spi-s3c64xx.c 32.1 KB
Newer Older
G
Grant Likely 已提交
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (C) 2009 Samsung Electronics Ltd.
 *	Jaswinder Singh <jassi.brar@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>

#include <mach/dma.h>
J
Jassi Brar 已提交
30
#include <plat/s3c64xx-spi.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

/* Registers and bit-fields */

#define S3C64XX_SPI_CH_CFG		0x00
#define S3C64XX_SPI_CLK_CFG		0x04
#define S3C64XX_SPI_MODE_CFG	0x08
#define S3C64XX_SPI_SLAVE_SEL	0x0C
#define S3C64XX_SPI_INT_EN		0x10
#define S3C64XX_SPI_STATUS		0x14
#define S3C64XX_SPI_TX_DATA		0x18
#define S3C64XX_SPI_RX_DATA		0x1C
#define S3C64XX_SPI_PACKET_CNT	0x20
#define S3C64XX_SPI_PENDING_CLR	0x24
#define S3C64XX_SPI_SWAP_CFG	0x28
#define S3C64XX_SPI_FB_CLK		0x2C

#define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
#define S3C64XX_SPI_CH_SW_RST		(1<<5)
#define S3C64XX_SPI_CH_SLAVE		(1<<4)
#define S3C64XX_SPI_CPOL_L		(1<<3)
#define S3C64XX_SPI_CPHA_B		(1<<2)
#define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
#define S3C64XX_SPI_CH_TXCH_ON		(1<<0)

#define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
#define S3C64XX_SPI_CLKSEL_SRCSHFT	9
#define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
#define S3C64XX_SPI_PSR_MASK 		0xff

#define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
#define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
#define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
#define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
#define S3C64XX_SPI_MODE_4BURST			(1<<0)

#define S3C64XX_SPI_SLAVE_AUTO			(1<<1)
#define S3C64XX_SPI_SLAVE_SIG_INACT		(1<<0)

#define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)

#define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
					(c)->regs + S3C64XX_SPI_SLAVE_SEL)

#define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
#define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
#define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
#define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
#define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
#define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
#define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)

#define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR	(1<<4)
#define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
#define S3C64XX_SPI_ST_TX_UNDERRUN_ERR	(1<<2)
#define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
#define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)

#define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)

#define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
#define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
#define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
#define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
#define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)

#define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
#define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
#define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
#define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
#define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
#define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
#define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
#define S3C64XX_SPI_SWAP_TX_EN			(1<<0)

#define S3C64XX_SPI_FBCLK_MSK		(3<<0)

#define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
					(((i)->fifo_lvl_mask + 1))) \
					? 1 : 0)

118
#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & (1 << (i)->tx_st_done)) ? 1 : 0)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
#define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)

#define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
#define S3C64XX_SPI_TRAILCNT_OFF	19

#define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT

#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)

#define SUSPND    (1<<0)
#define SPIBUSY   (1<<1)
#define RXBUSY    (1<<2)
#define TXBUSY    (1<<3)

/**
 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
 * @clk: Pointer to the spi clock.
137
 * @src_clk: Pointer to the clock used to generate SPI signals.
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
 * @master: Pointer to the SPI Protocol master.
 * @workqueue: Work queue for the SPI xfer requests.
 * @cntrlr_info: Platform specific data for the controller this driver manages.
 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
 * @work: Work
 * @queue: To log SPI xfer requests.
 * @lock: Controller specific lock.
 * @state: Set of FLAGS to indicate status.
 * @rx_dmach: Controller's DMA channel for Rx.
 * @tx_dmach: Controller's DMA channel for Tx.
 * @sfr_start: BUS address of SPI controller regs.
 * @regs: Pointer to ioremap'ed controller registers.
 * @xfer_completion: To indicate completion of xfer task.
 * @cur_mode: Stores the active configuration of the controller.
 * @cur_bpw: Stores the active bits per word settings.
 * @cur_speed: Stores the active xfer clock speed.
 */
struct s3c64xx_spi_driver_data {
	void __iomem                    *regs;
	struct clk                      *clk;
158
	struct clk                      *src_clk;
159 160 161
	struct platform_device          *pdev;
	struct spi_master               *master;
	struct workqueue_struct	        *workqueue;
162
	struct s3c64xx_spi_info  *cntrlr_info;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	struct spi_device               *tgl_spi;
	struct work_struct              work;
	struct list_head                queue;
	spinlock_t                      lock;
	enum dma_ch                     rx_dmach;
	enum dma_ch                     tx_dmach;
	unsigned long                   sfr_start;
	struct completion               xfer_completion;
	unsigned                        state;
	unsigned                        cur_mode, cur_bpw;
	unsigned                        cur_speed;
};

