450
	int ret;

	ret = intel_ring_begin(ring, 10);
	if (ret)
		return ret;

451 452
	mbox1_reg = ring->signal_mbox[0];
	mbox2_reg = ring->signal_mbox[1];
453

454
	*seqno = i915_gem_next_request_seqno(ring);
455 456 457

	update_mboxes(ring, *seqno, mbox1_reg);
	update_mboxes(ring, *seqno, mbox2_reg);
458 459
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
460
	intel_ring_emit(ring, *seqno);
461 462 463 464 465 466
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);

	return 0;
}

467 468 469 470 471 472 473 474 475 476 477
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
static int
intel_ring_sync(struct intel_ring_buffer *waiter,
		struct intel_ring_buffer *signaller,
		int ring,
478 479 480
		u32 seqno)
{
	int ret;
481 482 483
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
484

485
	ret = intel_ring_begin(waiter, 4);
486 487 488
	if (ret)
		return ret;

489 490 491 492 493
	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter, 0);
	intel_ring_emit(waiter, MI_NOOP);
	intel_ring_advance(waiter);
494 495 496 497

	return 0;
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
/* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
int
render_ring_sync_to(struct intel_ring_buffer *waiter,
		    struct intel_ring_buffer *signaller,
		    u32 seqno)
{
	WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       RCS,
			       seqno);
}

/* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
int
gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       VCS,
			       seqno);
}

/* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
int
gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       BCS,
			       seqno);
}



539 540
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
541 542
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
543 544 545 546 547 548 549 550 551
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
pc_render_add_request(struct intel_ring_buffer *ring,
		      u32 *result)
{
552
	u32 seqno = i915_gem_next_request_seqno(ring);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
	ret = intel_ring_begin(ring, 32);
	if (ret)
		return ret;

569
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
570 571
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
572 573 574 575 576 577 578 579 580 581 582 583 584 585
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128; /* write to separate cachelines */
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
586
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
587 588
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
589 590 591 592 593 594 595 596 597 598
			PIPE_CONTROL_NOTIFY);
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);

	*result = seqno;
	return 0;
}

599 600 601 602
static int
render_ring_add_request(struct intel_ring_buffer *ring,
			u32 *result)
{
603
	u32 seqno = i915_gem_next_request_seqno(ring);
604
	int ret;
605

606 607 608
	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
609

610 611 612 613
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
614
	intel_ring_advance(ring);
615

616 617
	*result = seqno;
	return 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632
static u32
gen6_ring_get_seqno(struct intel_ring_buffer *ring)
{
	struct drm_device *dev = ring->dev;

	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
	 * ACTHD) before reading the status page. */
	if (IS_GEN7(dev))
		intel_ring_get_active_head(ring);
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

633
static u32
634
ring_get_seqno(struct intel_ring_buffer *ring)
635
{
636 637 638
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

639 640 641 642 643 644 645
static u32
pc_render_get_seqno(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	return pc->cpu_page[0];
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static void
ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask &= ~mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask |= mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask &= ~mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

static void
i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask |= mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

678
static bool
679
render_ring_get_irq(struct intel_ring_buffer *ring)
680
{
681
	struct drm_device *dev = ring->dev;
682
	drm_i915_private_t *dev_priv = dev->dev_private;
683

684 685 686
	if (!dev->irq_enabled)
		return false;

687
	spin_lock(&ring->irq_lock);
688
	if (ring->irq_refcount++ == 0) {
689
		if (HAS_PCH_SPLIT(dev))
690 691
			ironlake_enable_irq(dev_priv,
					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
692 693 694
		else
			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
	}
695
	spin_unlock(&ring->irq_lock);
696 697

	return true;
698 699
}

700
static void
701
render_ring_put_irq(struct intel_ring_buffer *ring)
702
{
703
	struct drm_device *dev = ring->dev;
704
	drm_i915_private_t *dev_priv = dev->dev_private;
705

