common.c 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * common.c - C code for kernel entry and exit
 * Copyright (c) 2015 Andrew Lutomirski
 * GPL v2
 *
 * Based on asm and ptrace code by many authors.  The code here originated
 * in ptrace.c and signal.c.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/signal.h>
#include <linux/export.h>
#include <linux/context_tracking.h>
#include <linux/user-return-notifier.h>
#include <linux/uprobes.h>

#include <asm/desc.h>
#include <asm/traps.h>
27 28
#include <asm/vdso.h>
#include <asm/uaccess.h>
29
#include <asm/cpufeature.h>
30 31 32 33

#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>

34 35 36 37 38 39 40
static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
{
	unsigned long top_of_stack =
		(unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
	return (struct thread_info *)(top_of_stack - THREAD_SIZE);
}

41 42 43 44 45 46 47
#ifdef CONFIG_CONTEXT_TRACKING
/* Called on entry from user mode with IRQs off. */
__visible void enter_from_user_mode(void)
{
	CT_WARN_ON(ct_state() != CONTEXT_USER);
	user_exit();
}
48 49
#else
static inline void enter_from_user_mode(void) {}
50 51
#endif

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
{
#ifdef CONFIG_X86_64
	if (arch == AUDIT_ARCH_X86_64) {
		audit_syscall_entry(regs->orig_ax, regs->di,
				    regs->si, regs->dx, regs->r10);
	} else
#endif
	{
		audit_syscall_entry(regs->orig_ax, regs->bx,
				    regs->cx, regs->dx, regs->si);
	}
}

/*
 * We can return 0 to resume the syscall or anything else to go to phase
 * 2.  If we resume the syscall, we need to put something appropriate in
 * regs->orig_ax.
 *
 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
 * are fully functional.
 *
 * For phase 2's benefit, our return value is:
 * 0:			resume the syscall
 * 1:			go to phase 2; no seccomp phase 2 needed
 * anything else:	go to phase 2; pass return value to seccomp
 */
unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
{
81
	struct thread_info *ti = pt_regs_to_thread_info(regs);
82 83 84
	unsigned long ret = 0;
	u32 work;

85 86
	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
		BUG_ON(regs != task_pt_regs(current));
87

88
	work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

#ifdef CONFIG_SECCOMP
	/*
	 * Do seccomp first -- it should minimize exposure of other
	 * code, and keeping seccomp fast is probably more valuable
	 * than the rest of this.
	 */
	if (work & _TIF_SECCOMP) {
		struct seccomp_data sd;

		sd.arch = arch;
		sd.nr = regs->orig_ax;
		sd.instruction_pointer = regs->ip;
#ifdef CONFIG_X86_64
		if (arch == AUDIT_ARCH_X86_64) {
			sd.args[0] = regs->di;
			sd.args[1] = regs->si;
			sd.args[2] = regs->dx;
			sd.args[3] = regs->r10;
			sd.args[4] = regs->r8;
			sd.args[5] = regs->r9;
		} else
#endif
		{
			sd.args[0] = regs->bx;
			sd.args[1] = regs->cx;
			sd.args[2] = regs->dx;
			sd.args[3] = regs->si;
			sd.args[4] = regs->di;
			sd.args[5] = regs->bp;
		}

		BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
		BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);

		ret = seccomp_phase1(&sd);
		if (ret == SECCOMP_PHASE1_SKIP) {
			regs->orig_ax = -1;
			ret = 0;
		} else if (ret != SECCOMP_PHASE1_OK) {
			return ret;  /* Go directly to phase 2 */
		}

		work &= ~_TIF_SECCOMP;
	}
#endif

	/* Do our best to finish without phase 2. */
	if (work == 0)
		return ret;  /* seccomp and/or nohz only (ret == 0 here) */

#ifdef CONFIG_AUDITSYSCALL
	if (work == _TIF_SYSCALL_AUDIT) {
		/*
		 * If there is no more work to be done except auditing,
		 * then audit in phase 1.  Phase 2 always audits, so, if
		 * we audit here, then we can't go on to phase 2.
		 */
		do_audit_syscall_entry(regs, arch);
		return 0;
	}
#endif

	return 1;  /* Something is enabled that we can't handle in phase 1 */
}

/* Returns the syscall nr to run (which should match regs->orig_ax). */
long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
				unsigned long phase1_result)
{
159
	struct thread_info *ti = pt_regs_to_thread_info(regs);
160
	long ret = 0;
161
	u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
162

