mem.c 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 *    Copyright (C) 1996 Paul Mackerras
 *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
 *
 *  Derived from "arch/i386/mm/init.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
33
#include <linux/suspend.h>
34
#include <linux/lmb.h>
35 36 37 38 39 40 41 42 43 44 45

#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
46
#include <asm/sections.h>
47
#include <asm/vdso.h>
48
#include <asm/fixmap.h>
49 50 51 52 53 54 55 56

#include "mmu_decl.h"

#ifndef CPU_FTR_COHERENT_ICACHE
#define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
#define CPU_FTR_NOEXECUTE	0
#endif

57 58
int init_bootmem_done;
int mem_init_done;
59
unsigned long memory_limit;
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74
#ifdef CONFIG_HIGHMEM
pte_t *kmap_pte;
pgprot_t kmap_prot;

EXPORT_SYMBOL(kmap_prot);
EXPORT_SYMBOL(kmap_pte);

static inline pte_t *virt_to_kpte(unsigned long vaddr)
{
	return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
			vaddr), vaddr), vaddr);
}
#endif

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
int page_is_ram(unsigned long pfn)
{
	unsigned long paddr = (pfn << PAGE_SHIFT);

#ifndef CONFIG_PPC64	/* XXX for now */
	return paddr < __pa(high_memory);
#else
	int i;
	for (i=0; i < lmb.memory.cnt; i++) {
		unsigned long base;

		base = lmb.memory.region[i].base;

		if ((paddr >= base) &&
			(paddr < (base + lmb.memory.region[i].size))) {
			return 1;
		}
	}

	return 0;
#endif
}

98
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
99 100 101
			      unsigned long size, pgprot_t vma_prot)
{
	if (ppc_md.phys_mem_access_prot)
102
		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
103

104
	if (!page_is_ram(pfn))
105 106 107 108 109 110
		vma_prot = __pgprot(pgprot_val(vma_prot)
				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);

P
Paul Mackerras 已提交
111 112
#ifdef CONFIG_MEMORY_HOTPLUG

113 114 115 116 117 118 119
#ifdef CONFIG_NUMA
int memory_add_physaddr_to_nid(u64 start)
{
	return hot_add_scn_to_nid(start);
}
#endif

120
int arch_add_memory(int nid, u64 start, u64 size)
P
Paul Mackerras 已提交
121
{
122
	struct pglist_data *pgdata;
P
Paul Mackerras 已提交
123 124 125 126
	struct zone *zone;
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long nr_pages = size >> PAGE_SHIFT;

127 128
	pgdata = NODE_DATA(nid);

129
	start = (unsigned long)__va(start);
130 131
	create_section_mapping(start, start + size);

P
Paul Mackerras 已提交
132 133 134 135 136 137
	/* this should work for most non-highmem platforms */
	zone = pgdata->node_zones;

	return __add_pages(zone, start_pfn, nr_pages);
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#ifdef CONFIG_MEMORY_HOTREMOVE
int remove_memory(u64 start, u64 size)
{
	unsigned long start_pfn, end_pfn;
	int ret;

	start_pfn = start >> PAGE_SHIFT;
	end_pfn = start_pfn + (size >> PAGE_SHIFT);
	ret = offline_pages(start_pfn, end_pfn, 120 * HZ);
	if (ret)
		goto out;
	/* Arch-specific calls go here - next patch */
out:
	return ret;
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

/*
 * walk_memory_resource() needs to make sure there is no holes in a given
 * memory range. On PPC64, since this range comes from /sysfs, the range
 * is guaranteed to be valid, non-overlapping and can not contain any
 * holes. By the time we get here (memory add or remove), /proc/device-tree
 * is updated and correct. Only reason we need to check against device-tree
 * would be if we allow user-land to specify a memory range through a
 * system call/ioctl etc. instead of doing offline/online through /sysfs.
 */
int
walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg,
			int (*func)(unsigned long, unsigned long, void *))
{
	return  (*func)(start_pfn, nr_pages, arg);
}

