f_fs.c 87.4 KB
Newer Older
1
/*
2
 * f_fs.c -- user mode file system API for USB composite function controllers
3 4
 *
 * Copyright (C) 2010 Samsung Electronics
5
 * Author: Michal Nazarewicz <mina86@mina86.com>
6
 *
7
 * Based on inode.c (GadgetFS) which was:
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
22
#include <linux/pagemap.h>
23
#include <linux/export.h>
24
#include <linux/hid.h>
25
#include <linux/module.h>
26
#include <linux/sched/signal.h>
27
#include <linux/uio.h>
28 29 30 31 32
#include <asm/unaligned.h>

#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

33 34
#include <linux/aio.h>
#include <linux/mmu_context.h>
35
#include <linux/poll.h>
36
#include <linux/eventfd.h>
37

38
#include "u_fs.h"
39
#include "u_f.h"
40
#include "u_os_desc.h"
41
#include "configfs.h"
42 43 44 45 46 47 48

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
49 50
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
51 52 53 54 55

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

56
/* Called with ffs->mutex held; take over ownership of data. */
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


86 87 88 89 90 91 92 93
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


94 95 96 97 98 99 100 101 102
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
103
static bool ffs_func_req_match(struct usb_function *,
104 105
			       const struct usb_ctrlrequest *,
			       bool config0);
106 107 108 109 110 111 112 113 114 115 116 117 118 119
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

120 121
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

137 138 139
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191
	 */
192 193
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194

195 196 197 198 199 200 201 202
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

203 204 205 206 207 208
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

209 210 211 212 213 214 215
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
216 217 218
	struct iov_iter data;
	const void *to_free;
	char *buf;
219 220 221 222 223 224

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
225 226

	struct ffs_data *ffs;
227 228
};

229 230 231 232 233 234
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

235 236 237
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
238
static struct dentry *
239
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
240
		   const struct file_operations *fops);
241

242 243 244
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
245
EXPORT_SYMBOL_GPL(ffs_lock);
246

247 248 249
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
250 251 252 253
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
254 255 256 257 258

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
259
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 261 262 263 264 265 266 267 268
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

269
	complete(&ffs->ep0req_completion);
270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

284 285 286 287 288 289 290 291
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

292
	reinit_completion(&ffs->ep0req_completion);
293 294 295 296 297 298 299 300 301 302 303 304

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
305
	return req->status ? req->status : req->actual;
306 307 308 309 310
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
311
		pr_vdebug("ep0 stall\n");
312 313 314 315
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
316
		pr_debug("bogus ep0 stall!\n");
317 318 319 320 321 322 323 324 325 326 327 328 329 330
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
331
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
350
		if (IS_ERR(data)) {
351 352 353 354 355 356
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
357
			pr_info("read descriptors\n");
358 359 360 361 362 363 364
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
365
			pr_info("read strings\n");
366 367 368 369 370 371 372 373 374 375 376 377 378
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

379
			ret = ffs_ready(ffs);
380 381 382 383 384 385 386 387 388 389 390
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
391 392 393 394
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
395
		spin_lock_irq(&ffs->ev.waitq.lock);
396
		switch (ffs_setup_state_clear_cancelled(ffs)) {
397
		case FFS_SETUP_CANCELLED:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
422
		if (IS_ERR(data)) {
423 424 425 426 427 428
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

429 430
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
431
		 * but the state of setup could have changed from
432
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433
		 * to check for that.  If that happened we copied data
434 435 436
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
437 438
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
439 440
		 * mutex.
		 */
441 442
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

462
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 464 465
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
{
466
	/*
467 468 469
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
470
	 */
471 472
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
473 474
	unsigned i = 0;

475
	memset(events, 0, size);
476 477 478 479 480 481 482 483 484

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

485 486
	ffs->ev.count -= n;
	if (ffs->ev.count)
487 488 489 490 491 492
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

493
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 495 496 497 498 499 500 501 502 503 504 505 506
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
507
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 509 510 511 512 513 514 515 516 517 518 519 520
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

