hyperv_features.c 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2021, Red Hat, Inc.
 *
 * Tests for Hyper-V features enablement
 */
#include <asm/kvm_para.h>
#include <linux/kvm_para.h>
#include <stdint.h>

#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "hyperv.h"

#define VCPU_ID 0
#define LINUX_OS_ID ((u64)0x8100 << 48)

extern unsigned char rdmsr_start;
extern unsigned char rdmsr_end;

static u64 do_rdmsr(u32 idx)
{
	u32 lo, hi;

	asm volatile("rdmsr_start: rdmsr;"
		     "rdmsr_end:"
		     : "=a"(lo), "=c"(hi)
		     : "c"(idx));

	return (((u64) hi) << 32) | lo;
}

extern unsigned char wrmsr_start;
extern unsigned char wrmsr_end;

static void do_wrmsr(u32 idx, u64 val)
{
	u32 lo, hi;

	lo = val;
	hi = val >> 32;

	asm volatile("wrmsr_start: wrmsr;"
		     "wrmsr_end:"
		     : : "a"(lo), "c"(idx), "d"(hi));
}

static int nr_gp;
50
static int nr_ud;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

static inline u64 hypercall(u64 control, vm_vaddr_t input_address,
			    vm_vaddr_t output_address)
{
	u64 hv_status;

	asm volatile("mov %3, %%r8\n"
		     "vmcall"
		     : "=a" (hv_status),
		       "+c" (control), "+d" (input_address)
		     :  "r" (output_address)
		     : "cc", "memory", "r8", "r9", "r10", "r11");

	return hv_status;
}

static void guest_gp_handler(struct ex_regs *regs)
{
	unsigned char *rip = (unsigned char *)regs->rip;
	bool r, w;

	r = rip == &rdmsr_start;
	w = rip == &wrmsr_start;
	GUEST_ASSERT(r || w);

	nr_gp++;

	if (r)
		regs->rip = (uint64_t)&rdmsr_end;
	else
		regs->rip = (uint64_t)&wrmsr_end;
}

84 85 86 87 88 89
static void guest_ud_handler(struct ex_regs *regs)
{
	nr_ud++;
	regs->rip += 3;
}

90 91 92 93 94 95 96 97 98 99
struct msr_data {
	uint32_t idx;
	bool available;
	bool write;
	u64 write_val;
};

struct hcall_data {
	uint64_t control;
	uint64_t expect;
100
	bool ud_expected;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

static void guest_msr(struct msr_data *msr)
{
	int i = 0;

	while (msr->idx) {
		WRITE_ONCE(nr_gp, 0);
		if (!msr->write)
			do_rdmsr(msr->idx);
		else
			do_wrmsr(msr->idx, msr->write_val);

		if (msr->available)
			GUEST_ASSERT(READ_ONCE(nr_gp) == 0);
		else
			GUEST_ASSERT(READ_ONCE(nr_gp) == 1);

		GUEST_SYNC(i++);
	}

	GUEST_DONE();
}

static void guest_hcall(vm_vaddr_t pgs_gpa, struct hcall_data *hcall)
{
	int i = 0;
128
	u64 res, input, output;
129 130 131 132 133

	wrmsr(HV_X64_MSR_GUEST_OS_ID, LINUX_OS_ID);
	wrmsr(HV_X64_MSR_HYPERCALL, pgs_gpa);

	while (hcall->control) {
134 135 136 137 138 139 140 141 142 143 144 145 146 147
		nr_ud = 0;
		if (!(hcall->control & HV_HYPERCALL_FAST_BIT)) {
			input = pgs_gpa;
			output = pgs_gpa + 4096;
		} else {
			input = output = 0;
		}

		res = hypercall(hcall->control, input, output);
		if (hcall->ud_expected)
			GUEST_ASSERT(nr_ud == 1);
		else
			GUEST_ASSERT(res == hcall->expect);

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		GUEST_SYNC(i++);
	}

	GUEST_DONE();
}

static void hv_set_cpuid(struct kvm_vm *vm, struct kvm_cpuid2 *cpuid,
			 struct kvm_cpuid_entry2 *feat,
			 struct kvm_cpuid_entry2 *recomm,
			 struct kvm_cpuid_entry2 *dbg)
{
	TEST_ASSERT(set_cpuid(cpuid, feat),
		    "failed to set KVM_CPUID_FEATURES leaf");
	TEST_ASSERT(set_cpuid(cpuid, recomm),
		    "failed to set HYPERV_CPUID_ENLIGHTMENT_INFO leaf");
	TEST_ASSERT(set_cpuid(cpuid, dbg),
		    "failed to set HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES leaf");
	vcpu_set_cpuid(vm, VCPU_ID, cpuid);
}

