pgtable.c 12.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/*
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 */

#include <linux/sched.h>
7
#include <linux/mm_types.h>
8
#include <linux/memblock.h>
9
#include <misc/cxl-base.h>
10

11 12
#include <asm/pgalloc.h>
#include <asm/tlb.h>
13 14
#include <asm/trace.h>
#include <asm/powernv.h>
15 16
#include <asm/firmware.h>
#include <asm/ultravisor.h>
17

18
#include <mm/mmu_decl.h>
19 20
#include <trace/events/thp.h>

21 22 23 24 25
unsigned long __pmd_frag_nr;
EXPORT_SYMBOL(__pmd_frag_nr);
unsigned long __pmd_frag_size_shift;
EXPORT_SYMBOL(__pmd_frag_size_shift);

26 27 28 29 30 31 32 33 34 35 36 37 38
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * This is called when relaxing access to a hugepage. It's also called in the page
 * fault path when we don't hit any of the major fault cases, ie, a minor
 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 * handled those two for us, we additionally deal with missing execute
 * permission here on some processors
 */
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pmd_t *pmdp, pmd_t entry, int dirty)
{
	int changed;
#ifdef CONFIG_DEBUG_VM
39
	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
40
	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
41 42 43
#endif
	changed = !pmd_same(*(pmdp), entry);
	if (changed) {
44 45 46 47 48 49
		/*
		 * We can use MMU_PAGE_2M here, because only radix
		 * path look at the psize.
		 */
		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
					pmd_pte(entry), address, MMU_PAGE_2M);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	}
	return changed;
}

int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long address, pmd_t *pmdp)
{
	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}
/*
 * set a new huge pmd. We should not be called for updating
 * an existing pmd entry. That should go via pmd_hugepage_update.
 */
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		pmd_t *pmdp, pmd_t pmd)
{
#ifdef CONFIG_DEBUG_VM
67 68 69 70
	/*
	 * Make sure hardware valid bit is not set. We don't do
	 * tlb flush for this update.
	 */
71 72

	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
73
	assert_spin_locked(pmd_lockptr(mm, pmdp));
74
	WARN_ON(!(pmd_large(pmd)));
75 76 77 78
#endif
	trace_hugepage_set_pmd(addr, pmd_val(pmd));
	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
}
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

static void do_nothing(void *unused)
{

}
/*
 * Serialize against find_current_mm_pte which does lock-less
 * lookup in page tables with local interrupts disabled. For huge pages
 * it casts pmd_t to pte_t. Since format of pte_t is different from
 * pmd_t we want to prevent transit from pmd pointing to page table
 * to pmd pointing to huge page (and back) while interrupts are disabled.
 * We clear pmd to possibly replace it with page table pointer in
 * different code paths. So make sure we wait for the parallel
 * find_current_mm_pte to finish.
 */
void serialize_against_pte_lookup(struct mm_struct *mm)
{
	smp_mb();
97
	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
98 99
}

100 101 102 103
/*
 * We use this to invalidate a pmdp entry before switching from a
 * hugepte to regular pmd entry.
 */
104
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
105 106
		     pmd_t *pmdp)
{
107 108
	unsigned long old_pmd;

109
	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
110
	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
111 112 113
	/*
	 * This ensures that generic code that rely on IRQ disabling
	 * to prevent a parallel THP split work as expected.
114 115 116
	 *
	 * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
	 * a special case check in pmd_access_permitted.
117
	 */
118
	serialize_against_pte_lookup(vma->vm_mm);
119
	return __pmd(old_pmd);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
}

static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
{
	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
}

pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
	unsigned long pmdv;

	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
	return pmd_set_protbits(__pmd(pmdv), pgprot);
}

pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
{
	return pfn_pmd(page_to_pfn(page), pgprot);
}

pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
	unsigned long pmdv;

	pmdv = pmd_val(pmd);
	pmdv &= _HPAGE_CHG_MASK;
	return pmd_set_protbits(__pmd(pmdv), newprot);
}