706
	spin_lock(&ring->irq_lock);
707
	if (--ring->irq_refcount == 0) {
708
		if (HAS_PCH_SPLIT(dev))
709 710 711
			ironlake_disable_irq(dev_priv,
					     GT_USER_INTERRUPT |
					     GT_PIPE_NOTIFY);
712 713 714
		else
			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
	}
715
	spin_unlock(&ring->irq_lock);
716 717
}

718
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
719
{
720
	struct drm_device *dev = ring->dev;
721
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
722 723 724 725 726 727 728
	u32 mmio = 0;

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
		switch (ring->id) {
729
		case RCS:
730 731
			mmio = RENDER_HWS_PGA_GEN7;
			break;
732
		case BCS:
733 734
			mmio = BLT_HWS_PGA_GEN7;
			break;
735
		case VCS:
736 737 738 739 740 741 742 743 744
			mmio = BSD_HWS_PGA_GEN7;
			break;
		}
	} else if (IS_GEN6(ring->dev)) {
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
	} else {
		mmio = RING_HWS_PGA(ring->mmio_base);
	}

745 746
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
	POSTING_READ(mmio);
747 748
}

749
static int
750 751 752
bsd_ring_flush(struct intel_ring_buffer *ring,
	       u32     invalidate_domains,
	       u32     flush_domains)
753
{
754 755 756 757 758 759 760 761 762 763
	int ret;

	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
	return 0;
764 765
}

766
static int
767
ring_add_request(struct intel_ring_buffer *ring,
768
		 u32 *result)
769 770
{
	u32 seqno;
771 772 773 774 775
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
776

777
	seqno = i915_gem_next_request_seqno(ring);
778

779 780 781 782 783
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);
784

785 786
	*result = seqno;
	return 0;
787 788
}

789 790 791 792
static bool
gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
793
	drm_i915_private_t *dev_priv = dev->dev_private;
794 795 796 797

	if (!dev->irq_enabled)
	       return false;

798 799 800
	/* It looks like we need to prevent the gt from suspending while waiting
	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
	 * blt/bsd rings on ivb. */
801
	gen6_gt_force_wake_get(dev_priv);
802

803
	spin_lock(&ring->irq_lock);
804
	if (ring->irq_refcount++ == 0) {
805 806 807 808
		ring->irq_mask &= ~rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_enable_irq(dev_priv, gflag);
	}
809
	spin_unlock(&ring->irq_lock);
810 811 812 813 814 815 816 817

	return true;
}

static void
gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
818
	drm_i915_private_t *dev_priv = dev->dev_private;
819

820
	spin_lock(&ring->irq_lock);
821
	if (--ring->irq_refcount == 0) {
822 823 824
		ring->irq_mask |= rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_disable_irq(dev_priv, gflag);
825
	}
826
	spin_unlock(&ring->irq_lock);
827

828
	gen6_gt_force_wake_put(dev_priv);
829 830
}

831
static bool
832
bsd_ring_get_irq(struct intel_ring_buffer *ring)
833
{
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!dev->irq_enabled)
		return false;

	spin_lock(&ring->irq_lock);
	if (ring->irq_refcount++ == 0) {
		if (IS_G4X(dev))
			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);

	return true;
850 851 852 853
}
static void
bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
854 855 856 857 858 859 860 861 862 863 864
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	spin_lock(&ring->irq_lock);
	if (--ring->irq_refcount == 0) {
		if (IS_G4X(dev))
			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);
865 866 867
}

static int
868
ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
869
{
870
	int ret;
871

872 873 874 875
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

876
	intel_ring_emit(ring,
877
			MI_BATCH_BUFFER_START | (2 << 6) |
878
			MI_BATCH_NON_SECURE_I965);
879
	intel_ring_emit(ring, offset);
880 881
	intel_ring_advance(ring);

882 883 884
	return 0;
}

885
static int
886
render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
887
				u32 offset, u32 len)
888
{
889
	struct drm_device *dev = ring->dev;
890
	int ret;
891

