psci.c 14.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

7
#include <linux/arm-smccc.h>
8
#include <linux/preempt.h>
9
#include <linux/kvm_host.h>
10
#include <linux/uaccess.h>
11 12
#include <linux/wait.h>

13
#include <asm/cputype.h>
14 15
#include <asm/kvm_emulate.h>

16
#include <kvm/arm_psci.h>
17
#include <kvm/arm_hypercalls.h>
18

19 20 21 22 23
/*
 * This is an implementation of the Power State Coordination Interface
 * as described in ARM document number ARM DEN 0022A.
 */

24 25 26 27 28 29 30 31 32 33
#define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)

static unsigned long psci_affinity_mask(unsigned long affinity_level)
{
	if (affinity_level <= 3)
		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);

	return 0;
}

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
{
	/*
	 * NOTE: For simplicity, we make VCPU suspend emulation to be
	 * same-as WFI (Wait-for-interrupt) emulation.
	 *
	 * This means for KVM the wakeup events are interrupts and
	 * this is consistent with intended use of StateID as described
	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
	 *
	 * Further, we also treat power-down request to be same as
	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
	 * specification (ARM DEN 0022A). This means all suspend states
	 * for KVM will preserve the register state.
	 */
49
	kvm_vcpu_halt(vcpu);
50
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
51 52 53 54

	return PSCI_RET_SUCCESS;
}

55 56
static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
{
57
	vcpu->arch.power_off = true;
58
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
59
	kvm_vcpu_kick(vcpu);
60 61
}

62 63 64 65 66 67
static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
					   unsigned long affinity)
{
	return !(affinity & ~MPIDR_HWID_BITMASK);
}

68 69
static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
70
	struct vcpu_reset_state *reset_state;
71
	struct kvm *kvm = source_vcpu->kvm;
72
	struct kvm_vcpu *vcpu = NULL;
73 74
	unsigned long cpu_id;

75 76 77
	cpu_id = smccc_get_arg1(source_vcpu);
	if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
		return PSCI_RET_INVALID_PARAMS;
78

79
	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
80

81 82 83 84
	/*
	 * Make sure the caller requested a valid CPU and that the CPU is
	 * turned off.
	 */
85
	if (!vcpu)
86
		return PSCI_RET_INVALID_PARAMS;
87
	if (!vcpu->arch.power_off) {
88
		if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
89 90 91 92
			return PSCI_RET_ALREADY_ON;
		else
			return PSCI_RET_INVALID_PARAMS;
	}
93

94
	reset_state = &vcpu->arch.reset_state;
95

96
	reset_state->pc = smccc_get_arg2(source_vcpu);
97

98
	/* Propagate caller endianness */
99
	reset_state->be = kvm_vcpu_is_be(source_vcpu);
100

101 102
	/*
	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
F
Fuad Tabba 已提交
103
	 * the general purpose registers are undefined upon CPU_ON.
104
	 */
105 106 107 108
	reset_state->r0 = smccc_get_arg3(source_vcpu);

	WRITE_ONCE(reset_state->reset, true);
	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
109

110 111
	/*
	 * Make sure the reset request is observed if the change to
112
	 * power_off is observed.
113 114 115 116 117
	 */
	smp_wmb();

	vcpu->arch.power_off = false;
	kvm_vcpu_wake_up(vcpu);
118

119
	return PSCI_RET_SUCCESS;
120 121
}

122 123
static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
{
124 125
	int matching_cpus = 0;
	unsigned long i, mpidr;
126 127 128 129 130 131
	unsigned long target_affinity;
	unsigned long target_affinity_mask;
	unsigned long lowest_affinity_level;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

132 133
	target_affinity = smccc_get_arg1(vcpu);
	lowest_affinity_level = smccc_get_arg2(vcpu);
134

135 136 137
	if (!kvm_psci_valid_affinity(vcpu, target_affinity))
		return PSCI_RET_INVALID_PARAMS;

138 139 140 141 142 143 144 145 146 147 148 149 150
	/* Determine target affinity mask */
	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
	if (!target_affinity_mask)
		return PSCI_RET_INVALID_PARAMS;

	/* Ignore other bits of target affinity */
	target_affinity &= target_affinity_mask;

