memory.c 22.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * Memory subsystem support
4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
27
#include <linux/uaccess.h>
28

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32

33 34
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

35 36
static int sections_per_block;

37
static inline unsigned long base_memory_block_id(unsigned long section_nr)
38 39 40
{
	return section_nr / sections_per_block;
}
41

42
static inline unsigned long pfn_to_block_id(unsigned long pfn)
43 44 45 46
{
	return base_memory_block_id(pfn_to_section_nr(pfn));
}

47 48 49 50 51
static inline unsigned long phys_to_block_id(unsigned long phys)
{
	return pfn_to_block_id(PFN_DOWN(phys));
}

52 53 54
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

55
static struct bus_type memory_subsys = {
56
	.name = MEMORY_CLASS_NAME,
57
	.dev_name = MEMORY_CLASS_NAME,
58 59
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
60 61
};

62
static BLOCKING_NOTIFIER_HEAD(memory_chain);
63

64
int register_memory_notifier(struct notifier_block *nb)
65
{
66
	return blocking_notifier_chain_register(&memory_chain, nb);
67
}
68
EXPORT_SYMBOL(register_memory_notifier);
69

70
void unregister_memory_notifier(struct notifier_block *nb)
71
{
72
	blocking_notifier_chain_unregister(&memory_chain, nb);
73
}
74
EXPORT_SYMBOL(unregister_memory_notifier);
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

90 91
static void memory_block_release(struct device *dev)
{
92
	struct memory_block *mem = to_memory_block(dev);
93 94 95 96

	kfree(mem);
}

97 98 99 100
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}
101
EXPORT_SYMBOL_GPL(memory_block_size_bytes);
102

103
/*
104
 * Show the first physical section index (number) of this memory block.
105
 */
106 107
static ssize_t phys_index_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
108
{
109
	struct memory_block *mem = to_memory_block(dev);
110 111 112 113 114 115
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

116
/*
117 118 119 120
 * Show whether the memory block is likely to be offlineable (or is already
 * offline). Once offline, the memory block could be removed. The return
 * value does, however, not indicate that there is a way to remove the
 * memory block.
121
 */
122 123
static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
124
{
125
	struct memory_block *mem = to_memory_block(dev);
126 127
	unsigned long pfn;
	int ret = 1, i;
128

129 130 131
	if (mem->state != MEM_ONLINE)
		goto out;

132
	for (i = 0; i < sections_per_block; i++) {
133 134
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
135
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
136 137 138
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

139
out:
140 141 142
	return sprintf(buf, "%d\n", ret);
}

143 144 145
/*
 * online, offline, going offline, etc.
 */
146 147
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
148
{
149
	struct memory_block *mem = to_memory_block(dev);
150 151 152 153 154 155 156
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
171 172 173 174 175
	}

	return len;
}

176
int memory_notify(unsigned long val, void *v)
177
{
178
	return blocking_notifier_call_chain(&memory_chain, val, v);
179 180
}

181 182 183 184 185
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

186
/*
187 188 189
 * The probe routines leave the pages uninitialized, just as the bootmem code
 * does. Make sure we do not access them, but instead use only information from
 * within sections.
190
 */
191
static bool pages_correctly_probed(unsigned long start_pfn)
192
{
193 194
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	unsigned long section_nr_end = section_nr + sections_per_block;
195 196 197 198 199 200 201
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
202
	for (; section_nr < section_nr_end; section_nr++) {
203 204 205
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;

