ar9003_paprd.c 23.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hw.h"
#include "ar9003_phy.h"

void ar9003_paprd_enable(struct ath_hw *ah, bool val)
{
22 23 24 25 26 27 28 29 30 31 32 33 34 35
	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
	struct ath9k_channel *chan = ah->curchan;

	if (val) {
		ah->paprd_table_write_done = true;

		ah->eep_ops->set_txpower(ah, chan,
				ath9k_regd_get_ctl(regulatory, chan),
				chan->chan->max_antenna_gain * 2,
				chan->chan->max_power * 2,
				min((u32) MAX_RATE_POWER,
				(u32) regulatory->power_limit), false);
	}

36 37
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
		      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
38 39 40 41 42 43
	if (ah->caps.tx_chainmask & BIT(1))
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
	if (ah->caps.tx_chainmask & BIT(2))
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
44 45 46
}
EXPORT_SYMBOL(ar9003_paprd_enable);

47
static int ar9003_get_training_power_2g(struct ath_hw *ah)
48
{
49
	struct ath9k_channel *chan = ah->curchan;
50 51
	unsigned int power, scale, delta;

52
	scale = ar9003_get_paprd_scale_factor(ah, chan);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
	power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
			       AR_PHY_POWERTX_RATE5_POWERTXHT20_0);

	delta = abs((int) ah->paprd_target_power - (int) power);
	if (delta > scale)
		return -1;

	if (delta < 4)
		power -= 4 - delta;

	return power;
}

static int ar9003_get_training_power_5g(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_channel *chan = ah->curchan;
	unsigned int power, scale, delta;

72
	scale = ar9003_get_paprd_scale_factor(ah, chan);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

	if (IS_CHAN_HT40(chan))
		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
			AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
	else
		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
			AR_PHY_POWERTX_RATE6_POWERTXHT20_5);

	power += scale;
	delta = abs((int) ah->paprd_target_power - (int) power);
	if (delta > scale)
		return -1;

	power += 2 * get_streams(common->tx_chainmask);
	return power;
}

static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
J
Joe Perches 已提交
93
	static const u32 ctrl0[3] = {
94 95 96 97
		AR_PHY_PAPRD_CTRL0_B0,
		AR_PHY_PAPRD_CTRL0_B1,
		AR_PHY_PAPRD_CTRL0_B2
	};
J
Joe Perches 已提交
98
	static const u32 ctrl1[3] = {
99 100 101 102
		AR_PHY_PAPRD_CTRL1_B0,
		AR_PHY_PAPRD_CTRL1_B1,
		AR_PHY_PAPRD_CTRL1_B2
	};
103
	int training_power;
104 105
	int i;

106 107 108 109 110
	if (IS_CHAN_2GHZ(ah->curchan))
		training_power = ar9003_get_training_power_2g(ah);
	else
		training_power = ar9003_get_training_power_5g(ah);

111 112 113 114
	ath_dbg(common, ATH_DBG_CALIBRATE,
		"Training power: %d, Target power: %d\n",
		training_power, ah->paprd_target_power);

115 116 117 118 119 120 121
	if (training_power < 0) {
		ath_dbg(common, ATH_DBG_CALIBRATE,
			"PAPRD target power delta out of range");
		return -ERANGE;
	}
	ah->paprd_training_power = training_power;

122 123 124 125 126
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
		      ah->paprd_ratemask);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
		      ah->paprd_ratemask);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
127
		      ah->paprd_ratemask_ht40);
128

129
	for (i = 0; i < ah->caps.max_txchains; i++) {
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		REG_RMW_FIELD(ah, ctrl0[i],
			      AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
		REG_RMW_FIELD(ah, ctrl1[i],
			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
		REG_RMW_FIELD(ah, ctrl0[i],
			      AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
	}

	ar9003_paprd_enable(ah, false);

	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
		      AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
174 175 176 177 178 179 180 181
	if (AR_SREV_9485(ah))
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
			      -3);
	else
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
			      -6);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
		      -15);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
		      100);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
		      AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
210
	return 0;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
}

static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
{
	u32 *entry = ah->paprd_gain_table_entries;
	u8 *index = ah->paprd_gain_table_index;
	u32 reg = AR_PHY_TXGAIN_TABLE;
	int i;

	memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
	memset(index, 0, sizeof(ah->paprd_gain_table_index));

	for (i = 0; i < 32; i++) {
		entry[i] = REG_READ(ah, reg);
		index[i] = (entry[i] >> 24) & 0xff;
		reg += 4;
	}
}

static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
					    int target_power)
{
	int olpc_gain_delta = 0;
	int alpha_therm, alpha_volt;
	int therm_cal_value, volt_cal_value;
	int therm_value, volt_value;
	int thermal_gain_corr, voltage_gain_corr;
	int desired_scale, desired_gain = 0;
	u32 reg;