static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
	.name = "samsung-spi-dma",
};

static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
{
182
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	void __iomem *regs = sdd->regs;
	unsigned long loops;
	u32 val;

	writel(0, regs + S3C64XX_SPI_PACKET_CNT);

	val = readl(regs + S3C64XX_SPI_CH_CFG);
	val |= S3C64XX_SPI_CH_SW_RST;
	val &= ~S3C64XX_SPI_CH_HS_EN;
	writel(val, regs + S3C64XX_SPI_CH_CFG);

	/* Flush TxFIFO*/
	loops = msecs_to_loops(1);
	do {
		val = readl(regs + S3C64XX_SPI_STATUS);
	} while (TX_FIFO_LVL(val, sci) && loops--);

200 201 202
	if (loops == 0)
		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");

203 204 205 206 207 208 209 210 211 212
	/* Flush RxFIFO*/
	loops = msecs_to_loops(1);
	do {
		val = readl(regs + S3C64XX_SPI_STATUS);
		if (RX_FIFO_LVL(val, sci))
			readl(regs + S3C64XX_SPI_RX_DATA);
		else
			break;
	} while (loops--);

213 214 215
	if (loops == 0)
		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	val = readl(regs + S3C64XX_SPI_CH_CFG);
	val &= ~S3C64XX_SPI_CH_SW_RST;
	writel(val, regs + S3C64XX_SPI_CH_CFG);

	val = readl(regs + S3C64XX_SPI_MODE_CFG);
	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
	writel(val, regs + S3C64XX_SPI_MODE_CFG);

	val = readl(regs + S3C64XX_SPI_CH_CFG);
	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
	writel(val, regs + S3C64XX_SPI_CH_CFG);
}

static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
				struct spi_device *spi,
				struct spi_transfer *xfer, int dma_mode)
{
233
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	void __iomem *regs = sdd->regs;
	u32 modecfg, chcfg;

	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);

	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;

	if (dma_mode) {
		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
	} else {
		/* Always shift in data in FIFO, even if xfer is Tx only,
		 * this helps setting PCKT_CNT value for generating clocks
		 * as exactly needed.
		 */
		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
					| S3C64XX_SPI_PACKET_CNT_EN,
					regs + S3C64XX_SPI_PACKET_CNT);
	}

	if (xfer->tx_buf != NULL) {
		sdd->state |= TXBUSY;
		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
		if (dma_mode) {
			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
261
			s3c2410_dma_config(sdd->tx_dmach, sdd->cur_bpw / 8);
262 263 264 265
			s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
						xfer->tx_dma, xfer->len);
			s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
		} else {
266 267 268 269 270 271 272 273 274 275 276 277 278 279
			switch (sdd->cur_bpw) {
			case 32:
				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
					xfer->tx_buf, xfer->len / 4);
				break;
			case 16:
				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
					xfer->tx_buf, xfer->len / 2);
				break;
			default:
				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
					xfer->tx_buf, xfer->len);
				break;
			}
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		}
	}

	if (xfer->rx_buf != NULL) {
		sdd->state |= RXBUSY;

		if (sci->high_speed && sdd->cur_speed >= 30000000UL
					&& !(sdd->cur_mode & SPI_CPHA))
			chcfg |= S3C64XX_SPI_CH_HS_EN;

		if (dma_mode) {
			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
					| S3C64XX_SPI_PACKET_CNT_EN,
					regs + S3C64XX_SPI_PACKET_CNT);
296
			s3c2410_dma_config(sdd->rx_dmach, sdd->cur_bpw / 8);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
			s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
						xfer->rx_dma, xfer->len);
			s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
		}
	}