	/*
	 * If one or more VCPU matching target affinity are running
	 * then ON else OFF
	 */
	kvm_for_each_vcpu(i, tmp, kvm) {
151
		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
152 153
		if ((mpidr & target_affinity_mask) == target_affinity) {
			matching_cpus++;
154
			if (!tmp->arch.power_off)
155
				return PSCI_0_2_AFFINITY_LEVEL_ON;
156 157 158
		}
	}

159 160 161
	if (!matching_cpus)
		return PSCI_RET_INVALID_PARAMS;

162 163 164
	return PSCI_0_2_AFFINITY_LEVEL_OFF;
}

165
static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
166
{
167
	unsigned long i;
168 169 170 171 172 173 174 175 176 177 178
	struct kvm_vcpu *tmp;

	/*
	 * The KVM ABI specifies that a system event exit may call KVM_RUN
	 * again and may perform shutdown/reboot at a later time that when the
	 * actual request is made.  Since we are implementing PSCI and a
	 * caller of PSCI reboot and shutdown expects that the system shuts
	 * down or reboots immediately, let's make sure that VCPUs are not run
	 * after this call is handled and before the VCPUs have been
	 * re-initialized.
	 */
179
	kvm_for_each_vcpu(i, tmp, vcpu->kvm)
180
		tmp->arch.power_off = true;
181
	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
182

183 184
	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
	vcpu->run->system_event.type = type;
185
	vcpu->run->system_event.flags = flags;
186 187 188 189 190
	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
}

static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
{
191
	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
192 193 194 195
}

static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
{
196 197 198 199 200 201 202
	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
}

static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
{
	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
				 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216
static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
{
	int i;

	/*
	 * Zero the input registers' upper 32 bits. They will be fully
	 * zeroed on exit, so we're fine changing them in place.
	 */
	for (i = 1; i < 4; i++)
		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
{
	switch(fn) {
	case PSCI_0_2_FN64_CPU_SUSPEND:
	case PSCI_0_2_FN64_CPU_ON:
	case PSCI_0_2_FN64_AFFINITY_INFO:
		/* Disallow these functions for 32bit guests */
		if (vcpu_mode_is_32bit(vcpu))
			return PSCI_RET_NOT_SUPPORTED;
		break;
	}

	return 0;
}

232
static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
233
{
234
	struct kvm *kvm = vcpu->kvm;
235
	u32 psci_fn = smccc_get_function(vcpu);
236
	unsigned long val;
237
	int ret = 1;
238

239 240 241 242
	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
	if (val)
		goto out;

243 244 245 246 247 248
	switch (psci_fn) {
	case PSCI_0_2_FN_PSCI_VERSION:
		/*
		 * Bits[31:16] = Major Version = 0
		 * Bits[15:0] = Minor Version = 2
		 */
249
		val = KVM_ARM_PSCI_0_2;
250
		break;
251 252 253 254
	case PSCI_0_2_FN_CPU_SUSPEND:
	case PSCI_0_2_FN64_CPU_SUSPEND:
		val = kvm_psci_vcpu_suspend(vcpu);
		break;
255 256 257 258 259
	case PSCI_0_2_FN_CPU_OFF:
		kvm_psci_vcpu_off(vcpu);
		val = PSCI_RET_SUCCESS;
		break;
	case PSCI_0_2_FN_CPU_ON:
260 261
		kvm_psci_narrow_to_32bit(vcpu);
		fallthrough;
262
	case PSCI_0_2_FN64_CPU_ON:
263
		mutex_lock(&kvm->lock);
264
		val = kvm_psci_vcpu_on(vcpu);
265
		mutex_unlock(&kvm->lock);
266
		break;
267
	case PSCI_0_2_FN_AFFINITY_INFO:
268 269
		kvm_psci_narrow_to_32bit(vcpu);
		fallthrough;
270 271 272
	case PSCI_0_2_FN64_AFFINITY_INFO:
		val = kvm_psci_vcpu_affinity_info(vcpu);
		break;
273 274 275 276 277 278 279 280
	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
		/*
		 * Trusted OS is MP hence does not require migration
	         * or
		 * Trusted OS is not present
		 */
		val = PSCI_0_2_TOS_MP;
		break;
281 282 283
	case PSCI_0_2_FN_SYSTEM_OFF:
		kvm_psci_system_off(vcpu);
		/*
F
Fuad Tabba 已提交
284
		 * We shouldn't be going back to guest VCPU after
285 286
		 * receiving SYSTEM_OFF request.
		 *
F
Fuad Tabba 已提交
287
		 * If user space accidentally/deliberately resumes
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		 * guest VCPU after SYSTEM_OFF request then guest
		 * VCPU should see internal failure from PSCI return
		 * value. To achieve this, we preload r0 (or x0) with
		 * PSCI return value INTERNAL_FAILURE.
		 */
		val = PSCI_RET_INTERNAL_FAILURE;
		ret = 0;
		break;
	case PSCI_0_2_FN_SYSTEM_RESET:
		kvm_psci_system_reset(vcpu);
		/*
		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
		 * with PSCI return value INTERNAL_FAILURE.
		 */
		val = PSCI_RET_INTERNAL_FAILURE;
		ret = 0;
		break;
305
	default:
306 307
		val = PSCI_RET_NOT_SUPPORTED;
		break;
308 309
	}