206
		if (!present_section_nr(section_nr)) {
207
			pr_warn("section %ld pfn[%lx, %lx) not present\n",
208 209 210
				section_nr, pfn, pfn + PAGES_PER_SECTION);
			return false;
		} else if (!valid_section_nr(section_nr)) {
211
			pr_warn("section %ld pfn[%lx, %lx) no valid memmap\n",
212 213 214
				section_nr, pfn, pfn + PAGES_PER_SECTION);
			return false;
		} else if (online_section_nr(section_nr)) {
215
			pr_warn("section %ld pfn[%lx, %lx) is already online\n",
216
				section_nr, pfn, pfn + PAGES_PER_SECTION);
217 218
			return false;
		}
219
		pfn += PAGES_PER_SECTION;
220 221 222 223 224
	}

	return true;
}

225 226 227 228 229
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
230 231
memory_block_action(unsigned long start_section_nr, unsigned long action,
		    int online_type)
232
{
233
	unsigned long start_pfn;
234
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
235 236
	int ret;

237
	start_pfn = section_nr_to_pfn(start_section_nr);
238

239
	switch (action) {
240
	case MEM_ONLINE:
241
		if (!pages_correctly_probed(start_pfn))
242 243 244 245 246 247 248 249 250
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
251
		     "%ld\n", __func__, start_section_nr, action, action);
252
		ret = -EINVAL;
253 254 255 256 257
	}

	return ret;
}

258
static int memory_block_change_state(struct memory_block *mem,
259
		unsigned long to_state, unsigned long from_state_req)
260
{
261
	int ret = 0;
262

263 264
	if (mem->state != from_state_req)
		return -EINVAL;
265

266 267 268
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

269 270 271
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

272
	mem->state = ret ? from_state_req : to_state;
273

274 275
	return ret;
}
276

277
/* The device lock serializes operations on memory_subsys_[online|offline] */
278 279
static int memory_subsys_online(struct device *dev)
{
280
	struct memory_block *mem = to_memory_block(dev);
281
	int ret;
282

283 284
	if (mem->state == MEM_ONLINE)
		return 0;
285

286
	/*
287
	 * If we are called from state_store(), online_type will be
288 289 290 291
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
292
		mem->online_type = MMOP_ONLINE_KEEP;
293

294
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
295

296 297
	/* clear online_type */
	mem->online_type = -1;
298 299 300 301 302

	return ret;
}

static int memory_subsys_offline(struct device *dev)
303
{
304
	struct memory_block *mem = to_memory_block(dev);
305

306 307
	if (mem->state == MEM_OFFLINE)
		return 0;
308

309 310 311 312
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

313
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
314
}
315

316 317
static ssize_t state_store(struct device *dev, struct device_attribute *attr,
			   const char *buf, size_t count)
318
{
319
	struct memory_block *mem = to_memory_block(dev);
320
	int ret, online_type;
321

322 323 324
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
325

326
	if (sysfs_streq(buf, "online_kernel"))
327
		online_type = MMOP_ONLINE_KERNEL;
328
	else if (sysfs_streq(buf, "online_movable"))
329
		online_type = MMOP_ONLINE_MOVABLE;
330
	else if (sysfs_streq(buf, "online"))
331
		online_type = MMOP_ONLINE_KEEP;
332
	else if (sysfs_streq(buf, "offline"))
333
		online_type = MMOP_OFFLINE;
334 335 336 337
	else {
		ret = -EINVAL;
		goto err;
	}
338 339

	switch (online_type) {
340 341 342
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
343
		/* mem->online_type is protected by device_hotplug_lock */
344 345 346
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
347
	case MMOP_OFFLINE:
348 349 350 351
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
352 353
	}

354
err:
355
	unlock_device_hotplug();
356

357
	if (ret < 0)
358
		return ret;
359 360 361
	if (ret)
		return -EINVAL;

362 363 364 365 366 367 368 369 370 371 372 373
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
374
static ssize_t phys_device_show(struct device *dev,
375
				struct device_attribute *attr, char *buf)
376
{
377
	struct memory_block *mem = to_memory_block(dev);
378 379 380
	return sprintf(buf, "%d\n", mem->phys_device);
}

381
#ifdef CONFIG_MEMORY_HOTREMOVE
382 383 384 385 386 387 388 389 390 391 392 393 394
static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
		unsigned long nr_pages, int online_type,
		struct zone *default_zone)
{
	struct zone *zone;