892 893 894 895
	if (IS_I830(dev) || IS_845G(dev)) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
			return ret;
896

897 898 899 900 901 902 903 904
		intel_ring_emit(ring, MI_BATCH_BUFFER);
		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
		intel_ring_emit(ring, offset + len - 8);
		intel_ring_emit(ring, 0);
	} else {
		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;
905

906 907 908 909 910
		if (INTEL_INFO(dev)->gen >= 4) {
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6) |
					MI_BATCH_NON_SECURE_I965);
			intel_ring_emit(ring, offset);
911
		} else {
912 913 914
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6));
			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
915 916
		}
	}
917
	intel_ring_advance(ring);
918 919 920 921

	return 0;
}

922
static void cleanup_status_page(struct intel_ring_buffer *ring)
923
{
924
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
925
	struct drm_i915_gem_object *obj;
926

927 928
	obj = ring->status_page.obj;
	if (obj == NULL)
929 930
		return;

931
	kunmap(obj->pages[0]);
932
	i915_gem_object_unpin(obj);
933
	drm_gem_object_unreference(&obj->base);
934
	ring->status_page.obj = NULL;
935 936 937 938

	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
}

939
static int init_status_page(struct intel_ring_buffer *ring)
940
{
941
	struct drm_device *dev = ring->dev;
942
	drm_i915_private_t *dev_priv = dev->dev_private;
943
	struct drm_i915_gem_object *obj;
944 945 946 947 948 949 950 951
	int ret;

	obj = i915_gem_alloc_object(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		ret = -ENOMEM;
		goto err;
	}
952 953

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
954

955
	ret = i915_gem_object_pin(obj, 4096, true);
956 957 958 959
	if (ret != 0) {
		goto err_unref;
	}

960 961
	ring->status_page.gfx_addr = obj->gtt_offset;
	ring->status_page.page_addr = kmap(obj->pages[0]);
962
	if (ring->status_page.page_addr == NULL) {
963 964 965
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
		goto err_unpin;
	}
966 967
	ring->status_page.obj = obj;
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
968

969
	intel_ring_setup_status_page(ring);
970 971
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			ring->name, ring->status_page.gfx_addr);
972 973 974 975 976 977

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
978
	drm_gem_object_unreference(&obj->base);
979
err:
980
	return ret;
981 982
}

983
int intel_init_ring_buffer(struct drm_device *dev,
984
			   struct intel_ring_buffer *ring)
985
{
986
	struct drm_i915_gem_object *obj;
987 988
	int ret;

989
	ring->dev = dev;
990 991
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
992
	INIT_LIST_HEAD(&ring->gpu_write_list);
993

994
	init_waitqueue_head(&ring->irq_queue);
995
	spin_lock_init(&ring->irq_lock);
996
	ring->irq_mask = ~0;
997

998
	if (I915_NEED_GFX_HWS(dev)) {
999
		ret = init_status_page(ring);
1000 1001 1002
		if (ret)
			return ret;
	}
1003

1004
	obj = i915_gem_alloc_object(dev, ring->size);
1005 1006
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
1007
		ret = -ENOMEM;
1008
		goto err_hws;
1009 1010
	}

1011
	ring->obj = obj;
1012

1013
	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1014 1015
	if (ret)
		goto err_unref;
1016

1017
	ring->map.size = ring->size;
1018
	ring->map.offset = dev->agp->base + obj->gtt_offset;
1019 1020 1021 1022 1023 1024 1025
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("Failed to map ringbuffer.\n");
1026
		ret = -EINVAL;
1027
		goto err_unpin;
1028 1029
	}

1030
	ring->virtual_start = ring->map.handle;
1031
	ret = ring->init(ring);
1032 1033
	if (ret)
		goto err_unmap;
1034

1035 1036 1037 1038 1039 1040 1041 1042
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