163 164
	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
		BUG_ON(regs != task_pt_regs(current));
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#ifdef CONFIG_SECCOMP
	/*
	 * Call seccomp_phase2 before running the other hooks so that
	 * they can see any changes made by a seccomp tracer.
	 */
	if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
		/* seccomp failures shouldn't expose any additional code. */
		return -1;
	}
#endif

	if (unlikely(work & _TIF_SYSCALL_EMU))
		ret = -1L;

	if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
	    tracehook_report_syscall_entry(regs))
		ret = -1L;

	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_enter(regs, regs->orig_ax);

	do_audit_syscall_entry(regs, arch);

	return ret ?: regs->orig_ax;
}

long syscall_trace_enter(struct pt_regs *regs)
{
	u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
	unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);

	if (phase1_result == 0)
		return regs->orig_ax;
	else
		return syscall_trace_enter_phase2(regs, arch, phase1_result);
}

203 204 205
#define EXIT_TO_USERMODE_LOOP_FLAGS				\
	(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE |	\
	 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
206

207 208
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
{
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	/*
	 * In order to return to user mode, we need to have IRQs off with
	 * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
	 * _TIF_UPROBE, or _TIF_NEED_RESCHED set.  Several of these flags
	 * can be set at any time on preemptable kernels if we have IRQs on,
	 * so we need to loop.  Disabling preemption wouldn't help: doing the
	 * work to clear some of the flags can sleep.
	 */
	while (true) {
		/* We have work to do. */
		local_irq_enable();

		if (cached_flags & _TIF_NEED_RESCHED)
			schedule();

		if (cached_flags & _TIF_UPROBE)
			uprobe_notify_resume(regs);

		/* deal with pending signal delivery */
		if (cached_flags & _TIF_SIGPENDING)
			do_signal(regs);

		if (cached_flags & _TIF_NOTIFY_RESUME) {
			clear_thread_flag(TIF_NOTIFY_RESUME);
			tracehook_notify_resume(regs);
		}

		if (cached_flags & _TIF_USER_RETURN_NOTIFY)
			fire_user_return_notifiers();

		/* Disable IRQs and retry */
		local_irq_disable();
241 242 243 244 245 246

		cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);

		if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
			break;

247
	}
248 249 250 251 252
}

/* Called with IRQs disabled. */
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
{
253
	struct thread_info *ti = pt_regs_to_thread_info(regs);
254 255 256 257 258 259 260
	u32 cached_flags;

	if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
		local_irq_disable();

	lockdep_sys_exit();

261
	cached_flags = READ_ONCE(ti->flags);
262 263 264

	if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
		exit_to_usermode_loop(regs, cached_flags);
265

266 267 268 269 270 271 272 273 274 275 276
#ifdef CONFIG_COMPAT
	/*
	 * Compat syscalls set TS_COMPAT.  Make sure we clear it before
	 * returning to user mode.  We need to clear it *after* signal
	 * handling, because syscall restart has a fixup for compat
	 * syscalls.  The fixup is exercised by the ptrace_syscall_32
	 * selftest.
	 */
	ti->status &= ~TS_COMPAT;
#endif

277 278 279
	user_enter();
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
#define SYSCALL_EXIT_WORK_FLAGS				\
	(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |	\
	 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)

static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
{
	bool step;

	audit_syscall_exit(regs);

	if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
		trace_sys_exit(regs, regs->ax);

	/*
	 * If TIF_SYSCALL_EMU is set, we only get here because of
	 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
	 * We already reported this syscall instruction in
	 * syscall_trace_enter().
	 */
	step = unlikely(
		(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
		== _TIF_SINGLESTEP);
	if (step || cached_flags & _TIF_SYSCALL_TRACE)
		tracehook_report_syscall_exit(regs, step);
}

306 307 308 309
/*
 * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
 * state such that we can immediately switch to user mode.
 */
310
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
311 312 313 314 315 316
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	u32 cached_flags = READ_ONCE(ti->flags);

	CT_WARN_ON(ct_state() != CONTEXT_KERNEL);

317 318
	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
	    WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
319 320 321 322 323 324
		local_irq_enable();

	/*
	 * First do one-time work.  If these work items are enabled, we
	 * want to run them exactly once per syscall exit with IRQs on.
	 */
325 326
	if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
		syscall_slow_exit_work(regs, cached_flags);
327 328 329 330

	local_irq_disable();
	prepare_exit_to_usermode(regs);
}
331

332 333 334 335 336 337
#ifdef CONFIG_X86_64
__visible void do_syscall_64(struct pt_regs *regs)
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	unsigned long nr = regs->orig_ax;