310
out:
311
	smccc_set_retval(vcpu, val, 0, 0, 0);
312
	return ret;
313 314
}

315
static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
316 317
{
	u32 psci_fn = smccc_get_function(vcpu);
318
	u32 arg;
319 320 321
	unsigned long val;
	int ret = 1;

322 323 324
	if (minor > 1)
		return -EINVAL;

325 326
	switch(psci_fn) {
	case PSCI_0_2_FN_PSCI_VERSION:
327
		val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1;
328 329
		break;
	case PSCI_1_0_FN_PSCI_FEATURES:
330 331
		arg = smccc_get_arg1(vcpu);
		val = kvm_psci_check_allowed_function(vcpu, arg);
332 333 334
		if (val)
			break;

335
		switch(arg) {
336 337 338 339 340 341 342 343 344 345 346 347
		case PSCI_0_2_FN_PSCI_VERSION:
		case PSCI_0_2_FN_CPU_SUSPEND:
		case PSCI_0_2_FN64_CPU_SUSPEND:
		case PSCI_0_2_FN_CPU_OFF:
		case PSCI_0_2_FN_CPU_ON:
		case PSCI_0_2_FN64_CPU_ON:
		case PSCI_0_2_FN_AFFINITY_INFO:
		case PSCI_0_2_FN64_AFFINITY_INFO:
		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
		case PSCI_0_2_FN_SYSTEM_OFF:
		case PSCI_0_2_FN_SYSTEM_RESET:
		case PSCI_1_0_FN_PSCI_FEATURES:
348
		case ARM_SMCCC_VERSION_FUNC_ID:
349 350
			val = 0;
			break;
351 352 353 354 355 356 357
		case PSCI_1_1_FN_SYSTEM_RESET2:
		case PSCI_1_1_FN64_SYSTEM_RESET2:
			if (minor >= 1) {
				val = 0;
				break;
			}
			fallthrough;
358 359 360 361 362
		default:
			val = PSCI_RET_NOT_SUPPORTED;
			break;
		}
		break;
363 364 365 366 367 368 369
	case PSCI_1_1_FN_SYSTEM_RESET2:
		kvm_psci_narrow_to_32bit(vcpu);
		fallthrough;
	case PSCI_1_1_FN64_SYSTEM_RESET2:
		if (minor >= 1) {
			arg = smccc_get_arg1(vcpu);

370 371
			if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
			    arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
372
				kvm_psci_system_reset2(vcpu);
373 374
				vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
				return 0;
375
			}
376 377

			val = PSCI_RET_INVALID_PARAMS;
378
			break;
379
		}
380
		fallthrough;
381 382 383 384 385 386 387 388
	default:
		return kvm_psci_0_2_call(vcpu);
	}

	smccc_set_retval(vcpu, val, 0, 0, 0);
	return ret;
}

389
static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
390
{
391
	struct kvm *kvm = vcpu->kvm;
392
	u32 psci_fn = smccc_get_function(vcpu);
393 394 395 396 397
	unsigned long val;

	switch (psci_fn) {
	case KVM_PSCI_FN_CPU_OFF:
		kvm_psci_vcpu_off(vcpu);
398
		val = PSCI_RET_SUCCESS;
399 400
		break;
	case KVM_PSCI_FN_CPU_ON:
401
		mutex_lock(&kvm->lock);
402
		val = kvm_psci_vcpu_on(vcpu);
403
		mutex_unlock(&kvm->lock);
404
		break;
405
	default:
406
		val = PSCI_RET_NOT_SUPPORTED;
407 408 409
		break;
	}

410
	smccc_set_retval(vcpu, val, 0, 0, 0);
411
	return 1;
412
}
413 414 415 416 417 418

