thread-stack.c 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * thread-stack.c: Synthesize a thread's stack using call / return events
 * Copyright (c) 2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

16 17
#include <linux/rbtree.h>
#include <linux/list.h>
18 19
#include "thread.h"
#include "event.h"
20
#include "machine.h"
21 22
#include "util.h"
#include "debug.h"
23 24
#include "symbol.h"
#include "comm.h"
25 26
#include "thread-stack.h"

27 28 29
#define CALL_PATH_BLOCK_SHIFT 8
#define CALL_PATH_BLOCK_SIZE (1 << CALL_PATH_BLOCK_SHIFT)
#define CALL_PATH_BLOCK_MASK (CALL_PATH_BLOCK_SIZE - 1)
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
struct call_path_block {
	struct call_path cp[CALL_PATH_BLOCK_SIZE];
	struct list_head node;
};

/**
 * struct call_path_root - root of all call paths.
 * @call_path: root call path
 * @blocks: list of blocks to store call paths
 * @next: next free space
 * @sz: number of spaces
 */
struct call_path_root {
	struct call_path call_path;
	struct list_head blocks;
	size_t next;
	size_t sz;
};

/**
 * struct call_return_processor - provides a call-back to consume call-return
 *                                information.
 * @cpr: call path root
 * @process: call-back that accepts call/return information
 * @data: anonymous data for call-back
 */
struct call_return_processor {
	struct call_path_root *cpr;
	int (*process)(struct call_return *cr, void *data);
	void *data;
};

#define STACK_GROWTH 2048

/**
 * struct thread_stack_entry - thread stack entry.
 * @ret_addr: return address
 * @timestamp: timestamp (if known)
 * @ref: external reference (e.g. db_id of sample)
 * @branch_count: the branch count when the entry was created
 * @cp: call path
 * @no_call: a 'call' was not seen
 */
74 75
struct thread_stack_entry {
	u64 ret_addr;
76 77 78 79 80
	u64 timestamp;
	u64 ref;
	u64 branch_count;
	struct call_path *cp;
	bool no_call;
81 82
};

83 84 85 86 87 88 89 90 91 92 93 94 95
/**
 * struct thread_stack - thread stack constructed from 'call' and 'return'
 *                       branch samples.
 * @stack: array that holds the stack
 * @cnt: number of entries in the stack
 * @sz: current maximum stack size
 * @trace_nr: current trace number
 * @branch_count: running branch count
 * @kernel_start: kernel start address
 * @last_time: last timestamp
 * @crp: call/return processor
 * @comm: current comm
 */
96 97 98 99 100
struct thread_stack {
	struct thread_stack_entry *stack;
	size_t cnt;
	size_t sz;
	u64 trace_nr;
101 102 103 104 105
	u64 branch_count;
	u64 kernel_start;
	u64 last_time;
	struct call_return_processor *crp;
	struct comm *comm;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
};

static int thread_stack__grow(struct thread_stack *ts)
{
	struct thread_stack_entry *new_stack;
	size_t sz, new_sz;

	new_sz = ts->sz + STACK_GROWTH;
	sz = new_sz * sizeof(struct thread_stack_entry);

	new_stack = realloc(ts->stack, sz);
	if (!new_stack)
		return -ENOMEM;

	ts->stack = new_stack;
	ts->sz = new_sz;

	return 0;
}

126 127
static struct thread_stack *thread_stack__new(struct thread *thread,
					      struct call_return_processor *crp)
128 129 130 131 132 133 134 135 136 137 138 139
{
	struct thread_stack *ts;

	ts = zalloc(sizeof(struct thread_stack));
	if (!ts)
		return NULL;

	if (thread_stack__grow(ts)) {
		free(ts);
		return NULL;
	}

140 141 142 143 144 145
	if (thread->mg && thread->mg->machine)
		ts->kernel_start = machine__kernel_start(thread->mg->machine);
	else
		ts->kernel_start = 1ULL << 63;
	ts->crp = crp;