	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
	desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
				       AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
	alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
				     AR_PHY_TPC_19_ALPHA_THERM);
	alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
				    AR_PHY_TPC_19_ALPHA_VOLT);
	therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
					 AR_PHY_TPC_18_THERM_CAL_VALUE);
	volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
					AR_PHY_TPC_18_VOLT_CAL_VALUE);
	therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
				     AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
	volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
				    AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);

	if (chain == 0)
		reg = AR_PHY_TPC_11_B0;
	else if (chain == 1)
		reg = AR_PHY_TPC_11_B1;
	else
		reg = AR_PHY_TPC_11_B2;

	olpc_gain_delta = REG_READ_FIELD(ah, reg,
					 AR_PHY_TPC_11_OLPC_GAIN_DELTA);

	if (olpc_gain_delta >= 128)
		olpc_gain_delta = olpc_gain_delta - 256;

	thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
			     (256 / 2)) / 256;
	voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
			     (128 / 2)) / 128;
	desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
	    voltage_gain_corr + desired_scale;

	return desired_gain;
}

static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
{
	int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
	int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
	u32 *gain_table_entries = ah->paprd_gain_table_entries;

	selected_gain_entry = gain_table_entries[gain_index];
	txbb1dbgain = selected_gain_entry & 0x7;
	txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
	txmxrgain = (selected_gain_entry >> 5) & 0xf;
	padrvgnA = (selected_gain_entry >> 9) & 0xf;
	padrvgnB = (selected_gain_entry >> 13) & 0xf;
	padrvgnC = (selected_gain_entry >> 17) & 0xf;
	padrvgnD = (selected_gain_entry >> 21) & 0x3;

	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
		      AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
}

static inline int find_expn(int num)
{
	return fls(num) - 1;
}

static inline int find_proper_scale(int expn, int N)
{
	return (expn > N) ? expn - 10 : 0;
}

#define NUM_BIN 23

static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
{
	unsigned int thresh_accum_cnt;
	int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
	int PA_in[NUM_BIN + 1];
	int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
	unsigned int B1_abs_max, B2_abs_max;
	int max_index, scale_factor;
	int y_est[NUM_BIN + 1];
	int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
	unsigned int x_tilde_abs;
	int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
	int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
	int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
	int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
	int y5, y3, tmp;
	int theta_low_bin = 0;
	int i;

	/* disregard any bin that contains <= 16 samples */
	thresh_accum_cnt = 16;
	scale_factor = 5;
	max_index = 0;
	memset(theta, 0, sizeof(theta));
	memset(x_est, 0, sizeof(x_est));
	memset(Y, 0, sizeof(Y));
	memset(y_est, 0, sizeof(y_est));
	memset(x_tilde, 0, sizeof(x_tilde));

	for (i = 0; i < NUM_BIN; i++) {
		s32 accum_cnt, accum_tx, accum_rx, accum_ang;

		/* number of samples */
		accum_cnt = data_L[i] & 0xffff;

		if (accum_cnt <= thresh_accum_cnt)
			continue;

		/* sum(tx amplitude) */
		accum_tx = ((data_L[i] >> 16) & 0xffff) |
		    ((data_U[i] & 0x7ff) << 16);

		/* sum(rx amplitude distance to lower bin edge) */
		accum_rx = ((data_U[i] >> 11) & 0x1f) |
		    ((data_L[i + 23] & 0xffff) << 5);

		/* sum(angles) */
		accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
		    ((data_U[i + 23] & 0x7ff) << 16);

		accum_tx <<= scale_factor;
		accum_rx <<= scale_factor;
		x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
		    scale_factor;

		Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
			    scale_factor) +
			    (1 << scale_factor) * max_index + 16;

		if (accum_ang >= (1 << 26))
			accum_ang -= 1 << 27;

		theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
		    accum_cnt;

		max_index++;
	}

	/*
	 * Find average theta of first 5 bin and all of those to same value.
	 * Curve is linear at that range.
	 */
	for (i = 1; i < 6; i++)
		theta_low_bin += theta[i];

	theta_low_bin = theta_low_bin / 5;
	for (i = 1; i < 6; i++)
		theta[i] = theta_low_bin;