1043
	return 0;
1044 1045 1046 1047 1048 1049

err_unmap:
	drm_core_ioremapfree(&ring->map, dev);
err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
1050 1051
	drm_gem_object_unreference(&obj->base);
	ring->obj = NULL;
1052
err_hws:
1053
	cleanup_status_page(ring);
1054
	return ret;
1055 1056
}

1057
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1058
{
1059 1060 1061
	struct drm_i915_private *dev_priv;
	int ret;

1062
	if (ring->obj == NULL)
1063 1064
		return;

1065 1066
	/* Disable the ring buffer. The ring must be idle at this point */
	dev_priv = ring->dev->dev_private;
1067
	ret = intel_wait_ring_idle(ring);
1068 1069 1070 1071
	if (ret)
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

1072 1073
	I915_WRITE_CTL(ring, 0);

1074
	drm_core_ioremapfree(&ring->map, ring->dev);
1075

1076 1077 1078
	i915_gem_object_unpin(ring->obj);
	drm_gem_object_unreference(&ring->obj->base);
	ring->obj = NULL;
1079

Z
Zou Nan hai 已提交
1080 1081 1082
	if (ring->cleanup)
		ring->cleanup(ring);

1083
	cleanup_status_page(ring);
1084 1085
}

1086
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1087
{
1088
	unsigned int *virt;
1089
	int rem = ring->size - ring->tail;
1090

1091
	if (ring->space < rem) {
1092
		int ret = intel_wait_ring_buffer(ring, rem);
1093 1094 1095 1096
		if (ret)
			return ret;
	}

1097
	virt = (unsigned int *)(ring->virtual_start + ring->tail);
1098 1099
	rem /= 8;
	while (rem--) {
1100
		*virt++ = MI_NOOP;
1101 1102
		*virt++ = MI_NOOP;
	}
1103

1104
	ring->tail = 0;
1105
	ring->space = ring_space(ring);
1106 1107 1108 1109

	return 0;
}

1110
int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1111
{
1112
	struct drm_device *dev = ring->dev;
1113
	struct drm_i915_private *dev_priv = dev->dev_private;
1114
	unsigned long end;
1115 1116
	u32 head;

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	/* If the reported head position has wrapped or hasn't advanced,
	 * fallback to the slow and accurate path.
	 */
	head = intel_read_status_page(ring, 4);
	if (head > ring->head) {
		ring->head = head;
		ring->space = ring_space(ring);
		if (ring->space >= n)
			return 0;
	}

C
Chris Wilson 已提交
1128
	trace_i915_ring_wait_begin(ring);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (drm_core_check_feature(dev, DRIVER_GEM))
		/* With GEM the hangcheck timer should kick us out of the loop,
		 * leaving it early runs the risk of corrupting GEM state (due
		 * to running on almost untested codepaths). But on resume
		 * timers don't work yet, so prevent a complete hang in that
		 * case by choosing an insanely large timeout. */
		end = jiffies + 60 * HZ;
	else
		end = jiffies + 3 * HZ;

1139
	do {
1140 1141
		ring->head = I915_READ_HEAD(ring);
		ring->space = ring_space(ring);
1142
		if (ring->space >= n) {
C
Chris Wilson 已提交
1143
			trace_i915_ring_wait_end(ring);
1144 1145 1146 1147 1148 1149 1150 1151
			return 0;
		}

		if (dev->primary->master) {
			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
			if (master_priv->sarea_priv)
				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
		}
1152

1153
		msleep(1);
1154 1155
		if (atomic_read(&dev_priv->mm.wedged))
			return -EAGAIN;
1156
	} while (!time_after(jiffies, end));
C
Chris Wilson 已提交
1157
	trace_i915_ring_wait_end(ring);
1158 1159
	return -EBUSY;
}
1160

1161 1162
int intel_ring_begin(struct intel_ring_buffer *ring,
		     int num_dwords)
1163
{
1164
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1165
	int n = 4*num_dwords;
1166
	int ret;
1167

1168 1169 1170
	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
		return -EIO;