static void guest_test_msrs_access(struct kvm_vm *vm, struct msr_data *msr,
				   struct kvm_cpuid2 *best)
{
	struct kvm_run *run;
	struct ucall uc;
	int stage = 0, r;
	struct kvm_cpuid_entry2 feat = {
		.function = HYPERV_CPUID_FEATURES
	};
	struct kvm_cpuid_entry2 recomm = {
		.function = HYPERV_CPUID_ENLIGHTMENT_INFO
	};
	struct kvm_cpuid_entry2 dbg = {
		.function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
	};
	struct kvm_enable_cap cap = {0};

	run = vcpu_state(vm, VCPU_ID);

	while (true) {
		switch (stage) {
		case 0:
			/*
			 * Only available when Hyper-V identification is set
			 */
			msr->idx = HV_X64_MSR_GUEST_OS_ID;
			msr->write = 0;
			msr->available = 0;
			break;
		case 1:
			msr->idx = HV_X64_MSR_HYPERCALL;
			msr->write = 0;
			msr->available = 0;
			break;
		case 2:
			feat.eax |= HV_MSR_HYPERCALL_AVAILABLE;
			/*
			 * HV_X64_MSR_GUEST_OS_ID has to be written first to make
			 * HV_X64_MSR_HYPERCALL available.
			 */
			msr->idx = HV_X64_MSR_GUEST_OS_ID;
			msr->write = 1;
			msr->write_val = LINUX_OS_ID;
			msr->available = 1;
			break;
		case 3:
			msr->idx = HV_X64_MSR_GUEST_OS_ID;
			msr->write = 0;
			msr->available = 1;
			break;
		case 4:
			msr->idx = HV_X64_MSR_HYPERCALL;
			msr->write = 0;
			msr->available = 1;
			break;

		case 5:
			msr->idx = HV_X64_MSR_VP_RUNTIME;
			msr->write = 0;
			msr->available = 0;
			break;
		case 6:
			feat.eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 7:
			/* Read only */
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 0;
			break;

		case 8:
			msr->idx = HV_X64_MSR_TIME_REF_COUNT;
			msr->write = 0;
			msr->available = 0;
			break;
		case 9:
			feat.eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 10:
			/* Read only */
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 0;
			break;

		case 11:
			msr->idx = HV_X64_MSR_VP_INDEX;
			msr->write = 0;
			msr->available = 0;
			break;
		case 12:
			feat.eax |= HV_MSR_VP_INDEX_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 13:
			/* Read only */
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 0;
			break;

		case 14:
			msr->idx = HV_X64_MSR_RESET;
			msr->write = 0;
			msr->available = 0;
			break;
		case 15:
			feat.eax |= HV_MSR_RESET_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 16:
			msr->write = 1;
			msr->write_val = 0;
			msr->available = 1;
			break;

		case 17:
			msr->idx = HV_X64_MSR_REFERENCE_TSC;
			msr->write = 0;
			msr->available = 0;
			break;
		case 18:
			feat.eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 19:
			msr->write = 1;
			msr->write_val = 0;
			msr->available = 1;
			break;

		case 20:
			msr->idx = HV_X64_MSR_EOM;
			msr->write = 0;
			msr->available = 0;
			break;
		case 21:
			/*
			 * Remains unavailable even with KVM_CAP_HYPERV_SYNIC2
			 * capability enabled and guest visible CPUID bit unset.
			 */
			cap.cap = KVM_CAP_HYPERV_SYNIC2;
			vcpu_enable_cap(vm, VCPU_ID, &cap);
			break;
		case 22:
			feat.eax |= HV_MSR_SYNIC_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 23:
			msr->write = 1;
			msr->write_val = 0;
			msr->available = 1;
			break;

		case 24:
			msr->idx = HV_X64_MSR_STIMER0_CONFIG;
			msr->write = 0;
			msr->available = 0;
			break;
		case 25:
			feat.eax |= HV_MSR_SYNTIMER_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 26:
			msr->write = 1;
			msr->write_val = 0;
			msr->available = 1;
			break;
		case 27:
			/* Direct mode test */
			msr->write = 1;
			msr->write_val = 1 << 12;
			msr->available = 0;
			break;
		case 28:
			feat.edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
			msr->available = 1;
			break;

		case 29:
			msr->idx = HV_X64_MSR_EOI;
			msr->write = 0;
			msr->available = 0;
			break;
		case 30:
			feat.eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 1;
			break;