	/* Set values at origin */
	theta[0] = theta_low_bin;
	for (i = 0; i <= max_index; i++)
		theta[i] -= theta_low_bin;

	x_est[0] = 0;
	Y[0] = 0;
	scale_factor = 8;

	/* low signal gain */
	if (x_est[6] == x_est[3])
		return false;

	G_fxp =
	    (((Y[6] - Y[3]) * 1 << scale_factor) +
	     (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);

426 427 428 429
	/* prevent division by zero */
	if (G_fxp == 0)
		return false;

430 431 432 433 434 435 436 437 438 439 440 441
	Y_intercept =
	    (G_fxp * (x_est[0] - x_est[3]) +
	     (1 << scale_factor)) / (1 << scale_factor) + Y[3];

	for (i = 0; i <= max_index; i++)
		y_est[i] = Y[i] - Y_intercept;

	for (i = 0; i <= 3; i++) {
		y_est[i] = i * 32;
		x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
	}

442 443 444
	if (y_est[max_index] == 0)
		return false;

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	x_est_fxp1_nonlin =
	    x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
				G_fxp) / G_fxp;

	order_x_by_y =
	    (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];

	if (order_x_by_y == 0)
		M = 10;
	else if (order_x_by_y == 1)
		M = 9;
	else
		M = 8;

	I = (max_index > 15) ? 7 : max_index >> 1;
	L = max_index - I;
	scale_factor = 8;
	sum_y_sqr = 0;
	sum_y_quad = 0;
	x_tilde_abs = 0;

	for (i = 0; i <= L; i++) {
		unsigned int y_sqr;
		unsigned int y_quad;
		unsigned int tmp_abs;

		/* prevent division by zero */
		if (y_est[i + I] == 0)
			return false;

		x_est_fxp1_nonlin =
		    x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
				    G_fxp) / G_fxp;

		x_tilde[i] =
		    (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
									  I];
		x_tilde[i] =
		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
		x_tilde[i] =
		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
		y_sqr =
		    (y_est[i + I] * y_est[i + I] +
		     (scale_factor * scale_factor)) / (scale_factor *
						       scale_factor);
		tmp_abs = abs(x_tilde[i]);
		if (tmp_abs > x_tilde_abs)
			x_tilde_abs = tmp_abs;

		y_quad = y_sqr * y_sqr;
		sum_y_sqr = sum_y_sqr + y_sqr;
		sum_y_quad = sum_y_quad + y_quad;
		B1_tmp[i] = y_sqr * (L + 1);
		B2_tmp[i] = y_sqr;
	}

	B1_abs_max = 0;
	B2_abs_max = 0;
	for (i = 0; i <= L; i++) {
		int abs_val;

		B1_tmp[i] -= sum_y_sqr;
		B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];

		abs_val = abs(B1_tmp[i]);
		if (abs_val > B1_abs_max)
			B1_abs_max = abs_val;

		abs_val = abs(B2_tmp[i]);
		if (abs_val > B2_abs_max)
			B2_abs_max = abs_val;
	}

	Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
	Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
	Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);

	beta_raw = 0;
	alpha_raw = 0;
	for (i = 0; i <= L; i++) {
		x_tilde[i] = x_tilde[i] / (1 << Q_x);
		B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
		B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
		beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
		alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
	}

	scale_B =
	    ((sum_y_quad / scale_factor) * (L + 1) -
	     (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;

	Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
	scale_B = scale_B / (1 << Q_scale_B);
538 539
	if (scale_B == 0)
		return false;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
	beta_raw = beta_raw / (1 << Q_beta);
	alpha_raw = alpha_raw / (1 << Q_alpha);
	alpha = (alpha_raw << 10) / scale_B;
	beta = (beta_raw << 10) / scale_B;
	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
	order1_5x = order_1 / 5;
	order2_3x = order_2 / 3;
	order1_5x_rem = order_1 - 5 * order1_5x;
	order2_3x_rem = order_2 - 3 * order2_3x;