	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
	if (zone != default_zone) {
		strcat(buf, " ");
		strcat(buf, zone->name);
	}
}

395
static ssize_t valid_zones_show(struct device *dev,
396 397 398
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
399
	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
400
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
401
	unsigned long valid_start_pfn, valid_end_pfn;
402
	struct zone *default_zone;
403
	int nid;
404

405 406 407 408 409
	/*
	 * Check the existing zone. Make sure that we do that only on the
	 * online nodes otherwise the page_zone is not reliable
	 */
	if (mem->state == MEM_ONLINE) {
410 411 412 413 414 415 416 417
		/*
		 * The block contains more than one zone can not be offlined.
		 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
		 */
		if (!test_pages_in_a_zone(start_pfn, start_pfn + nr_pages,
					  &valid_start_pfn, &valid_end_pfn))
			return sprintf(buf, "none\n");
		start_pfn = valid_start_pfn;
418 419
		strcat(buf, page_zone(pfn_to_page(start_pfn))->name);
		goto out;
420 421
	}

422
	nid = mem->nid;
423 424
	default_zone = zone_for_pfn_range(MMOP_ONLINE_KEEP, nid, start_pfn, nr_pages);
	strcat(buf, default_zone->name);
425

426 427 428 429
	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
			default_zone);
	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
			default_zone);
430
out:
431 432 433
	strcat(buf, "\n");

	return strlen(buf);
434
}
435
static DEVICE_ATTR_RO(valid_zones);
436 437
#endif

438 439 440 441
static DEVICE_ATTR_RO(phys_index);
static DEVICE_ATTR_RW(state);
static DEVICE_ATTR_RO(phys_device);
static DEVICE_ATTR_RO(removable);
442 443

/*
444
 * Show the memory block size (shared by all memory blocks).
445
 */
446 447
static ssize_t block_size_bytes_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
448
{
449
	return sprintf(buf, "%lx\n", memory_block_size_bytes());
450 451
}

452
static DEVICE_ATTR_RO(block_size_bytes);
453

454 455 456 457
/*
 * Memory auto online policy.
 */

458 459
static ssize_t auto_online_blocks_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
460 461 462 463 464 465 466
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

467 468 469
static ssize_t auto_online_blocks_store(struct device *dev,
					struct device_attribute *attr,
					const char *buf, size_t count)
470 471 472 473 474 475 476 477 478 479 480
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

481
static DEVICE_ATTR_RW(auto_online_blocks);
482

483 484 485 486 487 488 489
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
490 491
static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
			   const char *buf, size_t count)
492 493
{
	u64 phys_addr;
494
	int nid, ret;
495
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
496

497 498 499
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
500

501 502 503
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

504 505
	ret = lock_device_hotplug_sysfs();
	if (ret)
506
		return ret;
507

508
	nid = memory_add_physaddr_to_nid(phys_addr);
509 510
	ret = __add_memory(nid, phys_addr,
			   MIN_MEMORY_BLOCK_SIZE * sections_per_block);
511

512 513
	if (ret)
		goto out;
514

515 516
	ret = count;
out:
517
	unlock_device_hotplug();
518
	return ret;
519 520
}

521
static DEVICE_ATTR_WO(probe);
522 523
#endif

524 525 526 527 528 529
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
530 531 532
static ssize_t soft_offline_page_store(struct device *dev,
				       struct device_attribute *attr,
				       const char *buf, size_t count)
533 534 535 536 537
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
538
	if (kstrtoull(buf, 0, &pfn) < 0)
539 540 541 542
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
543 544 545
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	if (!pfn_to_online_page(pfn))
		return -EIO;
546 547 548 549 550
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
551 552 553
static ssize_t hard_offline_page_store(struct device *dev,
				       struct device_attribute *attr,
				       const char *buf, size_t count)
554 555 556 557 558
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
559
	if (kstrtoull(buf, 0, &pfn) < 0)
560 561
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
562
	ret = memory_failure(pfn, 0);
563 564 565
	return ret ? ret : count;
}