	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
}

static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
						struct spi_device *spi)
{
	struct s3c64xx_spi_csinfo *cs;

	if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
		if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
			/* Deselect the last toggled device */
			cs = sdd->tgl_spi->controller_data;
316 317
			cs->set_level(cs->line,
					spi->mode & SPI_CS_HIGH ? 0 : 1);
318 319 320 321 322
		}
		sdd->tgl_spi = NULL;
	}

	cs = spi->controller_data;
323
	cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
324 325 326 327 328
}

static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
				struct spi_transfer *xfer, int dma_mode)
{
329
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
330 331 332 333 334 335
	void __iomem *regs = sdd->regs;
	unsigned long val;
	int ms;

	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
336
	ms += 10; /* some tolerance */
337 338 339 340 341

	if (dma_mode) {
		val = msecs_to_jiffies(ms) + 10;
		val = wait_for_completion_timeout(&sdd->xfer_completion, val);
	} else {
342
		u32 status;
343 344
		val = msecs_to_loops(ms);
		do {
345 346
			status = readl(regs + S3C64XX_SPI_STATUS);
		} while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	}

	if (!val)
		return -EIO;

	if (dma_mode) {
		u32 status;

		/*
		 * DmaTx returns after simply writing data in the FIFO,
		 * w/o waiting for real transmission on the bus to finish.
		 * DmaRx returns only after Dma read data from FIFO which
		 * needs bus transmission to finish, so we don't worry if
		 * Xfer involved Rx(with or without Tx).
		 */
		if (xfer->rx_buf == NULL) {
			val = msecs_to_loops(10);
			status = readl(regs + S3C64XX_SPI_STATUS);
			while ((TX_FIFO_LVL(status, sci)
				|| !S3C64XX_SPI_ST_TX_DONE(status, sci))
					&& --val) {
				cpu_relax();
				status = readl(regs + S3C64XX_SPI_STATUS);
			}

			if (!val)
				return -EIO;
		}
	} else {
		/* If it was only Tx */
		if (xfer->rx_buf == NULL) {
			sdd->state &= ~TXBUSY;
			return 0;
		}

382 383 384 385 386 387 388 389 390 391 392 393 394 395
		switch (sdd->cur_bpw) {
		case 32:
			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
				xfer->rx_buf, xfer->len / 4);
			break;
		case 16:
			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
				xfer->rx_buf, xfer->len / 2);
			break;
		default:
			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
				xfer->rx_buf, xfer->len);
			break;
		}
396 397 398 399 400 401 402 403 404 405 406 407 408 409
		sdd->state &= ~RXBUSY;
	}

	return 0;
}

static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
						struct spi_device *spi)
{
	struct s3c64xx_spi_csinfo *cs = spi->controller_data;

	if (sdd->tgl_spi == spi)
		sdd->tgl_spi = NULL;

410
	cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
411 412 413 414
}

static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
{
415
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
416 417 418 419
	void __iomem *regs = sdd->regs;
	u32 val;

	/* Disable Clock */
420 421 422 423 424 425 426
	if (sci->clk_from_cmu) {
		clk_disable(sdd->src_clk);
	} else {
		val = readl(regs + S3C64XX_SPI_CLK_CFG);
		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
		writel(val, regs + S3C64XX_SPI_CLK_CFG);
	}
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	/* Set Polarity and Phase */
	val = readl(regs + S3C64XX_SPI_CH_CFG);
	val &= ~(S3C64XX_SPI_CH_SLAVE |
			S3C64XX_SPI_CPOL_L |
			S3C64XX_SPI_CPHA_B);

	if (sdd->cur_mode & SPI_CPOL)
		val |= S3C64XX_SPI_CPOL_L;

	if (sdd->cur_mode & SPI_CPHA)
		val |= S3C64XX_SPI_CPHA_B;

	writel(val, regs + S3C64XX_SPI_CH_CFG);

	/* Set Channel & DMA Mode */
	val = readl(regs + S3C64XX_SPI_MODE_CFG);
	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
			| S3C64XX_SPI_MODE_CH_TSZ_MASK);

	switch (sdd->cur_bpw) {
	case 32:
		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
450
		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
451 452 453
		break;
	case 16:
		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
454
		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
455 456 457
		break;
	default:
		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
458
		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
459 460 461 462 463
		break;
	}

	writel(val, regs + S3C64XX_SPI_MODE_CFG);