521 522 523 524
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
525 526
	spin_lock_irq(&ffs->ev.waitq.lock);

527
	switch (ffs_setup_state_clear_cancelled(ffs)) {
528
	case FFS_SETUP_CANCELLED:
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

544 545
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
			ret = -EINTR;
			break;
		}

		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
575 576
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
577 578 579 580 581 582
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
583
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636
	} else if (gadget && gadget->ops->ioctl) {
637 638 639 640 641 642 643 644
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
{
	struct ffs_data *ffs = file->private_data;
	unsigned int mask = POLLWRNORM;
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		mask |= POLLOUT;
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
				mask |= POLLIN;
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
			mask |= (POLLIN | POLLOUT);
			break;
		}
	case FFS_CLOSING:
		break;
677 678
	case FFS_DEACTIVATED:
		break;
679 680 681 682 683 684 685
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

686 687 688 689 690 691 692 693
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
694
	.poll =		ffs_ep0_poll,
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
737 738 739 740 741
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
742 743 744 745 746 747 748 749 750 751 752
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

753 754 755 756 757 758
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
759
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 761 762

	if (io_data->read && ret > 0) {
		use_mm(io_data->mm);
763
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 765 766
		unuse_mm(io_data->mm);
	}

767
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768

769
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 771
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

772 773 774
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
775
		kfree(io_data->to_free);
776 777 778 779 780 781 782 783
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
784
	struct ffs_data *ffs = io_data->ffs;
785 786 787 788

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
789
	queue_work(ffs->io_completion_wq, &io_data->work);
790 791
}

792 793 794 795 796 797 798 799 800 801 802
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

803 804 805 806
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
807 808 809 810 811 812
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813
	ssize_t ret;
814
	if (!buf || buf == READ_BUFFER_DROP)
815 816 817 818 819
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
820 821 822 823
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
824 825 826 827 828
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
829 830 831 832

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 857
	if (!buf)
		return -ENOMEM;
858 859 860
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
861 862 863 864 865 866 867 868 869

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
870 871 872 873

	return ret;
}

874
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 876
{
	struct ffs_epfile *epfile = file->private_data;
877
	struct usb_request *req;
878 879
	struct ffs_ep *ep;
	char *data = NULL;
880
	ssize_t ret, data_len = -EINVAL;
881 882
	int halt;

883
	/* Are we still active? */
884 885
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
886

887 888 889
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
890 891
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
892

893 894
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
895 896
		if (ret)
			return -EINTR;
897
	}
898

899
	/* Do we halt? */
900
	halt = (!io_data->read == !epfile->in);
901 902
	if (halt && epfile->isoc)
		return -EINVAL;
903

904 905 906 907 908
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

909 910
	/* Allocate & copy */
	if (!halt) {
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

926 927
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
928 929
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
930
		 */
931
		gadget = epfile->ffs->gadget;
932

933 934 935
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
936 937
			ret = -ESHUTDOWN;
			goto error_lock;
938
		}
939
		data_len = iov_iter_count(&io_data->data);
940 941 942 943
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
944 945
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
946
		spin_unlock_irq(&epfile->ffs->eps_lock);
947 948

		data = kmalloc(data_len, GFP_KERNEL);
949 950 951 952 953
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
954
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
955 956
			ret = -EFAULT;
			goto error_mutex;
957 958
		}
	}
959

960
	spin_lock_irq(&epfile->ffs->eps_lock);
961

962 963 964 965
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
966 967 968
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
969
	} else if (unlikely(data_len == -EINVAL)) {
970 971 972 973 974 975 976 977 978 979 980
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
981 982 983 984
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
985
		bool interrupted = false;
986

987 988 989
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
990

991 992
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
993

994 995 996
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
997

998
		spin_unlock_irq(&epfile->ffs->eps_lock);
999

1000
		if (unlikely(wait_for_completion_interruptible(&done))) {
1001 1002 1003 1004 1005 1006
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1007
			usb_ep_dequeue(ep->ep, req);
1008
			interrupted = ep->status < 0;
1009
		}
1010