566 567
static DEVICE_ATTR_WO(soft_offline_page);
static DEVICE_ATTR_WO(hard_offline_page);
568 569
#endif

570 571 572 573 574
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
575 576 577 578
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
579

580 581
/* A reference for the returned memory block device is acquired. */
static struct memory_block *find_memory_block_by_id(unsigned long block_id)
582
{
583
	struct device *dev;
584

585 586
	dev = subsys_find_device_by_id(&memory_subsys, block_id, NULL);
	return dev ? to_memory_block(dev) : NULL;
587 588
}

589 590 591 592 593 594
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
595
 * This could be made generic for all device subsystems.
596 597 598
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
599 600 601
	unsigned long block_id = base_memory_block_id(__section_nr(section));

	return find_memory_block_by_id(block_id);
602 603
}

604 605 606 607 608
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
609 610 611
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
630 631
	int ret;

632 633 634 635
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
636
	memory->dev.offline = memory->state == MEM_OFFLINE;
637

638 639 640 641 642
	ret = device_register(&memory->dev);
	if (ret)
		put_device(&memory->dev);

	return ret;
643 644
}

645 646
static int init_memory_block(struct memory_block **memory,
			     unsigned long block_id, unsigned long state)
647
{
648
	struct memory_block *mem;
649 650 651
	unsigned long start_pfn;
	int ret = 0;

652
	mem = find_memory_block_by_id(block_id);
653 654 655 656
	if (mem) {
		put_device(&mem->dev);
		return -EEXIST;
	}
657
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
658 659 660
	if (!mem)
		return -ENOMEM;

661
	mem->start_section_nr = block_id * sections_per_block;
662
	mem->state = state;
663
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
664
	mem->phys_device = arch_get_memory_phys_device(start_pfn);
665
	mem->nid = NUMA_NO_NODE;
666

667 668 669 670 671 672
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

673
static int add_memory_block(unsigned long base_section_nr)
674
{
675
	int ret, section_count = 0;
676
	struct memory_block *mem;
677
	unsigned long nr;
678

679 680 681
	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
	     nr++)
		if (present_section_nr(nr))
682
			section_count++;
683

684 685
	if (section_count == 0)
		return 0;
686 687
	ret = init_memory_block(&mem, base_memory_block_id(base_section_nr),
				MEM_ONLINE);
688 689 690 691
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
692 693
}

694 695 696 697 698 699 700 701 702 703
static void unregister_memory(struct memory_block *memory)
{
	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
		return;

	/* drop the ref. we got via find_memory_block() */
	put_device(&memory->dev);
	device_unregister(&memory->dev);
}

704
/*
705 706 707
 * Create memory block devices for the given memory area. Start and size
 * have to be aligned to memory block granularity. Memory block devices
 * will be initialized as offline.
708
 */
709
int create_memory_block_devices(unsigned long start, unsigned long size)
710
{
711 712
	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
713
	struct memory_block *mem;
714 715
	unsigned long block_id;
	int ret = 0;
716

717 718 719
	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
			 !IS_ALIGNED(size, memory_block_size_bytes())))
		return -EINVAL;
720

721 722
	mutex_lock(&mem_sysfs_mutex);
	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
723
		ret = init_memory_block(&mem, block_id, MEM_OFFLINE);
724
		if (ret)
725 726 727 728 729 730 731
			break;
		mem->section_count = sections_per_block;
	}
	if (ret) {
		end_block_id = block_id;
		for (block_id = start_block_id; block_id != end_block_id;
		     block_id++) {
732
			mem = find_memory_block_by_id(block_id);
733 734 735
			mem->section_count = 0;
			unregister_memory(mem);
		}
736 737
	}
	mutex_unlock(&mem_sysfs_mutex);
738
	return ret;
739 740
}