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	if (sci->clk_from_cmu) {
		/* Configure Clock */
		/* There is half-multiplier before the SPI */
		clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
		/* Enable Clock */
		clk_enable(sdd->src_clk);
	} else {
		/* Configure Clock */
		val = readl(regs + S3C64XX_SPI_CLK_CFG);
		val &= ~S3C64XX_SPI_PSR_MASK;
		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
				& S3C64XX_SPI_PSR_MASK);
		writel(val, regs + S3C64XX_SPI_CLK_CFG);

		/* Enable Clock */
		val = readl(regs + S3C64XX_SPI_CLK_CFG);
		val |= S3C64XX_SPI_ENCLK_ENABLE;
		writel(val, regs + S3C64XX_SPI_CLK_CFG);
	}
483 484
}

485 486
static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
				 int size, enum s3c2410_dma_buffresult res)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	struct s3c64xx_spi_driver_data *sdd = buf_id;
	unsigned long flags;

	spin_lock_irqsave(&sdd->lock, flags);

	if (res == S3C2410_RES_OK)
		sdd->state &= ~RXBUSY;
	else
		dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);

	/* If the other done */
	if (!(sdd->state & TXBUSY))
		complete(&sdd->xfer_completion);

	spin_unlock_irqrestore(&sdd->lock, flags);
}

505 506
static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
				 int size, enum s3c2410_dma_buffresult res)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
{
	struct s3c64xx_spi_driver_data *sdd = buf_id;
	unsigned long flags;

	spin_lock_irqsave(&sdd->lock, flags);

	if (res == S3C2410_RES_OK)
		sdd->state &= ~TXBUSY;
	else
		dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);

	/* If the other done */
	if (!(sdd->state & RXBUSY))
		complete(&sdd->xfer_completion);

	spin_unlock_irqrestore(&sdd->lock, flags);
}

#define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)

static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
						struct spi_message *msg)
{
530
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	struct device *dev = &sdd->pdev->dev;
	struct spi_transfer *xfer;

	if (msg->is_dma_mapped)
		return 0;

	/* First mark all xfer unmapped */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		xfer->rx_dma = XFER_DMAADDR_INVALID;
		xfer->tx_dma = XFER_DMAADDR_INVALID;
	}

	/* Map until end or first fail */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {

546 547 548
		if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
			continue;

549
		if (xfer->tx_buf != NULL) {
550 551 552
			xfer->tx_dma = dma_map_single(dev,
					(void *)xfer->tx_buf, xfer->len,
					DMA_TO_DEVICE);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
			if (dma_mapping_error(dev, xfer->tx_dma)) {
				dev_err(dev, "dma_map_single Tx failed\n");
				xfer->tx_dma = XFER_DMAADDR_INVALID;
				return -ENOMEM;
			}
		}

		if (xfer->rx_buf != NULL) {
			xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
						xfer->len, DMA_FROM_DEVICE);
			if (dma_mapping_error(dev, xfer->rx_dma)) {
				dev_err(dev, "dma_map_single Rx failed\n");
				dma_unmap_single(dev, xfer->tx_dma,
						xfer->len, DMA_TO_DEVICE);
				xfer->tx_dma = XFER_DMAADDR_INVALID;
				xfer->rx_dma = XFER_DMAADDR_INVALID;
				return -ENOMEM;
			}
		}
	}

	return 0;
}

static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
						struct spi_message *msg)
{
580
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
581 582 583 584 585 586 587 588
	struct device *dev = &sdd->pdev->dev;
	struct spi_transfer *xfer;

	if (msg->is_dma_mapped)
		return;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {

589 590 591
		if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
			continue;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		if (xfer->rx_buf != NULL
				&& xfer->rx_dma != XFER_DMAADDR_INVALID)
			dma_unmap_single(dev, xfer->rx_dma,
						xfer->len, DMA_FROM_DEVICE);

		if (xfer->tx_buf != NULL
				&& xfer->tx_dma != XFER_DMAADDR_INVALID)
			dma_unmap_single(dev, xfer->tx_dma,
						xfer->len, DMA_TO_DEVICE);
	}
}

static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
					struct spi_message *msg)
{
607
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	struct spi_device *spi = msg->spi;
	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
	struct spi_transfer *xfer;
	int status = 0, cs_toggle = 0;
	u32 speed;
	u8 bpw;