1011 1012 1013
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1014 1015
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1016 1017
		else
			ret = ep->status;
1018 1019 1020 1021 1022 1023
		goto error_mutex;
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1024

1025 1026 1027 1028
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1029

1030 1031
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1032

1033 1034 1035 1036
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1037 1038
		}

1039 1040 1041 1042 1043 1044 1045
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1046 1047 1048

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1049
error_mutex:
1050
	mutex_unlock(&epfile->mutex);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
	int value;

	ENTER();

	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
		value = -EINVAL;

	spin_unlock_irq(&epfile->ffs->eps_lock);

	return value;
}

1092
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093
{
1094
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1095
	ssize_t res;
1096 1097 1098

	ENTER();

1099 1100 1101 1102 1103 1104 1105 1106
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1107

1108 1109 1110 1111
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1112

1113
	kiocb->private = p;
1114

1115 1116
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117

1118 1119 1120 1121 1122 1123 1124
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1125
	return res;
1126 1127
}

1128
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129
{
1130
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1131
	ssize_t res;
1132 1133 1134

	ENTER();

1135 1136 1137 1138 1139 1140 1141
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1142 1143
	}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1157

1158
	kiocb->private = p;
1159

1160 1161
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1172 1173
	}
	return res;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1183
	__ffs_epfile_read_buffer_free(epfile);
1184 1185 1186 1187 1188 1189 1190 1191 1192
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1193
	struct ffs_ep *ep;
1194 1195 1196 1197 1198 1199 1200
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1201 1202 1203 1204 1205 1206
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1207 1208
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1209 1210 1211 1212
		if (ret)
			return -EINTR;
	}

1213
	spin_lock_irq(&epfile->ffs->eps_lock);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1243
			break;
1244 1245
		case USB_SPEED_HIGH:
			desc_idx = 1;
1246 1247
			break;
		default:
1248
			desc_idx = 0;
1249
		}
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
		ret = copy_to_user((void *)value, desc, desc->bLength);
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1270 1271
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1272 1273 1274 1275 1276 1277 1278 1279
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
};


/* File system and super block operations ***********************************/

/*
1280
 * Mounting the file system creates a controller file, used first for
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1297
		struct timespec ts = current_time(inode);
1298

1299
		inode->i_ino	 = get_next_ino();
1300 1301 1302
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1303 1304 1305
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1317
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1318
					const char *name, void *data,
A
Al Viro 已提交
1319
					const struct file_operations *fops)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1338
	return dentry;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1351
	bool no_disconnect;
A
Al Viro 已提交
1352
	struct ffs_data *ffs_data;
1353 1354 1355 1356 1357 1358
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1359
	struct ffs_data	*ffs = data->ffs_data;
1360 1361 1362 1363

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1364
	data->ffs_data       = NULL;
1365
	sb->s_fs_info        = ffs;
1366 1367
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1378 1379
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1380
		return -ENOMEM;
1381 1382 1383

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1384
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1385
		return -ENOMEM;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1399
		char *eq, *comma;
1400 1401 1402 1403 1404 1405 1406 1407 1408

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1409
			pr_err("'=' missing in %s\n", opts);
1410 1411 1412 1413 1414
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1415
		if (kstrtoul(eq + 1, 0, &value)) {
1416
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1417 1418 1419 1420 1421
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1422 1423 1424 1425 1426 1427
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1447 1448 1449 1450 1451 1452
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1453
			} else if (!memcmp(opts, "gid", 3)) {
1454 1455 1456 1457 1458
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1459
			} else {
1460
				goto invalid;
1461
			}
1462 1463 1464 1465
			break;

		default:
invalid:
1466
			pr_err("%s: invalid option\n", opts);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1481 1482 1483
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1484 1485 1486 1487
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1488 1489
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1490 1491
		},
		.root_mode = S_IFDIR | 0500,
1492
		.no_disconnect = false,
1493
	};
1494
	struct dentry *rv;
1495
	int ret;
1496
	void *ffs_dev;
A
Al Viro 已提交
1497
	struct ffs_data	*ffs;
1498 1499 1500 1501 1502