/**
 * kvm_psci_call - handle PSCI call if r0 value is in range
 * @vcpu: Pointer to the VCPU struct
 *
 * Handle PSCI calls from guests through traps from HVC instructions.
419 420 421 422 423 424 425 426
 * The calling convention is similar to SMC calls to the secure world
 * where the function number is placed in r0.
 *
 * This function returns: > 0 (success), 0 (success but exit to user
 * space), and < 0 (errors)
 *
 * Errors:
 * -EINVAL: Unrecognized PSCI function
427
 */
428
int kvm_psci_call(struct kvm_vcpu *vcpu)
429
{
430
	switch (kvm_psci_version(vcpu)) {
431 432
	case KVM_ARM_PSCI_1_1:
		return kvm_psci_1_x_call(vcpu, 1);
433
	case KVM_ARM_PSCI_1_0:
434
		return kvm_psci_1_x_call(vcpu, 0);
435 436 437 438 439
	case KVM_ARM_PSCI_0_2:
		return kvm_psci_0_2_call(vcpu);
	case KVM_ARM_PSCI_0_1:
		return kvm_psci_0_1_call(vcpu);
	default:
440
		return -EINVAL;
441
	}
442
}
443

444 445
int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
{
446
	return 3;		/* PSCI version and two workaround registers */
447 448 449 450
}

int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
451 452 453 454 455 456 457
	if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
		return -EFAULT;

	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
		return -EFAULT;

	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
458 459 460 461 462
		return -EFAULT;

	return 0;
}

463 464 465 466 467 468 469 470 471 472 473
#define KVM_REG_FEATURE_LEVEL_WIDTH	4
#define KVM_REG_FEATURE_LEVEL_MASK	(BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)

/*
 * Convert the workaround level into an easy-to-compare number, where higher
 * values mean better protection.
 */
static int get_kernel_wa_level(u64 regid)
{
	switch (regid) {
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
474 475
		switch (arm64_get_spectre_v2_state()) {
		case SPECTRE_VULNERABLE:
476
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
477
		case SPECTRE_MITIGATED:
478
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
479
		case SPECTRE_UNAFFECTED:
480 481 482 483
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
		}
		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
484 485 486 487 488 489 490 491 492 493 494
		switch (arm64_get_spectre_v4_state()) {
		case SPECTRE_MITIGATED:
			/*
			 * As for the hypercall discovery, we pretend we
			 * don't have any FW mitigation if SSBS is there at
			 * all times.
			 */
			if (cpus_have_final_cap(ARM64_SSBS))
				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
			fallthrough;
		case SPECTRE_UNAFFECTED:
495
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
496
		case SPECTRE_VULNERABLE:
497
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
498 499 500 501 502 503
		}
	}

	return -EINVAL;
}

504 505
int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
506 507
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
508

509 510
	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
511
		val = kvm_psci_version(vcpu);
512 513 514 515 516 517 518
		break;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
		break;
	default:
		return -ENOENT;
519 520
	}

521 522 523 524
	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	return 0;
525 526 527 528
}

int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
529 530 531 532 533 534
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int wa_level;

	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
		return -EFAULT;
535

536 537 538 539
	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
	{
		bool wants_02;
540 541 542 543 544 545 546 547 548 549 550

		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);

		switch (val) {
		case KVM_ARM_PSCI_0_1:
			if (wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		case KVM_ARM_PSCI_0_2:
		case KVM_ARM_PSCI_1_0:
551
		case KVM_ARM_PSCI_1_1:
552 553 554 555 556
			if (!wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		}
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		break;
	}

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
			return -EINVAL;

		if (get_kernel_wa_level(reg->id) < val)
			return -EINVAL;

		return 0;

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
			return -EINVAL;

		/* The enabled bit must not be set unless the level is AVAIL. */
575 576
		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
577 578 579
			return -EINVAL;

		/*
580 581
		 * Map all the possible incoming states to the only two we
		 * really want to deal with.
582
		 */
583 584 585 586
		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
587
			break;
588
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
589
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
590
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
591
			break;
592 593
		default:
			return -EINVAL;
594 595
		}

596 597 598 599 600 601 602
		/*
		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
		 * other way around.
		 */
		if (get_kernel_wa_level(reg->id) < wa_level)
			return -EINVAL;

603 604 605
		return 0;
	default:
		return -ENOENT;
606 607 608 609
	}

	return -EINVAL;
}