	/* If Master's(controller) state differs from that needed by Slave */
	if (sdd->cur_speed != spi->max_speed_hz
			|| sdd->cur_mode != spi->mode
			|| sdd->cur_bpw != spi->bits_per_word) {
		sdd->cur_bpw = spi->bits_per_word;
		sdd->cur_speed = spi->max_speed_hz;
		sdd->cur_mode = spi->mode;
		s3c64xx_spi_config(sdd);
	}

	/* Map all the transfers if needed */
	if (s3c64xx_spi_map_mssg(sdd, msg)) {
		dev_err(&spi->dev,
			"Xfer: Unable to map message buffers!\n");
		status = -ENOMEM;
		goto out;
	}

	/* Configure feedback delay */
	writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {

		unsigned long flags;
		int use_dma;

		INIT_COMPLETION(sdd->xfer_completion);

		/* Only BPW and Speed may change across transfers */
		bpw = xfer->bits_per_word ? : spi->bits_per_word;
		speed = xfer->speed_hz ? : spi->max_speed_hz;

647 648 649 650 651 652 653 654
		if (xfer->len % (bpw / 8)) {
			dev_err(&spi->dev,
				"Xfer length(%u) not a multiple of word size(%u)\n",
				xfer->len, bpw / 8);
			status = -EIO;
			goto out;
		}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
			sdd->cur_bpw = bpw;
			sdd->cur_speed = speed;
			s3c64xx_spi_config(sdd);
		}

		/* Polling method for xfers not bigger than FIFO capacity */
		if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
			use_dma = 0;
		else
			use_dma = 1;

		spin_lock_irqsave(&sdd->lock, flags);

		/* Pending only which is to be done */
		sdd->state &= ~RXBUSY;
		sdd->state &= ~TXBUSY;

		enable_datapath(sdd, spi, xfer, use_dma);

		/* Slave Select */
		enable_cs(sdd, spi);

		/* Start the signals */
		S3C64XX_SPI_ACT(sdd);

		spin_unlock_irqrestore(&sdd->lock, flags);

		status = wait_for_xfer(sdd, xfer, use_dma);

		/* Quiese the signals */
		S3C64XX_SPI_DEACT(sdd);

		if (status) {
689 690
			dev_err(&spi->dev, "I/O Error: "
				"rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
				xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
				(sdd->state & RXBUSY) ? 'f' : 'p',
				(sdd->state & TXBUSY) ? 'f' : 'p',
				xfer->len);

			if (use_dma) {
				if (xfer->tx_buf != NULL
						&& (sdd->state & TXBUSY))
					s3c2410_dma_ctrl(sdd->tx_dmach,
							S3C2410_DMAOP_FLUSH);
				if (xfer->rx_buf != NULL
						&& (sdd->state & RXBUSY))
					s3c2410_dma_ctrl(sdd->rx_dmach,
							S3C2410_DMAOP_FLUSH);
			}

			goto out;
		}

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			/* Hint that the next mssg is gonna be
			   for the same device */
			if (list_is_last(&xfer->transfer_list,
						&msg->transfers))
				cs_toggle = 1;
			else
				disable_cs(sdd, spi);
		}

		msg->actual_length += xfer->len;

		flush_fifo(sdd);
	}

out:
	if (!cs_toggle || status)
		disable_cs(sdd, spi);
	else
		sdd->tgl_spi = spi;

	s3c64xx_spi_unmap_mssg(sdd, msg);

	msg->status = status;

	if (msg->complete)
		msg->complete(msg->context);
}

static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
{
	if (s3c2410_dma_request(sdd->rx_dmach,
					&s3c64xx_spi_dma_client, NULL) < 0) {
		dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
		return 0;
	}
	s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
	s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
					sdd->sfr_start + S3C64XX_SPI_RX_DATA);

	if (s3c2410_dma_request(sdd->tx_dmach,
					&s3c64xx_spi_dma_client, NULL) < 0) {
		dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
		s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
		return 0;
	}
	s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
	s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
					sdd->sfr_start + S3C64XX_SPI_TX_DATA);

	return 1;
}

static void s3c64xx_spi_work(struct work_struct *work)
{
	struct s3c64xx_spi_driver_data *sdd = container_of(work,
					struct s3c64xx_spi_driver_data, work);
	unsigned long flags;