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1503
		return ERR_PTR(ret);
1504

1505
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1506 1507 1508
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1509
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1510 1511 1512 1513 1514 1515 1516

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1517
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1518 1519 1520 1521 1522 1523
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1524 1525

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1526
	if (IS_ERR(rv) && data.ffs_data) {
1527
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1528 1529
		ffs_data_put(data.ffs_data);
	}
1530
	return rv;
1531 1532 1533 1534 1535 1536 1537 1538
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1539
	if (sb->s_fs_info) {
1540
		ffs_release_dev(sb->s_fs_info);
1541
		ffs_data_closed(sb->s_fs_info);
1542
		ffs_data_put(sb->s_fs_info);
1543
	}
1544 1545 1546 1547 1548
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1549
	.mount		= ffs_fs_mount,
1550 1551
	.kill_sb	= ffs_fs_kill_sb,
};
1552
MODULE_ALIAS_FS("functionfs");
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1565
		pr_info("file system registered\n");
1566
	else
1567
		pr_err("failed registering file system (%d)\n", ret);
1568 1569 1570 1571 1572 1573 1574 1575

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1576
	pr_info("unloading\n");
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1590
	refcount_inc(&ffs->ref);
1591 1592 1593 1594 1595 1596
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1597
	refcount_inc(&ffs->ref);
1598 1599 1600 1601 1602
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1603 1604 1605 1606 1607 1608
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1609
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1610
		pr_info("%s(): freeing\n", __func__);
1611
		ffs_data_clear(ffs);
1612
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1613 1614
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1615
		destroy_workqueue(ffs->io_completion_wq);
1616
		kfree(ffs->dev_name);
1617 1618 1619 1620 1621 1622 1623 1624 1625
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1641 1642 1643 1644 1645 1646 1647
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1648
static struct ffs_data *ffs_data_new(const char *dev_name)
1649 1650 1651
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1652
		return NULL;
1653 1654 1655

	ENTER();

1656 1657 1658 1659 1660 1661
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1662
	refcount_set(&ffs->ref, 1);
1663 1664 1665 1666 1667
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1668
	init_waitqueue_head(&ffs->wait);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1681
	ffs_closed(ffs);
1682 1683 1684 1685 1686 1687

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1688 1689 1690
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1691
	kfree(ffs->raw_descs_data);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1703
	ffs->raw_descs_data = NULL;
1704 1705 1706 1707 1708 1709 1710
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1711
	ffs->ss_descs_count = 0;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1727 1728
	struct usb_gadget_strings **lang;
	int first_id;
1729 1730 1731 1732 1733 1734 1735

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1736 1737 1738
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1739 1740 1741 1742 1743 1744 1745

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1746
	lang = ffs->stringtabs;
1747 1748 1749 1750 1751 1752 1753
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1754 1755 1756
	}

	ffs->gadget = cdev->gadget;
1757
	ffs_data_get(ffs);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1769
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1770
		ffs_data_put(ffs);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1782
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1783 1784 1785 1786 1787 1788 1789
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1790
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1791
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1792
		else
1793 1794
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1795 1796 1797
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1814
		BUG_ON(mutex_is_locked(&epfile->mutex));
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1832
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1833
	while (count--) {
1834 1835 1836 1837
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1838 1839

		if (epfile) {
1840 1841
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1842 1843
			++epfile;
		}
1844
	}
1845
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1858
	while(count--) {
1859
		struct usb_endpoint_descriptor *ds;
1860 1861
		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
		int needs_comp_desc = false;
1862 1863
		int desc_idx;

1864
		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1865
			desc_idx = 2;
1866 1867
			needs_comp_desc = true;
		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
			desc_idx = 1;
		else
			desc_idx = 0;