1171
	if (unlikely(ring->tail + n > ring->effective_size)) {
1172 1173 1174 1175
		ret = intel_wrap_ring_buffer(ring);
		if (unlikely(ret))
			return ret;
	}
1176

1177 1178 1179 1180 1181
	if (unlikely(ring->space < n)) {
		ret = intel_wait_ring_buffer(ring, n);
		if (unlikely(ret))
			return ret;
	}
1182 1183

	ring->space -= n;
1184
	return 0;
1185
}
1186

1187
void intel_ring_advance(struct intel_ring_buffer *ring)
1188
{
1189
	ring->tail &= ring->size - 1;
1190
	ring->write_tail(ring, ring->tail);
1191
}
1192

1193
static const struct intel_ring_buffer render_ring = {
1194
	.name			= "render ring",
1195
	.id			= RCS,
1196
	.mmio_base		= RENDER_RING_BASE,
1197 1198
	.size			= 32 * PAGE_SIZE,
	.init			= init_render_ring,
1199
	.write_tail		= ring_write_tail,
1200 1201
	.flush			= render_ring_flush,
	.add_request		= render_ring_add_request,
1202 1203 1204
	.get_seqno		= ring_get_seqno,
	.irq_get		= render_ring_get_irq,
	.irq_put		= render_ring_put_irq,
1205
	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1206
	.cleanup		= render_ring_cleanup,
1207 1208 1209 1210 1211
	.sync_to		= render_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_RV,
				   MI_SEMAPHORE_SYNC_RB},
	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1212
};
1213 1214 1215

/* ring buffer for bit-stream decoder */

1216
static const struct intel_ring_buffer bsd_ring = {
1217
	.name                   = "bsd ring",
1218
	.id			= VCS,
1219
	.mmio_base		= BSD_RING_BASE,
1220
	.size			= 32 * PAGE_SIZE,
1221
	.init			= init_ring_common,
1222
	.write_tail		= ring_write_tail,
1223
	.flush			= bsd_ring_flush,
1224
	.add_request		= ring_add_request,
1225 1226 1227
	.get_seqno		= ring_get_seqno,
	.irq_get		= bsd_ring_get_irq,
	.irq_put		= bsd_ring_put_irq,
1228
	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1229
};
1230

1231

1232
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1233
				     u32 value)
1234
{
1235
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1236 1237

       /* Every tail move must follow the sequence below */
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
	I915_WRITE(GEN6_BSD_RNCID, 0x0);

	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
		50))
	DRM_ERROR("timed out waiting for IDLE Indicator\n");

	I915_WRITE_TAIL(ring, value);
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1252 1253
}

1254
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1255
			   u32 invalidate, u32 flush)
1256
{
1257
	uint32_t cmd;
1258 1259 1260 1261 1262 1263
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;

1264 1265 1266 1267
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_GPU_DOMAINS)
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
	intel_ring_emit(ring, cmd);
1268 1269
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1270
	intel_ring_emit(ring, MI_NOOP);
1271 1272
	intel_ring_advance(ring);
	return 0;
1273 1274 1275
}

static int
1276
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1277
			      u32 offset, u32 len)
1278
{
1279
	int ret;
1280

1281 1282 1283
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
1284

1285 1286 1287 1288
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
	/* bit0-7 is the length on GEN6+ */
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1289

1290
	return 0;
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static bool
gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_get_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

static void
gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_put_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

1309
static bool
1310 1311
gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
{
1312 1313 1314
	return gen6_ring_get_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1315 1316 1317 1318 1319
}

static void
gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
1320 1321 1322
	return gen6_ring_put_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1323 1324
}

1325
/* ring buffer for Video Codec for Gen6+ */
1326
static const struct intel_ring_buffer gen6_bsd_ring = {
1327
	.name			= "gen6 bsd ring",
1328
	.id			= VCS,
1329 1330 1331 1332 1333 1334
	.mmio_base		= GEN6_BSD_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= init_ring_common,
	.write_tail		= gen6_bsd_ring_write_tail,
	.flush			= gen6_ring_flush,
	.add_request		= gen6_add_request,
1335
	.get_seqno		= gen6_ring_get_seqno,
1336 1337 1338
	.irq_get		= gen6_bsd_ring_get_irq,
	.irq_put		= gen6_bsd_ring_put_irq,
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1339 1340 1341 1342 1343
	.sync_to		= gen6_bsd_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
				   MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_VB},
	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1344 1345 1346 1347
};