	/* Acquire DMA channels */
	while (!acquire_dma(sdd))
		msleep(10);

	spin_lock_irqsave(&sdd->lock, flags);

	while (!list_empty(&sdd->queue)
				&& !(sdd->state & SUSPND)) {

		struct spi_message *msg;

		msg = container_of(sdd->queue.next, struct spi_message, queue);

		list_del_init(&msg->queue);

		/* Set Xfer busy flag */
		sdd->state |= SPIBUSY;

		spin_unlock_irqrestore(&sdd->lock, flags);

		handle_msg(sdd, msg);

		spin_lock_irqsave(&sdd->lock, flags);

		sdd->state &= ~SPIBUSY;
	}

	spin_unlock_irqrestore(&sdd->lock, flags);

	/* Free DMA channels */
	s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
	s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
}

static int s3c64xx_spi_transfer(struct spi_device *spi,
						struct spi_message *msg)
{
	struct s3c64xx_spi_driver_data *sdd;
	unsigned long flags;

	sdd = spi_master_get_devdata(spi->master);

	spin_lock_irqsave(&sdd->lock, flags);

	if (sdd->state & SUSPND) {
		spin_unlock_irqrestore(&sdd->lock, flags);
		return -ESHUTDOWN;
	}

	msg->status = -EINPROGRESS;
	msg->actual_length = 0;

	list_add_tail(&msg->queue, &sdd->queue);

	queue_work(sdd->workqueue, &sdd->work);

	spin_unlock_irqrestore(&sdd->lock, flags);

	return 0;
}

/*
 * Here we only check the validity of requested configuration
 * and save the configuration in a local data-structure.
 * The controller is actually configured only just before we
 * get a message to transfer.
 */
static int s3c64xx_spi_setup(struct spi_device *spi)
{
	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
	struct s3c64xx_spi_driver_data *sdd;
843
	struct s3c64xx_spi_info *sci;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	struct spi_message *msg;
	unsigned long flags;
	int err = 0;

	if (cs == NULL || cs->set_level == NULL) {
		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
		return -ENODEV;
	}

	sdd = spi_master_get_devdata(spi->master);
	sci = sdd->cntrlr_info;

	spin_lock_irqsave(&sdd->lock, flags);

	list_for_each_entry(msg, &sdd->queue, queue) {
		/* Is some mssg is already queued for this device */
		if (msg->spi == spi) {
			dev_err(&spi->dev,
				"setup: attempt while mssg in queue!\n");
			spin_unlock_irqrestore(&sdd->lock, flags);
			return -EBUSY;
		}
	}

	if (sdd->state & SUSPND) {
		spin_unlock_irqrestore(&sdd->lock, flags);
		dev_err(&spi->dev,
			"setup: SPI-%d not active!\n", spi->master->bus_num);
		return -ESHUTDOWN;
	}

	spin_unlock_irqrestore(&sdd->lock, flags);

	if (spi->bits_per_word != 8
			&& spi->bits_per_word != 16
			&& spi->bits_per_word != 32) {
		dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
							spi->bits_per_word);
		err = -EINVAL;
		goto setup_exit;
	}

	/* Check if we can provide the requested rate */
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (!sci->clk_from_cmu) {
		u32 psr, speed;

		/* Max possible */
		speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);

		if (spi->max_speed_hz > speed)
			spi->max_speed_hz = speed;

		psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
		psr &= S3C64XX_SPI_PSR_MASK;
		if (psr == S3C64XX_SPI_PSR_MASK)
			psr--;

		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
		if (spi->max_speed_hz < speed) {
			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
				psr++;
			} else {
				err = -EINVAL;
				goto setup_exit;
			}
		}
910

911 912 913 914
		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
		if (spi->max_speed_hz >= speed)
			spi->max_speed_hz = speed;
		else
915 916 917 918 919 920 921 922 923 924 925 926 927
			err = -EINVAL;
	}

setup_exit:

	/* setup() returns with device de-selected */
	disable_cs(sdd, spi);

	return err;
}

static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
{
928
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
929 930 931 932 933 934 935 936 937 938
	void __iomem *regs = sdd->regs;
	unsigned int val;

	sdd->cur_speed = 0;

	S3C64XX_SPI_DEACT(sdd);