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	return ts;
}

static int thread_stack__push(struct thread_stack *ts, u64 ret_addr)
{
	int err = 0;

	if (ts->cnt == ts->sz) {
		err = thread_stack__grow(ts);
		if (err) {
			pr_warning("Out of memory: discarding thread stack\n");
			ts->cnt = 0;
		}
	}

	ts->stack[ts->cnt++].ret_addr = ret_addr;

	return err;
}

static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
{
	size_t i;

	/*
	 * In some cases there may be functions which are not seen to return.
	 * For example when setjmp / longjmp has been used.  Or the perf context
	 * switch in the kernel which doesn't stop and start tracing in exactly
	 * the same code path.  When that happens the return address will be
	 * further down the stack.  If the return address is not found at all,
	 * we assume the opposite (i.e. this is a return for a call that wasn't
	 * seen for some reason) and leave the stack alone.
	 */
	for (i = ts->cnt; i; ) {
		if (ts->stack[--i].ret_addr == ret_addr) {
			ts->cnt = i;
			return;
		}
	}
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static bool thread_stack__in_kernel(struct thread_stack *ts)
{
	if (!ts->cnt)
		return false;

	return ts->stack[ts->cnt - 1].cp->in_kernel;
}

static int thread_stack__call_return(struct thread *thread,
				     struct thread_stack *ts, size_t idx,
				     u64 timestamp, u64 ref, bool no_return)
{
	struct call_return_processor *crp = ts->crp;
	struct thread_stack_entry *tse;
	struct call_return cr = {
		.thread = thread,
		.comm = ts->comm,
		.db_id = 0,
	};

	tse = &ts->stack[idx];
	cr.cp = tse->cp;
	cr.call_time = tse->timestamp;
	cr.return_time = timestamp;
	cr.branch_count = ts->branch_count - tse->branch_count;
	cr.call_ref = tse->ref;
	cr.return_ref = ref;
	if (tse->no_call)
		cr.flags |= CALL_RETURN_NO_CALL;
	if (no_return)
		cr.flags |= CALL_RETURN_NO_RETURN;

	return crp->process(&cr, crp->data);
}

222
static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
{
	struct call_return_processor *crp = ts->crp;
	int err;

	if (!crp) {
		ts->cnt = 0;
		return 0;
	}

	while (ts->cnt) {
		err = thread_stack__call_return(thread, ts, --ts->cnt,
						ts->last_time, 0, true);
		if (err) {
			pr_err("Error flushing thread stack!\n");
			ts->cnt = 0;
			return err;
		}
	}

	return 0;
}

245 246 247 248 249 250 251 252
int thread_stack__flush(struct thread *thread)
{
	if (thread->ts)
		return __thread_stack__flush(thread, thread->ts);

	return 0;
}

253 254 255 256 257 258 259
int thread_stack__event(struct thread *thread, u32 flags, u64 from_ip,
			u64 to_ip, u16 insn_len, u64 trace_nr)
{
	if (!thread)
		return -EINVAL;

	if (!thread->ts) {
260
		thread->ts = thread_stack__new(thread, NULL);
261 262 263 264 265 266 267 268 269 270
		if (!thread->ts) {
			pr_warning("Out of memory: no thread stack\n");
			return -ENOMEM;
		}
		thread->ts->trace_nr = trace_nr;
	}

	/*
	 * When the trace is discontinuous, the trace_nr changes.  In that case
	 * the stack might be completely invalid.  Better to report nothing than
271
	 * to report something misleading, so flush the stack.
272 273
	 */
	if (trace_nr != thread->ts->trace_nr) {
274
		if (thread->ts->trace_nr)
275
			__thread_stack__flush(thread, thread->ts);
276 277 278
		thread->ts->trace_nr = trace_nr;
	}

279 280 281 282
	/* Stop here if thread_stack__process() is in use */
	if (thread->ts->crp)
		return 0;