		/* fall-back to lower speed if desc missing for current speed */
		do {
			ds = ep->descs[desc_idx];
		} while (!ds && --desc_idx >= 0);

		if (!ds) {
			ret = -EINVAL;
			break;
		}
1881 1882

		ep->ep->driver_data = ep;
1883
		ep->ep->desc = ds;
1884

1885 1886 1887 1888
		if (needs_comp_desc) {
			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
					USB_DT_ENDPOINT_SIZE);
			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1889
			ep->ep->comp_desc = comp_desc;
1890
		}
1891

1892
		ret = usb_ep_enable(ep->ep);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		if (likely(!ret)) {
			epfile->ep = ep;
			epfile->in = usb_endpoint_dir_in(ds);
			epfile->isoc = usb_endpoint_xfer_isoc(ds);
		} else {
			break;
		}

		++ep;
		++epfile;
1903
	}
1904 1905

	wake_up_interruptible(&ffs->wait);
1906 1907 1908 1909 1910 1911 1912 1913
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1914 1915
/*
 * This validates if data pointed by data is a valid USB descriptor as
1916
 * well as record how many interfaces, endpoints and strings are
1917 1918 1919
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1920 1921 1922 1923 1924

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1925 1926 1927 1928
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1929 1930 1931 1932 1933
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1934 1935 1936 1937
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1938 1939 1940
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
					   void *priv)
1941 1942 1943 1944 1945 1946 1947 1948 1949
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1950
		pr_vdebug("descriptor too short\n");
1951 1952 1953 1954 1955 1956
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1957
		pr_vdebug("descriptor longer then available data\n");
1958 1959 1960 1961 1962 1963 1964
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1965
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1966
		if (unlikely(!__entity_check_ ##type(val))) {		\
1967
			pr_vdebug("invalid entity's value\n");		\
1968 1969 1970 1971
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1972
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1973
				 (val), ret);				\
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1985
		pr_vdebug("descriptor reserved for gadget: %d\n",
1986
		      _ds->bDescriptorType);
1987 1988 1989 1990
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1991
		pr_vdebug("interface descriptor\n");
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
2003
		pr_vdebug("endpoint descriptor\n");
2004 2005 2006 2007 2008 2009 2010
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2011 2012 2013 2014 2015 2016
	case HID_DT_HID:
		pr_vdebug("hid descriptor\n");
		if (length != sizeof(struct hid_descriptor))
			goto inv_length;
		break;

2017 2018 2019 2020 2021 2022 2023
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2024
		pr_vdebug("interface association descriptor\n");
2025 2026 2027 2028 2029 2030 2031
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2032 2033 2034 2035 2036 2037
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2038 2039 2040 2041 2042 2043
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2044
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2045 2046 2047 2048
		return -EINVAL;

	default:
		/* We should never be here */
2049
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2050 2051
		return -EINVAL;

2052
inv_length:
2053
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2054
			  _ds->bLength, _ds->bDescriptorType);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2081
		/* Record "descriptor" entity */
2082 2083
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2084
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2085
				 num, ret);
2086 2087 2088 2089 2090 2091
			return ret;
		}

		if (!data)
			return _len - len;

2092
		ret = ffs_do_single_desc(data, len, entity, priv);
2093
		if (unlikely(ret < 0)) {
2094
			pr_debug("%s returns %d\n", __func__, ret);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2108 2109
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2110 2111 2112 2113 2114 2115 2116 2117

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2118 2119
		/*
		 * Interfaces are indexed from zero so if we
2120
		 * encountered interface "n" then there are at least
2121 2122
		 * "n+1" interfaces.
		 */
2123 2124
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2125 2126 2127
		break;

	case FFS_STRING:
2128
		/*
2129 2130
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2131
		 */
2132 2133
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2134 2135 2136
		break;

	case FFS_ENDPOINT:
2137 2138
		d = (void *)desc;
		helper->eps_count++;
2139
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2140 2141 2142 2143 2144 2145 2146 2147
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2148 2149 2150 2151 2152 2153
		break;
	}

	return 0;
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2290
		    !d->Reserved1)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2307 2308
		if (len < length)
			return -EINVAL;
2309 2310 2311 2312 2313 2314 2315 2316
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2317 2318 2319 2320 2321
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2341 2342 2343
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2344
	char *data = _data, *raw_descs;
2345
	unsigned os_descs_count = 0, counts[3], flags;
2346
	int ret = -EINVAL, i;
2347
	struct ffs_desc_helper helper;
2348 2349 2350