P
Paul Mackerras 已提交
171 172
#endif /* CONFIG_MEMORY_HOTPLUG */

173 174 175 176 177 178 179 180 181 182 183
void show_mem(void)
{
	unsigned long total = 0, reserved = 0;
	unsigned long shared = 0, cached = 0;
	unsigned long highmem = 0;
	struct page *page;
	pg_data_t *pgdat;
	unsigned long i;

	printk("Mem-info:\n");
	show_free_areas();
184
	for_each_online_pgdat(pgdat) {
P
Paul Mackerras 已提交
185 186
		unsigned long flags;
		pgdat_resize_lock(pgdat, &flags);
187
		for (i = 0; i < pgdat->node_spanned_pages; i++) {
188 189
			if (!pfn_valid(pgdat->node_start_pfn + i))
				continue;
190 191 192 193 194 195 196 197 198 199 200
			page = pgdat_page_nr(pgdat, i);
			total++;
			if (PageHighMem(page))
				highmem++;
			if (PageReserved(page))
				reserved++;
			else if (PageSwapCache(page))
				cached++;
			else if (page_count(page))
				shared += page_count(page) - 1;
		}
P
Paul Mackerras 已提交
201
		pgdat_resize_unlock(pgdat, &flags);
202 203 204 205 206 207 208 209 210 211
	}
	printk("%ld pages of RAM\n", total);
#ifdef CONFIG_HIGHMEM
	printk("%ld pages of HIGHMEM\n", highmem);
#endif
	printk("%ld reserved pages\n", reserved);
	printk("%ld pages shared\n", shared);
	printk("%ld pages swap cached\n", cached);
}

212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * Initialize the bootmem system and give it all the memory we
 * have available.  If we are using highmem, we only put the
 * lowmem into the bootmem system.
 */
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
	unsigned long i;
	unsigned long start, bootmap_pages;
	unsigned long total_pages;
	int boot_mapsize;

225
	max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
226
	total_pages = (lmb_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT;
227 228
#ifdef CONFIG_HIGHMEM
	total_pages = total_lowmem >> PAGE_SHIFT;
229
	max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
230 231 232 233 234 235 236 237 238 239 240
#endif

	/*
	 * Find an area to use for the bootmem bitmap.  Calculate the size of
	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
	 * Add 1 additional page in case the address isn't page-aligned.
	 */
	bootmap_pages = bootmem_bootmap_pages(total_pages);

	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);

241 242
	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
	boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn);
243

244 245 246 247 248 249 250 251
	/* Add active regions with valid PFNs */
	for (i = 0; i < lmb.memory.cnt; i++) {
		unsigned long start_pfn, end_pfn;
		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
		add_active_range(0, start_pfn, end_pfn);
	}

252 253 254 255
	/* Add all physical memory to the bootmem map, mark each area
	 * present.
	 */
#ifdef CONFIG_HIGHMEM
256
	free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT);
257 258 259 260 261

	/* reserve the sections we're already using */
	for (i = 0; i < lmb.reserved.cnt; i++) {
		unsigned long addr = lmb.reserved.region[i].base +
				     lmb_size_bytes(&lmb.reserved, i) - 1;
262
		if (addr < lowmem_end_addr)
263
			reserve_bootmem(lmb.reserved.region[i].base,
264 265
					lmb_size_bytes(&lmb.reserved, i),
					BOOTMEM_DEFAULT);
266 267
		else if (lmb.reserved.region[i].base < lowmem_end_addr) {
			unsigned long adjusted_size = lowmem_end_addr -
268 269
				      lmb.reserved.region[i].base;
			reserve_bootmem(lmb.reserved.region[i].base,
270
					adjusted_size, BOOTMEM_DEFAULT);
271 272
		}
	}
273 274
#else
	free_bootmem_with_active_regions(0, max_pfn);
275 276 277 278

	/* reserve the sections we're already using */
	for (i = 0; i < lmb.reserved.cnt; i++)
		reserve_bootmem(lmb.reserved.region[i].base,
279 280
				lmb_size_bytes(&lmb.reserved, i),
				BOOTMEM_DEFAULT);
281

282
#endif
283
	/* XXX need to clip this if using highmem? */
284 285
	sparse_memory_present_with_active_regions(0);