/*
 * This is called at the end of handling a user page fault, when the
 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 * We use it to preload an HPTE into the hash table corresponding to
 * the updated linux HUGE PMD entry.
 */
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
			  pmd_t *pmd)
{
158 159
	if (radix_enabled())
		prefetch((void *)addr);
160 161
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
162 163 164 165 166 167 168 169 170

/* For use by kexec */
void mmu_cleanup_all(void)
{
	if (radix_enabled())
		radix__mmu_cleanup_all();
	else if (mmu_hash_ops.hpte_clear_all)
		mmu_hash_ops.hpte_clear_all();
}
171 172

#ifdef CONFIG_MEMORY_HOTPLUG
173
int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
174 175
{
	if (radix_enabled())
176
		return radix__create_section_mapping(start, end, nid);
177

178
	return hash__create_section_mapping(start, end, nid);
179 180
}

181
int __meminit remove_section_mapping(unsigned long start, unsigned long end)
182 183
{
	if (radix_enabled())
184
		return radix__remove_section_mapping(start, end);
185 186 187 188

	return hash__remove_section_mapping(start, end);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
189 190 191 192 193 194 195 196

void __init mmu_partition_table_init(void)
{
	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
	unsigned long ptcr;

	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
	/* Initialize the Partition Table with no entries */
197
	partition_tb = memblock_alloc(patb_size, patb_size);
198 199 200
	if (!partition_tb)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, patb_size, patb_size);
201 202 203 204 205 206

	/*
	 * update partition table control register,
	 * 64 K size.
	 */
	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
207
	set_ptcr_when_no_uv(ptcr);
208 209 210
	powernv_set_nmmu_ptcr(ptcr);
}

211
static void flush_partition(unsigned int lpid, bool radix)
212
{
213
	if (radix) {
214 215
		radix__flush_all_lpid(lpid);
		radix__flush_all_lpid_guest(lpid);
216
	} else {
217
		asm volatile("ptesync" : : : "memory");
218 219
		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
220 221
		/* do we need fixup here ?*/
		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
222 223 224
		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
	}
}
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
				  unsigned long dw1)
{
	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);

	/*
	 * When ultravisor is enabled, the partition table is stored in secure
	 * memory and can only be accessed doing an ultravisor call. However, we
	 * maintain a copy of the partition table in normal memory to allow Nest
	 * MMU translations to occur (for normal VMs).
	 *
	 * Therefore, here we always update partition_tb, regardless of whether
	 * we are running under an ultravisor or not.
	 */
	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
	partition_tb[lpid].patb1 = cpu_to_be64(dw1);

	/*
	 * If ultravisor is enabled, we do an ultravisor call to register the
	 * partition table entry (PATE), which also do a global flush of TLBs
	 * and partition table caches for the lpid. Otherwise, just do the
	 * flush. The type of flush (hash or radix) depends on what the previous
	 * use of the partition ID was, not the new use.
	 */
	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
		uv_register_pate(lpid, dw0, dw1);
		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
			dw0, dw1);
	} else {
		flush_partition(lpid, (old & PATB_HR));
	}
}
258
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
259

260 261 262 263
static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
{
	void *pmd_frag, *ret;

264 265 266
	if (PMD_FRAG_NR == 1)
		return NULL;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	spin_lock(&mm->page_table_lock);
	ret = mm->context.pmd_frag;
	if (ret) {
		pmd_frag = ret + PMD_FRAG_SIZE;
		/*
		 * If we have taken up all the fragments mark PTE page NULL
		 */
		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
			pmd_frag = NULL;
		mm->context.pmd_frag = pmd_frag;
	}
	spin_unlock(&mm->page_table_lock);
	return (pmd_t *)ret;
}

static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
{
	void *ret = NULL;
	struct page *page;
	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;
	page = alloc_page(gfp);
	if (!page)
		return NULL;
	if (!pgtable_pmd_page_ctor(page)) {
		__free_pages(page, 0);
		return NULL;
	}