741 742 743 744 745 746
/*
 * Remove memory block devices for the given memory area. Start and size
 * have to be aligned to memory block granularity. Memory block devices
 * have to be offline.
 */
void remove_memory_block_devices(unsigned long start, unsigned long size)
747
{
748 749
	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
750
	struct memory_block *mem;
751
	unsigned long block_id;
752

753 754
	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
			 !IS_ALIGNED(size, memory_block_size_bytes())))
755 756
		return;

757
	mutex_lock(&mem_sysfs_mutex);
758
	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
759
		mem = find_memory_block_by_id(block_id);
760 761 762 763
		if (WARN_ON_ONCE(!mem))
			continue;
		mem->section_count = 0;
		unregister_memory_block_under_nodes(mem);
764
		unregister_memory(mem);
765
	}
766
	mutex_unlock(&mem_sysfs_mutex);
767 768
}

769 770 771 772 773 774
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

775 776 777 778 779 780 781 782 783 784 785
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
786
	&dev_attr_auto_online_blocks.attr,
787 788 789 790 791 792 793 794 795 796 797 798
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

799 800 801
/*
 * Initialize the sysfs support for memory devices...
 */
802
void __init memory_dev_init(void)
803 804
{
	int ret;
805
	int err;
806
	unsigned long block_sz, nr;
807

808 809 810 811 812 813
	/* Validate the configured memory block size */
	block_sz = memory_block_size_bytes();
	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
		panic("Memory block size not suitable: 0x%lx\n", block_sz);
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

814
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
815 816
	if (ret)
		goto out;
817 818 819 820 821

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
822
	mutex_lock(&mem_sysfs_mutex);
823 824 825
	for (nr = 0; nr <= __highest_present_section_nr;
	     nr += sections_per_block) {
		err = add_memory_block(nr);
826 827
		if (!ret)
			ret = err;
828
	}
829
	mutex_unlock(&mem_sysfs_mutex);
830

831 832
out:
	if (ret)
833
		panic("%s() failed: %d\n", __func__, ret);
834
}
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

/**
 * walk_memory_blocks - walk through all present memory blocks overlapped
 *			by the range [start, start + size)
 *
 * @start: start address of the memory range
 * @size: size of the memory range
 * @arg: argument passed to func
 * @func: callback for each memory section walked
 *
 * This function walks through all present memory blocks overlapped by the
 * range [start, start + size), calling func on each memory block.
 *
 * In case func() returns an error, walking is aborted and the error is
 * returned.
 */
int walk_memory_blocks(unsigned long start, unsigned long size,
		       void *arg, walk_memory_blocks_func_t func)
{
	const unsigned long start_block_id = phys_to_block_id(start);
	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
	struct memory_block *mem;
	unsigned long block_id;
	int ret = 0;

860 861 862
	if (!size)
		return 0;

863
	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
864
		mem = find_memory_block_by_id(block_id);
865 866 867 868 869 870 871 872 873 874
		if (!mem)
			continue;

		ret = func(mem, arg);
		put_device(&mem->dev);
		if (ret)
			break;
	}
	return ret;
}
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

struct for_each_memory_block_cb_data {
	walk_memory_blocks_func_t func;
	void *arg;
};

static int for_each_memory_block_cb(struct device *dev, void *data)
{
	struct memory_block *mem = to_memory_block(dev);
	struct for_each_memory_block_cb_data *cb_data = data;

	return cb_data->func(mem, cb_data->arg);
}

/**
 * for_each_memory_block - walk through all present memory blocks
 *
 * @arg: argument passed to func
 * @func: callback for each memory block walked
 *
 * This function walks through all present memory blocks, calling func on
 * each memory block.
 *
 * In case func() returns an error, walking is aborted and the error is
 * returned.
 */
int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
{
	struct for_each_memory_block_cb_data cb_data = {
		.func = func,
		.arg = arg,
	};

	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
				for_each_memory_block_cb);
}