		case 31:
			msr->idx = HV_X64_MSR_TSC_FREQUENCY;
			msr->write = 0;
			msr->available = 0;
			break;
		case 32:
			feat.eax |= HV_ACCESS_FREQUENCY_MSRS;
			msr->write = 0;
			msr->available = 1;
			break;
		case 33:
			/* Read only */
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 0;
			break;

		case 34:
			msr->idx = HV_X64_MSR_REENLIGHTENMENT_CONTROL;
			msr->write = 0;
			msr->available = 0;
			break;
		case 35:
			feat.eax |= HV_ACCESS_REENLIGHTENMENT;
			msr->write = 0;
			msr->available = 1;
			break;
		case 36:
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 1;
			break;
		case 37:
			/* Can only write '0' */
			msr->idx = HV_X64_MSR_TSC_EMULATION_STATUS;
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 0;
			break;

		case 38:
			msr->idx = HV_X64_MSR_CRASH_P0;
			msr->write = 0;
			msr->available = 0;
			break;
		case 39:
			feat.edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
			msr->write = 0;
			msr->available = 1;
			break;
		case 40:
			msr->write = 1;
			msr->write_val = 1;
			msr->available = 1;
			break;

		case 41:
			msr->idx = HV_X64_MSR_SYNDBG_STATUS;
			msr->write = 0;
			msr->available = 0;
			break;
		case 42:
			feat.edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
			dbg.eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			msr->write = 0;
			msr->available = 1;
			break;
		case 43:
			msr->write = 1;
			msr->write_val = 0;
			msr->available = 1;
			break;

		case 44:
			/* END */
			msr->idx = 0;
			break;
		}

		hv_set_cpuid(vm, best, &feat, &recomm, &dbg);

		if (msr->idx)
			pr_debug("Stage %d: testing msr: 0x%x for %s\n", stage,
				 msr->idx, msr->write ? "write" : "read");
		else
			pr_debug("Stage %d: finish\n", stage);

		r = _vcpu_run(vm, VCPU_ID);
		TEST_ASSERT(!r, "vcpu_run failed: %d\n", r);
		TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
			    "unexpected exit reason: %u (%s)",
			    run->exit_reason, exit_reason_str(run->exit_reason));

		switch (get_ucall(vm, VCPU_ID, &uc)) {
		case UCALL_SYNC:
			TEST_ASSERT(uc.args[1] == stage,
				    "Unexpected stage: %ld (%d expected)\n",
				    uc.args[1], stage);
			break;
		case UCALL_ABORT:
			TEST_FAIL("%s at %s:%ld", (const char *)uc.args[0],
				  __FILE__, uc.args[1]);
			return;
		case UCALL_DONE:
			return;
		}

		stage++;
	}
}

static void guest_test_hcalls_access(struct kvm_vm *vm, struct hcall_data *hcall,
				     void *input, void *output, struct kvm_cpuid2 *best)
{
	struct kvm_run *run;
	struct ucall uc;
	int stage = 0, r;
	struct kvm_cpuid_entry2 feat = {
		.function = HYPERV_CPUID_FEATURES,
		.eax = HV_MSR_HYPERCALL_AVAILABLE
	};
	struct kvm_cpuid_entry2 recomm = {
		.function = HYPERV_CPUID_ENLIGHTMENT_INFO
	};
	struct kvm_cpuid_entry2 dbg = {
		.function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
	};

	run = vcpu_state(vm, VCPU_ID);

	while (true) {
		switch (stage) {
		case 0:
			hcall->control = 0xdeadbeef;
			hcall->expect = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;

		case 1:
			hcall->control = HVCALL_POST_MESSAGE;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 2:
			feat.ebx |= HV_POST_MESSAGES;
			hcall->expect = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;

		case 3:
			hcall->control = HVCALL_SIGNAL_EVENT;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 4:
			feat.ebx |= HV_SIGNAL_EVENTS;
			hcall->expect = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;

		case 5:
			hcall->control = HVCALL_RESET_DEBUG_SESSION;
			hcall->expect = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;
		case 6:
			dbg.eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 7:
			feat.ebx |= HV_DEBUGGING;
			hcall->expect = HV_STATUS_OPERATION_DENIED;
			break;

		case 8:
			hcall->control = HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 9:
			recomm.eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			hcall->expect = HV_STATUS_SUCCESS;
			break;
		case 10:
			hcall->control = HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 11:
			recomm.eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
			hcall->expect = HV_STATUS_SUCCESS;
			break;

		case 12:
			hcall->control = HVCALL_SEND_IPI;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 13:
			recomm.eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			hcall->expect = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		case 14:
			/* Nothing in 'sparse banks' -> success */
			hcall->control = HVCALL_SEND_IPI_EX;
			hcall->expect = HV_STATUS_SUCCESS;
			break;