286 287 288
	init_bootmem_done = 1;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* mark pages that don't exist as nosave */
static int __init mark_nonram_nosave(void)
{
	unsigned long lmb_next_region_start_pfn,
		      lmb_region_max_pfn;
	int i;

	for (i = 0; i < lmb.memory.cnt - 1; i++) {
		lmb_region_max_pfn =
			(lmb.memory.region[i].base >> PAGE_SHIFT) +
			(lmb.memory.region[i].size >> PAGE_SHIFT);
		lmb_next_region_start_pfn =
			lmb.memory.region[i+1].base >> PAGE_SHIFT;

		if (lmb_region_max_pfn < lmb_next_region_start_pfn)
			register_nosave_region(lmb_region_max_pfn,
					       lmb_next_region_start_pfn);
	}

	return 0;
}

311 312 313 314 315 316 317
/*
 * paging_init() sets up the page tables - in fact we've already done this.
 */
void __init paging_init(void)
{
	unsigned long total_ram = lmb_phys_mem_size();
	unsigned long top_of_ram = lmb_end_of_DRAM();
318
	unsigned long max_zone_pfns[MAX_NR_ZONES];
319

320 321 322 323 324 325 326 327
#ifdef CONFIG_PPC32
	unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1);
	unsigned long end = __fix_to_virt(FIX_HOLE);

	for (; v < end; v += PAGE_SIZE)
		map_page(v, 0, 0); /* XXX gross */
#endif

328 329
#ifdef CONFIG_HIGHMEM
	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
330 331 332
	pkmap_page_table = virt_to_kpte(PKMAP_BASE);

	kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
333 334 335
	kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */

336
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
337
	       top_of_ram, total_ram);
338
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
339
	       (top_of_ram - total_ram) >> 20);
340
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
341
#ifdef CONFIG_HIGHMEM
342
	max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT;
343
	max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
344
#else
345
	max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
346 347
#endif
	free_area_init_nodes(max_zone_pfns);
348 349

	mark_nonram_nosave();
350 351 352 353 354 355 356 357 358 359 360 361 362
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */

void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
	int nid;
#endif
	pg_data_t *pgdat;
	unsigned long i;
	struct page *page;
	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;

363
	num_physpages = lmb.memory.size >> PAGE_SHIFT;
364 365 366 367 368
	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

#ifdef CONFIG_NEED_MULTIPLE_NODES
        for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages != 0) {
369
			printk("freeing bootmem node %d\n", nid);
370 371 372 373 374
			totalram_pages +=
				free_all_bootmem_node(NODE_DATA(nid));
		}
	}
#else
375
	max_mapnr = max_pfn;
376 377
	totalram_pages += free_all_bootmem();
#endif
378
	for_each_online_pgdat(pgdat) {
379
		for (i = 0; i < pgdat->node_spanned_pages; i++) {
380 381
			if (!pfn_valid(pgdat->node_start_pfn + i))
				continue;
382 383 384 385 386 387 388
			page = pgdat_page_nr(pgdat, i);
			if (PageReserved(page))
				reservedpages++;
		}
	}

	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
389
	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
390 391 392 393 394 395 396
	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;

#ifdef CONFIG_HIGHMEM
	{
		unsigned long pfn, highmem_mapnr;

397
		highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
398 399
		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
			struct page *page = pfn_to_page(pfn);
400 401
			if (lmb_is_reserved(pfn << PAGE_SHIFT))
				continue;
402
			ClearPageReserved(page);
403
			init_page_count(page);
404 405
			__free_page(page);
			totalhigh_pages++;
406
			reservedpages--;
407 408
		}
		totalram_pages += totalhigh_pages;
409
		printk(KERN_DEBUG "High memory: %luk\n",
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		       totalhigh_pages << (PAGE_SHIFT-10));
	}
#endif /* CONFIG_HIGHMEM */