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	if (flags & PERF_IP_FLAG_CALL) {
		u64 ret_addr;

		if (!to_ip)
			return 0;
		ret_addr = from_ip + insn_len;
		if (ret_addr == to_ip)
			return 0; /* Zero-length calls are excluded */
		return thread_stack__push(thread->ts, ret_addr);
	} else if (flags & PERF_IP_FLAG_RETURN) {
		if (!from_ip)
			return 0;
		thread_stack__pop(thread->ts, to_ip);
	}

	return 0;
}

301 302 303 304 305 306 307
void thread_stack__set_trace_nr(struct thread *thread, u64 trace_nr)
{
	if (!thread || !thread->ts)
		return;

	if (trace_nr != thread->ts->trace_nr) {
		if (thread->ts->trace_nr)
308
			__thread_stack__flush(thread, thread->ts);
309 310 311 312
		thread->ts->trace_nr = trace_nr;
	}
}

313 314 315
void thread_stack__free(struct thread *thread)
{
	if (thread->ts) {
316
		__thread_stack__flush(thread, thread->ts);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		zfree(&thread->ts->stack);
		zfree(&thread->ts);
	}
}

void thread_stack__sample(struct thread *thread, struct ip_callchain *chain,
			  size_t sz, u64 ip)
{
	size_t i;

	if (!thread || !thread->ts)
		chain->nr = 1;
	else
		chain->nr = min(sz, thread->ts->cnt + 1);

	chain->ips[0] = ip;

	for (i = 1; i < chain->nr; i++)
		chain->ips[i] = thread->ts->stack[thread->ts->cnt - i].ret_addr;
}
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

static void call_path__init(struct call_path *cp, struct call_path *parent,
			    struct symbol *sym, u64 ip, bool in_kernel)
{
	cp->parent = parent;
	cp->sym = sym;
	cp->ip = sym ? 0 : ip;
	cp->db_id = 0;
	cp->in_kernel = in_kernel;
	RB_CLEAR_NODE(&cp->rb_node);
	cp->children = RB_ROOT;
}

static struct call_path_root *call_path_root__new(void)
{
	struct call_path_root *cpr;

	cpr = zalloc(sizeof(struct call_path_root));
	if (!cpr)
		return NULL;
	call_path__init(&cpr->call_path, NULL, NULL, 0, false);
	INIT_LIST_HEAD(&cpr->blocks);
	return cpr;
}

static void call_path_root__free(struct call_path_root *cpr)
{
	struct call_path_block *pos, *n;

	list_for_each_entry_safe(pos, n, &cpr->blocks, node) {
		list_del(&pos->node);
		free(pos);
	}
	free(cpr);
}

static struct call_path *call_path__new(struct call_path_root *cpr,
					struct call_path *parent,
					struct symbol *sym, u64 ip,
					bool in_kernel)
{
	struct call_path_block *cpb;
	struct call_path *cp;
	size_t n;

	if (cpr->next < cpr->sz) {
		cpb = list_last_entry(&cpr->blocks, struct call_path_block,
				      node);
	} else {
		cpb = zalloc(sizeof(struct call_path_block));
		if (!cpb)
			return NULL;
		list_add_tail(&cpb->node, &cpr->blocks);
		cpr->sz += CALL_PATH_BLOCK_SIZE;
	}

	n = cpr->next++ & CALL_PATH_BLOCK_MASK;
	cp = &cpb->cp[n];

	call_path__init(cp, parent, sym, ip, in_kernel);

	return cp;
}

static struct call_path *call_path__findnew(struct call_path_root *cpr,
					    struct call_path *parent,
					    struct symbol *sym, u64 ip, u64 ks)
{
	struct rb_node **p;
	struct rb_node *node_parent = NULL;
	struct call_path *cp;
	bool in_kernel = ip >= ks;

	if (sym)
		ip = 0;

	if (!parent)
		return call_path__new(cpr, parent, sym, ip, in_kernel);

	p = &parent->children.rb_node;
	while (*p != NULL) {
		node_parent = *p;
		cp = rb_entry(node_parent, struct call_path, rb_node);

		if (cp->sym == sym && cp->ip == ip)
			return cp;

		if (sym < cp->sym || (sym == cp->sym && ip < cp->ip))
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	cp = call_path__new(cpr, parent, sym, ip, in_kernel);
	if (!cp)
		return NULL;