	/* Disable Interrupts - we use Polling if not DMA mode */
	writel(0, regs + S3C64XX_SPI_INT_EN);

939 940
	if (!sci->clk_from_cmu)
		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
				regs + S3C64XX_SPI_CLK_CFG);
	writel(0, regs + S3C64XX_SPI_MODE_CFG);
	writel(0, regs + S3C64XX_SPI_PACKET_CNT);

	/* Clear any irq pending bits */
	writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
				regs + S3C64XX_SPI_PENDING_CLR);

	writel(0, regs + S3C64XX_SPI_SWAP_CFG);

	val = readl(regs + S3C64XX_SPI_MODE_CFG);
	val &= ~S3C64XX_SPI_MODE_4BURST;
	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
	writel(val, regs + S3C64XX_SPI_MODE_CFG);

	flush_fifo(sdd);
}

static int __init s3c64xx_spi_probe(struct platform_device *pdev)
{
	struct resource	*mem_res, *dmatx_res, *dmarx_res;
	struct s3c64xx_spi_driver_data *sdd;
964
	struct s3c64xx_spi_info *sci;
965 966 967 968 969 970 971 972 973 974 975 976 977 978
	struct spi_master *master;
	int ret;

	if (pdev->id < 0) {
		dev_err(&pdev->dev,
				"Invalid platform device id-%d\n", pdev->id);
		return -ENODEV;
	}

	if (pdev->dev.platform_data == NULL) {
		dev_err(&pdev->dev, "platform_data missing!\n");
		return -ENODEV;
	}

979 980 981 982 983 984 985
	sci = pdev->dev.platform_data;
	if (!sci->src_clk_name) {
		dev_err(&pdev->dev,
			"Board init must call s3c64xx_spi_set_info()\n");
		return -EINVAL;
	}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/* Check for availability of necessary resource */

	dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
	if (dmatx_res == NULL) {
		dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
		return -ENXIO;
	}

	dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
	if (dmarx_res == NULL) {
		dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
		return -ENXIO;
	}

	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (mem_res == NULL) {
		dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
		return -ENXIO;
	}

	master = spi_alloc_master(&pdev->dev,
				sizeof(struct s3c64xx_spi_driver_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, master);

	sdd = spi_master_get_devdata(master);
	sdd->master = master;
	sdd->cntrlr_info = sci;
	sdd->pdev = pdev;
	sdd->sfr_start = mem_res->start;
	sdd->tx_dmach = dmatx_res->start;
	sdd->rx_dmach = dmarx_res->start;

	sdd->cur_bpw = 8;

	master->bus_num = pdev->id;
	master->setup = s3c64xx_spi_setup;
	master->transfer = s3c64xx_spi_transfer;
	master->num_chipselect = sci->num_cs;
	master->dma_alignment = 8;
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;

	if (request_mem_region(mem_res->start,
			resource_size(mem_res), pdev->name) == NULL) {
		dev_err(&pdev->dev, "Req mem region failed\n");
		ret = -ENXIO;
		goto err0;
	}

	sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
	if (sdd->regs == NULL) {
		dev_err(&pdev->dev, "Unable to remap IO\n");
		ret = -ENXIO;
		goto err1;
	}

	if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
		dev_err(&pdev->dev, "Unable to config gpio\n");
		ret = -EBUSY;
		goto err2;
	}

	/* Setup clocks */
	sdd->clk = clk_get(&pdev->dev, "spi");
	if (IS_ERR(sdd->clk)) {
		dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
		ret = PTR_ERR(sdd->clk);
		goto err3;
	}

	if (clk_enable(sdd->clk)) {
		dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
		ret = -EBUSY;
		goto err4;
	}

1067 1068
	sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
	if (IS_ERR(sdd->src_clk)) {
1069 1070
		dev_err(&pdev->dev,
			"Unable to acquire clock '%s'\n", sci->src_clk_name);
1071
		ret = PTR_ERR(sdd->src_clk);
1072 1073 1074
		goto err5;
	}

1075
	if (clk_enable(sdd->src_clk)) {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
							sci->src_clk_name);
		ret = -EBUSY;
		goto err6;
	}

	sdd->workqueue = create_singlethread_workqueue(
						dev_name(master->dev.parent));
	if (sdd->workqueue == NULL) {
		dev_err(&pdev->dev, "Unable to create workqueue\n");
		ret = -ENOMEM;
		goto err7;
	}