	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
		num_physpages << (PAGE_SHIFT-10),
		codesize >> 10,
		reservedpages << (PAGE_SHIFT-10),
		datasize >> 10,
		bsssize >> 10,
		initsize >> 10);

	mem_init_done = 1;
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * This is called when a page has been modified by the kernel.
 * It just marks the page as not i-cache clean.  We do the i-cache
 * flush later when the page is given to a user process, if necessary.
 */
void flush_dcache_page(struct page *page)
{
	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		return;
	/* avoid an atomic op if possible */
	if (test_bit(PG_arch_1, &page->flags))
		clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);

void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_BOOKE
	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
	__flush_dcache_icache(start);
	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
448
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/* On 8xx there is no need to kmap since highmem is not supported */
	__flush_dcache_icache(page_address(page)); 
#else
	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif

}
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
	clear_page(page);

	/*
	 * We shouldnt have to do this, but some versions of glibc
	 * require it (ld.so assumes zero filled pages are icache clean)
	 * - Anton
	 */
465
	flush_dcache_page(pg);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}
EXPORT_SYMBOL(clear_user_page);

void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
		    struct page *pg)
{
	copy_page(vto, vfrom);

	/*
	 * We should be able to use the following optimisation, however
	 * there are two problems.
	 * Firstly a bug in some versions of binutils meant PLT sections
	 * were not marked executable.
	 * Secondly the first word in the GOT section is blrl, used
	 * to establish the GOT address. Until recently the GOT was
	 * not marked executable.
	 * - Anton
	 */
#if 0
	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
		return;
#endif

489
	flush_dcache_page(pg);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
}

void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
			     unsigned long addr, int len)
{
	unsigned long maddr;

	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
	flush_icache_range(maddr, maddr + len);
	kunmap(page);
}
EXPORT_SYMBOL(flush_icache_user_range);

/*
 * This is called at the end of handling a user page fault, when the
 * fault has been handled by updating a PTE in the linux page tables.
 * We use it to preload an HPTE into the hash table corresponding to
 * the updated linux PTE.
 * 
H
Hugh Dickins 已提交
509
 * This must always be called with the pte lock held.
510 511 512 513
 */
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
		      pte_t pte)
{
514 515
#ifdef CONFIG_PPC_STD_MMU
	unsigned long access = 0, trap;
516
#endif
517
	unsigned long pfn = pte_pfn(pte);
518 519 520 521 522 523

	/* handle i-cache coherency */
	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
	    pfn_valid(pfn)) {
		struct page *page = pfn_to_page(pfn);
524 525 526 527 528 529 530 531
#ifdef CONFIG_8xx
		/* On 8xx, cache control instructions (particularly
		 * "dcbst" from flush_dcache_icache) fault as write
		 * operation if there is an unpopulated TLB entry
		 * for the address in question. To workaround that,
		 * we invalidate the TLB here, thus avoiding dcbst
		 * misbehaviour.
		 */
532
		_tlbie(address, 0 /* 8xx doesn't care about PID */);
533
#endif
534 535 536 537 538 539
		/* The _PAGE_USER test should really be _PAGE_EXEC, but
		 * older glibc versions execute some code from no-exec
		 * pages, which for now we are supporting.  If exec-only
		 * pages are ever implemented, this will have to change.
		 */
		if (!PageReserved(page) && (pte_val(pte) & _PAGE_USER)
540 541 542 543 544 545 546 547 548 549 550 551 552 553
		    && !test_bit(PG_arch_1, &page->flags)) {
			if (vma->vm_mm == current->active_mm) {
				__flush_dcache_icache((void *) address);
			} else
				flush_dcache_icache_page(page);
			set_bit(PG_arch_1, &page->flags);
		}
	}

#ifdef CONFIG_PPC_STD_MMU
	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
	if (!pte_young(pte) || address >= TASK_SIZE)
		return;

554 555 556 557 558 559 560 561
	/* We try to figure out if we are coming from an instruction
	 * access fault and pass that down to __hash_page so we avoid
	 * double-faulting on execution of fresh text. We have to test
	 * for regs NULL since init will get here first thing at boot
	 *
	 * We also avoid filling the hash if not coming from a fault
	 */
	if (current->thread.regs == NULL)
562
		return;
563 564 565 566 567 568 569
	trap = TRAP(current->thread.regs);
	if (trap == 0x400)
		access |= _PAGE_EXEC;
	else if (trap != 0x300)
		return;
	hash_preload(vma->vm_mm, address, access, trap);
#endif /* CONFIG_PPC_STD_MMU */
570
}