	ENTER();

2351
	if (get_unaligned_le32(data + 4) != len)
2352 2353
		goto error;

2354 2355 2356 2357 2358 2359 2360 2361
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2362
		ffs->user_flags = flags;
2363 2364
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2365
			      FUNCTIONFS_HAS_SS_DESC |
2366
			      FUNCTIONFS_HAS_MS_OS_DESC |
2367
			      FUNCTIONFS_VIRTUAL_ADDR |
2368
			      FUNCTIONFS_EVENTFD |
2369 2370
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2371
			ret = -ENOSYS;
2372 2373
			goto error;
		}
2374 2375 2376 2377 2378
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2379 2380
	}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2395 2396 2397 2398 2399
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2400
			goto error;
2401 2402 2403 2404
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2405
		}
2406
	}
2407
	if (flags & (1 << i)) {
2408 2409 2410
		if (len < 4) {
			goto error;
		}
2411 2412 2413 2414
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2415

2416 2417
	/* Read descriptors */
	raw_descs = data;
2418
	helper.ffs = ffs;
2419 2420 2421
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2422 2423
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2424
		ret = ffs_do_descs(counts[i], data, len,
2425
				   __ffs_data_do_entity, &helper);
2426
		if (ret < 0)
2427
			goto error;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2441 2442
		data += ret;
		len  -= ret;
2443
	}
2444 2445 2446 2447 2448 2449 2450 2451
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2452

2453 2454 2455 2456
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2457

2458 2459 2460 2461 2462 2463
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2464
	ffs->ms_os_descs_count	= os_descs_count;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2479
	struct usb_string *s;
2480 2481 2482

	ENTER();

2483 2484
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2499 2500 2501 2502
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2503 2504 2505 2506 2507
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2508
	/* Allocate everything in one chunk so there's less maintenance. */
2509 2510
	{
		unsigned i = 0;
2511 2512 2513 2514 2515 2516
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2517

2518 2519 2520
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2521 2522 2523 2524
			kfree(_data);
			return -ENOMEM;
		}

2525 2526 2527
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2528 2529 2530 2531 2532 2533
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2534 2535 2536 2537
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2563 2564 2565 2566 2567
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2568
			if (likely(needed)) {
2569 2570
				/*
				 * s->id will be set while adding
2571
				 * function to configuration so for
2572 2573
				 * now just leave garbage here.
				 */
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2615 2616 2617 2618
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2619 2620
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2621 2622
	 * the source does nothing.
	 */
2623
	if (ffs->setup_state == FFS_SETUP_PENDING)
2624
		ffs->setup_state = FFS_SETUP_CANCELLED;
2625

2626 2627 2628 2629 2630 2631 2632
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2633 2634 2635
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2636
		/* FALL THROUGH */
2637 2638 2639
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2640
		/* Discard all similar events */
2641 2642 2643 2644 2645 2646
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2647
		/* Discard everything other then power management. */
2648 2649 2650 2651 2652 2653
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2654 2655
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2656 2657 2658 2659 2660 2661 2662 2663 2664
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2665
				pr_vdebug("purging event %d\n", *ev);
2666 2667 2668
		ffs->ev.count = out - ffs->ev.types;
	}

2669
	pr_vdebug("adding event %d\n", type);
2670 2671
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2672 2673
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2697 2698 2699 2700 2701 2702 2703
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2704 2705
	unsigned ep_desc_id;
	int idx;
2706
	static const char *speed_names[] = { "full", "high", "super" };
2707 2708 2709 2710

	if (type != FFS_DESCRIPTOR)
		return 0;

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2722
		func->function.hs_descriptors[(long)valuep] = desc;
2723 2724
	} else {
		ep_desc_id = 0;
2725
		func->function.fs_descriptors[(long)valuep]    = desc;
2726
	}
2727 2728 2729 2730