338
	enter_from_user_mode();
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	local_irq_enable();

	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
		nr = syscall_trace_enter(regs);

	/*
	 * NB: Native and x32 syscalls are dispatched from the same
	 * table.  The only functional difference is the x32 bit in
	 * regs->orig_ax, which changes the behavior of some syscalls.
	 */
	if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
		regs->ax = sys_call_table[nr & __SYSCALL_MASK](
			regs->di, regs->si, regs->dx,
			regs->r10, regs->r8, regs->r9);
	}

	syscall_return_slowpath(regs);
}
#endif

359 360
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
/*
361 362 363
 * Does a 32-bit syscall.  Called with IRQs on in CONTEXT_KERNEL.  Does
 * all entry and exit work and returns with IRQs off.  This function is
 * extremely hot in workloads that use it, and it's usually called from
364
 * do_fast_syscall_32, so forcibly inline it to improve performance.
365
 */
366
static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	unsigned int nr = (unsigned int)regs->orig_ax;

#ifdef CONFIG_IA32_EMULATION
	ti->status |= TS_COMPAT;
#endif

	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
		/*
		 * Subtlety here: if ptrace pokes something larger than
		 * 2^32-1 into orig_ax, this truncates it.  This may or
		 * may not be necessary, but it matches the old asm
		 * behavior.
		 */
		nr = syscall_trace_enter(regs);
	}

385
	if (likely(nr < IA32_NR_syscalls)) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399
		/*
		 * It's possible that a 32-bit syscall implementation
		 * takes a 64-bit parameter but nonetheless assumes that
		 * the high bits are zero.  Make sure we zero-extend all
		 * of the args.
		 */
		regs->ax = ia32_sys_call_table[nr](
			(unsigned int)regs->bx, (unsigned int)regs->cx,
			(unsigned int)regs->dx, (unsigned int)regs->si,
			(unsigned int)regs->di, (unsigned int)regs->bp);
	}

	syscall_return_slowpath(regs);
}
400

401 402
/* Handles int $0x80 */
__visible void do_int80_syscall_32(struct pt_regs *regs)
403
{
404
	enter_from_user_mode();
405 406 407 408
	local_irq_enable();
	do_syscall_32_irqs_on(regs);
}

409
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
410
__visible long do_fast_syscall_32(struct pt_regs *regs)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
{
	/*
	 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
	 * convention.  Adjust regs so it looks like we entered using int80.
	 */

	unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
		vdso_image_32.sym_int80_landing_pad;

	/*
	 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
	 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
	 * Fix it up.
	 */
	regs->ip = landing_pad;

427 428
	enter_from_user_mode();

429
	local_irq_enable();
430 431

	/* Fetch EBP from where the vDSO stashed it. */
432 433 434 435 436 437
	if (
#ifdef CONFIG_X86_64
		/*
		 * Micro-optimization: the pointer we're following is explicitly
		 * 32 bits, so it can't be out of range.
		 */
438
		__get_user(*(u32 *)&regs->bp,
439 440
			    (u32 __user __force *)(unsigned long)(u32)regs->sp)
#else
441
		get_user(*(u32 *)&regs->bp,
442 443 444 445
			 (u32 __user __force *)(unsigned long)(u32)regs->sp)
#endif
		) {

446 447 448 449
		/* User code screwed up. */
		local_irq_disable();
		regs->ax = -EFAULT;
		prepare_exit_to_usermode(regs);
450
		return 0;	/* Keep it simple: use IRET. */
451 452 453
	}

	/* Now this is just like a normal syscall. */
454
	do_syscall_32_irqs_on(regs);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

#ifdef CONFIG_X86_64
	/*
	 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
	 * SYSRETL is available on all 64-bit CPUs, so we don't need to
	 * bother with SYSEXIT.
	 *
	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
	 * because the ECX fixup above will ensure that this is essentially
	 * never the case.
	 */
	return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
		regs->ip == landing_pad &&
		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
#else
470 471 472 473 474 475 476 477 478 479 480 481 482 483
	/*
	 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
	 *
	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
	 * because the ECX fixup above will ensure that this is essentially
	 * never the case.
	 *
	 * We don't allow syscalls at all from VM86 mode, but we still
	 * need to check VM, because we might be returning from sys_vm86.
	 */
	return static_cpu_has(X86_FEATURE_SEP) &&
		regs->cs == __USER_CS && regs->ss == __USER_DS &&
		regs->ip == landing_pad &&
		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
484
#endif
485
}
486
#endif