	/* Setup Deufult Mode */
	s3c64xx_spi_hwinit(sdd, pdev->id);

	spin_lock_init(&sdd->lock);
	init_completion(&sdd->xfer_completion);
	INIT_WORK(&sdd->work, s3c64xx_spi_work);
	INIT_LIST_HEAD(&sdd->queue);

	if (spi_register_master(master)) {
		dev_err(&pdev->dev, "cannot register SPI master\n");
		ret = -EBUSY;
		goto err8;
	}

1104 1105
	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
					"with %d Slaves attached\n",
1106
					pdev->id, master->num_chipselect);
1107
	dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
1108 1109 1110 1111 1112 1113 1114 1115
					mem_res->end, mem_res->start,
					sdd->rx_dmach, sdd->tx_dmach);

	return 0;

err8:
	destroy_workqueue(sdd->workqueue);
err7:
1116
	clk_disable(sdd->src_clk);
1117
err6:
1118
	clk_put(sdd->src_clk);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
err5:
	clk_disable(sdd->clk);
err4:
	clk_put(sdd->clk);
err3:
err2:
	iounmap((void *) sdd->regs);
err1:
	release_mem_region(mem_res->start, resource_size(mem_res));
err0:
	platform_set_drvdata(pdev, NULL);
	spi_master_put(master);

	return ret;
}

static int s3c64xx_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
	struct resource	*mem_res;
	unsigned long flags;

	spin_lock_irqsave(&sdd->lock, flags);
	sdd->state |= SUSPND;
	spin_unlock_irqrestore(&sdd->lock, flags);

	while (sdd->state & SPIBUSY)
		msleep(10);

	spi_unregister_master(master);

	destroy_workqueue(sdd->workqueue);

1153 1154
	clk_disable(sdd->src_clk);
	clk_put(sdd->src_clk);
1155 1156 1157 1158 1159 1160 1161

	clk_disable(sdd->clk);
	clk_put(sdd->clk);

	iounmap((void *) sdd->regs);

	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1162 1163
	if (mem_res != NULL)
		release_mem_region(mem_res->start, resource_size(mem_res));
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	platform_set_drvdata(pdev, NULL);
	spi_master_put(master);

	return 0;
}

#ifdef CONFIG_PM
static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
	unsigned long flags;

	spin_lock_irqsave(&sdd->lock, flags);
	sdd->state |= SUSPND;
	spin_unlock_irqrestore(&sdd->lock, flags);

	while (sdd->state & SPIBUSY)
		msleep(10);

	/* Disable the clock */
1186
	clk_disable(sdd->src_clk);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	clk_disable(sdd->clk);

	sdd->cur_speed = 0; /* Output Clock is stopped */

	return 0;
}

static int s3c64xx_spi_resume(struct platform_device *pdev)
{
	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1198
	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1199 1200 1201 1202 1203
	unsigned long flags;

	sci->cfg_gpio(pdev);

	/* Enable the clock */
1204
	clk_enable(sdd->src_clk);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	clk_enable(sdd->clk);

	s3c64xx_spi_hwinit(sdd, pdev->id);

	spin_lock_irqsave(&sdd->lock, flags);
	sdd->state &= ~SUSPND;
	spin_unlock_irqrestore(&sdd->lock, flags);

	return 0;
}
#else
#define s3c64xx_spi_suspend	NULL
#define s3c64xx_spi_resume	NULL
#endif /* CONFIG_PM */

static struct platform_driver s3c64xx_spi_driver = {
	.driver = {
		.name	= "s3c64xx-spi",
		.owner = THIS_MODULE,
	},
	.remove = s3c64xx_spi_remove,
	.suspend = s3c64xx_spi_suspend,
	.resume = s3c64xx_spi_resume,
};
MODULE_ALIAS("platform:s3c64xx-spi");

static int __init s3c64xx_spi_init(void)
{
	return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
}
1235
subsys_initcall(s3c64xx_spi_init);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

static void __exit s3c64xx_spi_exit(void)
{
	platform_driver_unregister(&s3c64xx_spi_driver);
}
module_exit(s3c64xx_spi_exit);

MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
MODULE_LICENSE("GPL");