298 299
	atomic_set(&page->pt_frag_refcount, 1);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	ret = page_address(page);
	/*
	 * if we support only one fragment just return the
	 * allocated page.
	 */
	if (PMD_FRAG_NR == 1)
		return ret;

	spin_lock(&mm->page_table_lock);
	/*
	 * If we find pgtable_page set, we return
	 * the allocated page with single fragement
	 * count.
	 */
	if (likely(!mm->context.pmd_frag)) {
315
		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
	}
	spin_unlock(&mm->page_table_lock);

	return (pmd_t *)ret;
}

pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
{
	pmd_t *pmd;

	pmd = get_pmd_from_cache(mm);
	if (pmd)
		return pmd;

	return __alloc_for_pmdcache(mm);
}

void pmd_fragment_free(unsigned long *pmd)
{
	struct page *page = virt_to_page(pmd);

338 339
	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
340
		pgtable_pmd_page_dtor(page);
341
		__free_page(page);
342 343 344
	}
}

345 346 347 348 349 350 351
static inline void pgtable_free(void *table, int index)
{
	switch (index) {
	case PTE_INDEX:
		pte_fragment_free(table, 0);
		break;
	case PMD_INDEX:
352
		pmd_fragment_free(table);
353 354 355 356
		break;
	case PUD_INDEX:
		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
		break;
357 358 359 360 361 362 363 364 365 366 367 368
#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
		/* 16M hugepd directory at pud level */
	case HTLB_16M_INDEX:
		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
		break;
		/* 16G hugepd directory at the pgd level */
	case HTLB_16G_INDEX:
		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
		break;
#endif
369 370 371 372 373 374
		/* We don't free pgd table via RCU callback */
	default:
		BUG();
	}
}

375
#ifdef CONFIG_SMP
376
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
377 378 379
{
	unsigned long pgf = (unsigned long)table;

380 381
	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
	pgf |= index;
382 383 384 385 386 387
	tlb_remove_table(tlb, (void *)pgf);
}

void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
388
	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
389

390
	return pgtable_free(table, index);
391 392
}
#else
393
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
394
{
395
	return pgtable_free(table, index);
396 397
}
#endif
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

#ifdef CONFIG_PROC_FS
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];

void arch_report_meminfo(struct seq_file *m)
{
	/*
	 * Hash maps the memory with one size mmu_linear_psize.
	 * So don't bother to print these on hash
	 */
	if (!radix_enabled())
		return;
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
	seq_printf(m, "DirectMap64k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
	seq_printf(m, "DirectMap1G:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
}
#endif /* CONFIG_PROC_FS */
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
			     pte_t *ptep)
{
	unsigned long pte_val;

	/*
	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
	 * possible. Also keep the pte_present true so that we don't take
	 * wrong fault.
	 */
	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);

	return __pte(pte_val);

}

void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
			     pte_t *ptep, pte_t old_pte, pte_t pte)
{
	if (radix_enabled())
		return radix__ptep_modify_prot_commit(vma, addr,
						      ptep, old_pte, pte);
	set_pte_at(vma->vm_mm, addr, ptep, pte);
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * For hash translation mode, we use the deposited table to store hash slot
 * information and they are stored at PTRS_PER_PMD offset from related pmd
 * location. Hence a pmd move requires deposit and withdraw.
 *
 * For radix translation with split pmd ptl, we store the deposited table in the
 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 * move.
 *
 * With hash we use deposited table always irrespective of anon or not.
 * With radix we use deposited table only for anonymous mapping.
 */
int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
			   struct spinlock *old_pmd_ptl,
			   struct vm_area_struct *vma)
{
	if (radix_enabled())
		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);

	return true;
}