/* Blitter support (SandyBridge+) */

1348
static bool
1349
blt_ring_get_irq(struct intel_ring_buffer *ring)
1350
{
1351 1352 1353
	return gen6_ring_get_irq(ring,
				 GT_BLT_USER_INTERRUPT,
				 GEN6_BLITTER_USER_INTERRUPT);
1354
}
1355

1356
static void
1357
blt_ring_put_irq(struct intel_ring_buffer *ring)
1358
{
1359 1360 1361
	gen6_ring_put_irq(ring,
			  GT_BLT_USER_INTERRUPT,
			  GEN6_BLITTER_USER_INTERRUPT);
1362 1363
}

1364
static int blt_ring_flush(struct intel_ring_buffer *ring,
1365
			  u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
1366
{
1367
	uint32_t cmd;
1368 1369
	int ret;

1370
	ret = intel_ring_begin(ring, 4);
1371 1372 1373
	if (ret)
		return ret;

1374 1375 1376 1377
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_DOMAIN_RENDER)
		cmd |= MI_INVALIDATE_TLB;
	intel_ring_emit(ring, cmd);
1378 1379
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1380
	intel_ring_emit(ring, MI_NOOP);
1381 1382
	intel_ring_advance(ring);
	return 0;
Z
Zou Nan hai 已提交
1383 1384
}

1385
static const struct intel_ring_buffer gen6_blt_ring = {
1386
	.name			= "blt ring",
1387
	.id			= BCS,
1388 1389
	.mmio_base		= BLT_RING_BASE,
	.size			= 32 * PAGE_SIZE,
1390
	.init			= init_ring_common,
1391 1392 1393
	.write_tail		= ring_write_tail,
	.flush			= blt_ring_flush,
	.add_request		= gen6_add_request,
1394
	.get_seqno		= gen6_ring_get_seqno,
1395 1396
	.irq_get		= blt_ring_get_irq,
	.irq_put		= blt_ring_put_irq,
1397
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1398 1399 1400 1401 1402
	.sync_to		= gen6_blt_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
				   MI_SEMAPHORE_SYNC_BV,
				   MI_SEMAPHORE_SYNC_INVALID},
	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1403 1404
};

1405 1406 1407
int intel_init_render_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1408
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1409

1410 1411 1412
	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
1413
		ring->flush = gen6_render_ring_flush;
1414 1415
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
1416
		ring->get_seqno = gen6_ring_get_seqno;
1417 1418 1419
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
1420
	}
1421 1422

	if (!I915_NEED_GFX_HWS(dev)) {
1423 1424
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1425 1426
	}

1427
	return intel_init_ring_buffer(dev, ring);
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];

	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
	}

1445 1446 1447
	if (!I915_NEED_GFX_HWS(dev))
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);

	ring->size = size;
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

	ring->map.offset = start;
	ring->map.size = size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("can not ioremap virtual address for"
			  " ring buffer\n");
		return -ENOMEM;
	}

	ring->virtual_start = (void __force __iomem *)ring->map.handle;
	return 0;
}

1475 1476 1477
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1478
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1479

1480
	if (IS_GEN6(dev) || IS_GEN7(dev))
1481
		*ring = gen6_bsd_ring;
1482
	else
1483
		*ring = bsd_ring;
1484

1485
	return intel_init_ring_buffer(dev, ring);
1486
}
1487 1488 1489 1490

int intel_init_blt_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1491
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1492

1493
	*ring = gen6_blt_ring;
1494

1495
	return intel_init_ring_buffer(dev, ring);
1496
}