	rb_link_node(&cp->rb_node, node_parent, p);
	rb_insert_color(&cp->rb_node, &parent->children);

	return cp;
}

struct call_return_processor *
call_return_processor__new(int (*process)(struct call_return *cr, void *data),
			   void *data)
{
	struct call_return_processor *crp;

	crp = zalloc(sizeof(struct call_return_processor));
	if (!crp)
		return NULL;
	crp->cpr = call_path_root__new();
	if (!crp->cpr)
		goto out_free;
	crp->process = process;
	crp->data = data;
	return crp;

out_free:
	free(crp);
	return NULL;
}

void call_return_processor__free(struct call_return_processor *crp)
{
	if (crp) {
		call_path_root__free(crp->cpr);
		free(crp);
	}
}

static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
				 u64 timestamp, u64 ref, struct call_path *cp,
				 bool no_call)
{
	struct thread_stack_entry *tse;
	int err;

	if (ts->cnt == ts->sz) {
		err = thread_stack__grow(ts);
		if (err)
			return err;
	}

	tse = &ts->stack[ts->cnt++];
	tse->ret_addr = ret_addr;
	tse->timestamp = timestamp;
	tse->ref = ref;
	tse->branch_count = ts->branch_count;
	tse->cp = cp;
	tse->no_call = no_call;

	return 0;
}

static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
				u64 ret_addr, u64 timestamp, u64 ref,
				struct symbol *sym)
{
	int err;

	if (!ts->cnt)
		return 1;

	if (ts->cnt == 1) {
		struct thread_stack_entry *tse = &ts->stack[0];

		if (tse->cp->sym == sym)
			return thread_stack__call_return(thread, ts, --ts->cnt,
							 timestamp, ref, false);
	}

	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr) {
		return thread_stack__call_return(thread, ts, --ts->cnt,
						 timestamp, ref, false);
	} else {
		size_t i = ts->cnt - 1;

		while (i--) {
			if (ts->stack[i].ret_addr != ret_addr)
				continue;
			i += 1;
			while (ts->cnt > i) {
				err = thread_stack__call_return(thread, ts,
								--ts->cnt,
								timestamp, ref,
								true);
				if (err)
					return err;
			}
			return thread_stack__call_return(thread, ts, --ts->cnt,
							 timestamp, ref, false);
		}
	}

	return 1;
}

static int thread_stack__bottom(struct thread *thread, struct thread_stack *ts,
				struct perf_sample *sample,
				struct addr_location *from_al,
				struct addr_location *to_al, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *cp;
	struct symbol *sym;
	u64 ip;

	if (sample->ip) {
		ip = sample->ip;
		sym = from_al->sym;
	} else if (sample->addr) {
		ip = sample->addr;
		sym = to_al->sym;
	} else {
		return 0;
	}

	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
				ts->kernel_start);
	if (!cp)
		return -ENOMEM;

	return thread_stack__push_cp(thread->ts, ip, sample->time, ref, cp,
				     true);
}

static int thread_stack__no_call_return(struct thread *thread,
					struct thread_stack *ts,
					struct perf_sample *sample,
					struct addr_location *from_al,
					struct addr_location *to_al, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *cp, *parent;
	u64 ks = ts->kernel_start;
	int err;

	if (sample->ip >= ks && sample->addr < ks) {
		/* Return to userspace, so pop all kernel addresses */
		while (thread_stack__in_kernel(ts)) {
			err = thread_stack__call_return(thread, ts, --ts->cnt,
							sample->time, ref,
							true);
			if (err)
				return err;
		}

		/* If the stack is empty, push the userspace address */
		if (!ts->cnt) {
			cp = call_path__findnew(cpr, &cpr->call_path,
						to_al->sym, sample->addr,
						ts->kernel_start);
			if (!cp)
				return -ENOMEM;
			return thread_stack__push_cp(ts, 0, sample->time, ref,
						     cp, true);
		}
	} else if (thread_stack__in_kernel(ts) && sample->ip < ks) {
		/* Return to userspace, so pop all kernel addresses */
		while (thread_stack__in_kernel(ts)) {
			err = thread_stack__call_return(thread, ts, --ts->cnt,
							sample->time, ref,
							true);
			if (err)
				return err;
		}
	}

	if (ts->cnt)
		parent = ts->stack[ts->cnt - 1].cp;
	else
		parent = &cpr->call_path;