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2731 2732 2733 2734
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2735 2736
	ffs_ep = func->eps + idx;

2737 2738 2739
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2740
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2741 2742
		return -EINVAL;
	}
2743
	ffs_ep->descs[ep_desc_id] = ds;
2744 2745 2746 2747 2748 2749 2750 2751 2752

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2753
		u8 bEndpointAddress;
2754

2755 2756 2757 2758 2759
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2760
		pr_vdebug("autoconfig\n");
2761 2762 2763
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2764
		ep->driver_data = func->eps + idx;
2765 2766 2767 2768 2769 2770 2771 2772 2773

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2774 2775 2776 2777 2778 2779
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2817 2818 2819 2820
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2836
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2837 2838 2839 2840
	*valuep = newValue;
	return 0;
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
		ext_prop->data_len = le32_to_cpu(*(u32 *)
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2969 2970 2971 2972 2973 2974 2975
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
	const int high = gadget_is_dualspeed(func->gadget) &&
		func->ffs->hs_descs_count;
2976 2977
	const int super = gadget_is_superspeed(func->gadget) &&
		func->ffs->ss_descs_count;
2978

2979
	int fs_len, hs_len, ss_len, ret, i;
2980
	struct ffs_ep *eps_ptr;
2981 2982

	/* Make it a single chunk, less management later on */
2983 2984 2985 2986 2987 2988
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
2989 2990
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
2991
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3004
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3005
	char *vlabuf;
3006 3007 3008

	ENTER();

3009 3010
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3011 3012
		return -ENOTSUPP;

3013
	/* Allocate a single chunk, less management later on */
3014
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3015
	if (unlikely(!vlabuf))
3016 3017
		return -ENOMEM;

3018 3019 3020 3021 3022 3023
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3024 3025 3026
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3027

3028
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3029 3030 3031
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3032

3033 3034 3035 3036 3037
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3038

3039 3040
	/*
	 * Go through all the endpoint descriptors and allocate
3041
	 * endpoints first, so that later we can rewrite the endpoint
3042 3043
	 * numbers without worrying that it may be described later on.
	 */
3044
	if (likely(full)) {
3045
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3046 3047 3048 3049 3050 3051
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3052
			goto error;
3053
		}
3054
	} else {
3055
		fs_len = 0;
3056 3057 3058
	}

	if (likely(high)) {
3059
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3074
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3075 3076 3077
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3078 3079
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3080
			goto error;
3081 3082 3083
		}
	} else {
		ss_len = 0;
3084 3085
	}

3086 3087 3088 3089 3090
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3091
	ret = ffs_do_descs(ffs->fs_descs_count +
3092 3093
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3094
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3095 3096 3097 3098
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3099
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3100
	if (c->cdev->use_os_string) {
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3111 3112 3113 3114 3115 3116 3117 3118 3119
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3120 3121 3122
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3123 3124 3125 3126 3127 3128 3129 3130 3131
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3132 3133 3134 3135
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3136 3137
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3138 3139 3140 3141

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3142 3143 3144 3145 3146
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3147 3148
}

3149 3150 3151

/* Other USB function hooks *************************************************/

3152 3153 3154 3155 3156 3157 3158
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3175 3176 3177 3178 3179 3180 3181
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3213 3214 3215 3216 3217
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3218

3219 3220
	/*
	 * Most requests directed to interface go through here
3221 3222 3223 3224
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3225 3226 3227
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3228
	 */
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3243 3244
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3245 3246 3247
		break;

	default:
3248 3249 3250 3251
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

	return 0;
}

3263
static bool ffs_func_req_match(struct usb_function *f,
3264 3265
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3266 3267 3268
{
	struct ffs_function *func = ffs_func_from_usb(f);

3269
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3270 3271
		return false;

3272 3273
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3274 3275
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3276
	case USB_RECIP_ENDPOINT:
3277 3278
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3279 3280 3281 3282 3283 3284
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3298
/* Endpoint and interface numbers reverse mapping ***************************/
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3320 3321 3322 3323
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3324
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3325 3326 3327
{
	struct ffs_dev *dev;