		case 15:
			hcall->control = HVCALL_NOTIFY_LONG_SPIN_WAIT;
			hcall->expect = HV_STATUS_ACCESS_DENIED;
			break;
		case 16:
			recomm.ebx = 0xfff;
			hcall->expect = HV_STATUS_SUCCESS;
			break;
		case 17:
577 578 579 580 581 582 583 584 585 586 587
			/* XMM fast hypercall */
			hcall->control = HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE | HV_HYPERCALL_FAST_BIT;
			hcall->ud_expected = true;
			break;
		case 18:
			feat.edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
			hcall->ud_expected = false;
			hcall->expect = HV_STATUS_SUCCESS;
			break;

		case 19:
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
			/* END */
			hcall->control = 0;
			break;
		}

		hv_set_cpuid(vm, best, &feat, &recomm, &dbg);

		if (hcall->control)
			pr_debug("Stage %d: testing hcall: 0x%lx\n", stage,
				 hcall->control);
		else
			pr_debug("Stage %d: finish\n", stage);

		r = _vcpu_run(vm, VCPU_ID);
		TEST_ASSERT(!r, "vcpu_run failed: %d\n", r);
		TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
			    "unexpected exit reason: %u (%s)",
			    run->exit_reason, exit_reason_str(run->exit_reason));

		switch (get_ucall(vm, VCPU_ID, &uc)) {
		case UCALL_SYNC:
			TEST_ASSERT(uc.args[1] == stage,
				    "Unexpected stage: %ld (%d expected)\n",
				    uc.args[1], stage);
			break;
		case UCALL_ABORT:
			TEST_FAIL("%s at %s:%ld", (const char *)uc.args[0],
				  __FILE__, uc.args[1]);
			return;
		case UCALL_DONE:
			return;
		}

		stage++;
	}
}

int main(void)
{
	struct kvm_cpuid2 *best;
	struct kvm_vm *vm;
	vm_vaddr_t msr_gva, hcall_page, hcall_params;
	struct kvm_enable_cap cap = {
		.cap = KVM_CAP_HYPERV_ENFORCE_CPUID,
		.args = {1}
	};

	/* Test MSRs */
	vm = vm_create_default(VCPU_ID, 0, guest_msr);

638
	msr_gva = vm_vaddr_alloc_page(vm);
639 640 641 642 643 644 645 646 647 648
	memset(addr_gva2hva(vm, msr_gva), 0x0, getpagesize());
	vcpu_args_set(vm, VCPU_ID, 1, msr_gva);
	vcpu_enable_cap(vm, VCPU_ID, &cap);

	vcpu_set_hv_cpuid(vm, VCPU_ID);

	best = kvm_get_supported_hv_cpuid();

	vm_init_descriptor_tables(vm);
	vcpu_init_descriptor_tables(vm, VCPU_ID);
649
	vm_install_exception_handler(vm, GP_VECTOR, guest_gp_handler);
650 651 652 653 654 655 656 657 658

	pr_info("Testing access to Hyper-V specific MSRs\n");
	guest_test_msrs_access(vm, addr_gva2hva(vm, msr_gva),
			       best);
	kvm_vm_free(vm);

	/* Test hypercalls */
	vm = vm_create_default(VCPU_ID, 0, guest_hcall);

659 660 661 662
	vm_init_descriptor_tables(vm);
	vcpu_init_descriptor_tables(vm, VCPU_ID);
	vm_install_exception_handler(vm, UD_VECTOR, guest_ud_handler);

663
	/* Hypercall input/output */
664
	hcall_page = vm_vaddr_alloc_pages(vm, 2);
665 666
	memset(addr_gva2hva(vm, hcall_page), 0x0, 2 * getpagesize());

667
	hcall_params = vm_vaddr_alloc_page(vm);
668
	memset(addr_gva2hva(vm, hcall_params), 0x0, getpagesize());
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

	vcpu_args_set(vm, VCPU_ID, 2, addr_gva2gpa(vm, hcall_page), hcall_params);
	vcpu_enable_cap(vm, VCPU_ID, &cap);

	vcpu_set_hv_cpuid(vm, VCPU_ID);

	best = kvm_get_supported_hv_cpuid();

	pr_info("Testing access to Hyper-V hypercalls\n");
	guest_test_hcalls_access(vm, addr_gva2hva(vm, hcall_params),
				 addr_gva2hva(vm, hcall_page),
				 addr_gva2hva(vm, hcall_page) + getpagesize(),
				 best);

	kvm_vm_free(vm);
}