	/* This 'return' had no 'call', so push and pop top of stack */
	cp = call_path__findnew(cpr, parent, from_al->sym, sample->ip,
				ts->kernel_start);
	if (!cp)
		return -ENOMEM;

	err = thread_stack__push_cp(ts, sample->addr, sample->time, ref, cp,
				    true);
	if (err)
		return err;

	return thread_stack__pop_cp(thread, ts, sample->addr, sample->time, ref,
				    to_al->sym);
}

static int thread_stack__trace_begin(struct thread *thread,
				     struct thread_stack *ts, u64 timestamp,
				     u64 ref)
{
	struct thread_stack_entry *tse;
	int err;

	if (!ts->cnt)
		return 0;

	/* Pop trace end */
	tse = &ts->stack[ts->cnt - 1];
	if (tse->cp->sym == NULL && tse->cp->ip == 0) {
		err = thread_stack__call_return(thread, ts, --ts->cnt,
						timestamp, ref, false);
		if (err)
			return err;
	}

	return 0;
}

static int thread_stack__trace_end(struct thread_stack *ts,
				   struct perf_sample *sample, u64 ref)
{
	struct call_path_root *cpr = ts->crp->cpr;
	struct call_path *cp;
	u64 ret_addr;

	/* No point having 'trace end' on the bottom of the stack */
	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
		return 0;

	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
				ts->kernel_start);
	if (!cp)
		return -ENOMEM;

	ret_addr = sample->ip + sample->insn_len;

	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
				     false);
}

int thread_stack__process(struct thread *thread, struct comm *comm,
			  struct perf_sample *sample,
			  struct addr_location *from_al,
			  struct addr_location *to_al, u64 ref,
			  struct call_return_processor *crp)
{
	struct thread_stack *ts = thread->ts;
	int err = 0;

	if (ts) {
		if (!ts->crp) {
			/* Supersede thread_stack__event() */
			thread_stack__free(thread);
			thread->ts = thread_stack__new(thread, crp);
			if (!thread->ts)
				return -ENOMEM;
			ts = thread->ts;
			ts->comm = comm;
		}
	} else {
		thread->ts = thread_stack__new(thread, crp);
		if (!thread->ts)
			return -ENOMEM;
		ts = thread->ts;
		ts->comm = comm;
	}

	/* Flush stack on exec */
	if (ts->comm != comm && thread->pid_ == thread->tid) {
700
		err = __thread_stack__flush(thread, ts);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		if (err)
			return err;
		ts->comm = comm;
	}

	/* If the stack is empty, put the current symbol on the stack */
	if (!ts->cnt) {
		err = thread_stack__bottom(thread, ts, sample, from_al, to_al,
					   ref);
		if (err)
			return err;
	}

	ts->branch_count += 1;
	ts->last_time = sample->time;

	if (sample->flags & PERF_IP_FLAG_CALL) {
		struct call_path_root *cpr = ts->crp->cpr;
		struct call_path *cp;
		u64 ret_addr;

		if (!sample->ip || !sample->addr)
			return 0;

		ret_addr = sample->ip + sample->insn_len;
		if (ret_addr == sample->addr)
			return 0; /* Zero-length calls are excluded */

		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
					to_al->sym, sample->addr,
					ts->kernel_start);
		if (!cp)
			return -ENOMEM;
		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
					    cp, false);
	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
		if (!sample->ip || !sample->addr)
			return 0;

		err = thread_stack__pop_cp(thread, ts, sample->addr,
					   sample->time, ref, from_al->sym);
		if (err) {
			if (err < 0)
				return err;
			err = thread_stack__no_call_return(thread, ts, sample,
							   from_al, to_al, ref);
		}
	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
		err = thread_stack__trace_end(ts, sample, ref);
	}

	return err;
}