3328 3329 3330
	if (!name)
		return NULL;

3331 3332 3333 3334
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3335

3336 3337 3338 3339 3340 3341
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3342
static struct ffs_dev *_ffs_get_single_dev(void)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3358
static struct ffs_dev *_ffs_find_dev(const char *name)
3359 3360 3361
{
	struct ffs_dev *dev;

3362
	dev = _ffs_get_single_dev();
3363 3364 3365
	if (dev)
		return dev;

3366
	return _ffs_do_find_dev(name);
3367 3368
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3388
static const struct config_item_type ffs_func_type = {
3389 3390 3391 3392 3393
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3394 3395 3396 3397 3398 3399 3400 3401
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3402
	_ffs_free_dev(opts->dev);
3403 3404 3405 3406
	ffs_dev_unlock();
	kfree(opts);
}

3407 3408
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3409
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3410
		return -ENAMETOOLONG;
3411
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3412 3413
}

3414 3415 3416 3417 3418 3419 3420 3421 3422
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3423
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3424 3425
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3426
	dev = _ffs_alloc_dev();
3427 3428 3429 3430 3431 3432
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3433
	dev->opts = opts;
3434

3435 3436
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3467
	while (count--) {
3468 3469 3470 3471
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3472
	}
3473 3474 3475 3476 3477 3478 3479 3480 3481
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3482
	func->function.ss_descriptors = NULL;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3505
	func->function.req_match = ffs_func_req_match;
3506 3507 3508 3509 3510 3511 3512
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3513 3514 3515
/*
 * ffs_lock must be taken by the caller of this function
 */
3516
static struct ffs_dev *_ffs_alloc_dev(void)
3517 3518 3519 3520
{
	struct ffs_dev *dev;
	int ret;

3521
	if (_ffs_get_single_dev())
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3541
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3542 3543
{
	struct ffs_dev *existing;
3544
	int ret = 0;
3545

3546
	ffs_dev_lock();
3547

3548 3549 3550 3551 3552
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3553 3554 3555 3556 3557

	ffs_dev_unlock();

	return ret;
}
3558
EXPORT_SYMBOL_GPL(ffs_name_dev);
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3575
EXPORT_SYMBOL_GPL(ffs_single_dev);
3576 3577 3578 3579

/*
 * ffs_lock must be taken by the caller of this function
 */
3580
static void _ffs_free_dev(struct ffs_dev *dev)
3581 3582
{
	list_del(&dev->entry);
3583 3584 3585 3586 3587

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3600
	ffs_dev = _ffs_find_dev(dev_name);
3601
	if (!ffs_dev)
3602
		ffs_dev = ERR_PTR(-ENOENT);
3603 3604
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3605 3606
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3607
		ffs_dev = ERR_PTR(-ENOENT);
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3623
	if (ffs_dev) {
3624
		ffs_dev->mounted = false;
3625 3626 3627 3628

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3654
	if (ffs_obj->ffs_ready_callback) {
3655
		ret = ffs_obj->ffs_ready_callback(ffs);
3656 3657 3658
		if (ret)
			goto done;
	}
3659

3660
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3661 3662 3663 3664 3665 3666 3667 3668
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3669
	struct f_fs_opts *opts;
3670
	struct config_item *ci;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;

3681 3682
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3683
		ffs_obj->ffs_closed_callback(ffs);
3684

3685 3686 3687 3688 3689 3690
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3691
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3692 3693
		goto done;

3694 3695 3696 3697 3698
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

	unregister_gadget_item(ci);
	return;
3699 3700 3701 3702
done:
	ffs_dev_unlock();
}

3703 3704 3705 3706 3707 3708 3709 3710 3711
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3712
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3723
	if (unlikely(copy_from_user(data, buf, len))) {
3724 3725 3726 3727
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3728
	pr_vdebug("Buffer from user space:\n");
3729 3730 3731 3732
	ffs_dump_mem("", data, len);

	return data;
}
3733 3734 3735 3736

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");