	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
		tmp = i * 32;
		y5 = ((beta * tmp) >> 6) >> order1_5x;
		y5 = (y5 * tmp) >> order1_5x;
		y5 = (y5 * tmp) >> order1_5x;
		y5 = (y5 * tmp) >> order1_5x;
		y5 = (y5 * tmp) >> order1_5x;
		y5 = y5 >> order1_5x_rem;
		y3 = (alpha * tmp) >> order2_3x;
		y3 = (y3 * tmp) >> order2_3x;
		y3 = (y3 * tmp) >> order2_3x;
		y3 = y3 >> order2_3x_rem;
		PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;

		if (i >= 2) {
			tmp = PA_in[i] - PA_in[i - 1];
			if (tmp < 0)
				PA_in[i] =
				    PA_in[i - 1] + (PA_in[i - 1] -
						    PA_in[i - 2]);
		}

		PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
	}

	beta_raw = 0;
	alpha_raw = 0;

	for (i = 0; i <= L; i++) {
		int theta_tilde =
		    ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
		theta_tilde =
		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
		theta_tilde =
		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
		beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
		alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
	}

	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
	beta_raw = beta_raw / (1 << Q_beta);
	alpha_raw = alpha_raw / (1 << Q_alpha);

	alpha = (alpha_raw << 10) / scale_B;
	beta = (beta_raw << 10) / scale_B;
	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
	order1_5x = order_1 / 5;
	order2_3x = order_2 / 3;
	order1_5x_rem = order_1 - 5 * order1_5x;
	order2_3x_rem = order_2 - 3 * order2_3x;

	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
		int PA_angle;

		/* pa_table[4] is calculated from PA_angle for i=5 */
		if (i == 4)
			continue;

		tmp = i * 32;
		if (beta > 0)
			y5 = (((beta * tmp - 64) >> 6) -
			      (1 << order1_5x)) / (1 << order1_5x);
		else
			y5 = ((((beta * tmp - 64) >> 6) +
			       (1 << order1_5x)) / (1 << order1_5x));

		y5 = (y5 * tmp) / (1 << order1_5x);
		y5 = (y5 * tmp) / (1 << order1_5x);
		y5 = (y5 * tmp) / (1 << order1_5x);
		y5 = (y5 * tmp) / (1 << order1_5x);
		y5 = y5 / (1 << order1_5x_rem);

		if (beta > 0)
			y3 = (alpha * tmp -
			      (1 << order2_3x)) / (1 << order2_3x);
		else
			y3 = (alpha * tmp +
			      (1 << order2_3x)) / (1 << order2_3x);
		y3 = (y3 * tmp) / (1 << order2_3x);
		y3 = (y3 * tmp) / (1 << order2_3x);
		y3 = y3 / (1 << order2_3x_rem);

		if (i < 4) {
			PA_angle = 0;
		} else {
			PA_angle = y5 + y3;
			if (PA_angle < -150)
				PA_angle = -150;
			else if (PA_angle > 150)
				PA_angle = 150;
		}

		pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
		if (i == 5) {
			PA_angle = (PA_angle + 2) >> 1;
			pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
			    (PA_angle & 0x7ff);
		}
	}

	*gain = G_fxp;
	return true;
}

void ar9003_paprd_populate_single_table(struct ath_hw *ah,
660 661
					struct ath9k_hw_cal_data *caldata,
					int chain)
662
{
663 664
	u32 *paprd_table_val = caldata->pa_table[chain];
	u32 small_signal_gain = caldata->small_signal_gain[chain];
665
	u32 training_power = ah->paprd_training_power;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	u32 reg = 0;
	int i;

	if (chain == 0)
		reg = AR_PHY_PAPRD_MEM_TAB_B0;
	else if (chain == 1)
		reg = AR_PHY_PAPRD_MEM_TAB_B1;
	else if (chain == 2)
		reg = AR_PHY_PAPRD_MEM_TAB_B2;

	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
		REG_WRITE(ah, reg, paprd_table_val[i]);
		reg = reg + 4;
	}

	if (chain == 0)
		reg = AR_PHY_PA_GAIN123_B0;
	else if (chain == 1)
		reg = AR_PHY_PA_GAIN123_B1;
	else
		reg = AR_PHY_PA_GAIN123_B2;

	REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);

	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
		      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
		      training_power);

694 695 696 697
	if (ah->caps.tx_chainmask & BIT(1))
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
			      training_power);
698

699 700 701 702
	if (ah->caps.tx_chainmask & BIT(2))
		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
			      training_power);
703 704 705 706 707 708
}
EXPORT_SYMBOL(ar9003_paprd_populate_single_table);

int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
{
	unsigned int i, desired_gain, gain_index;
709
	unsigned int train_power = ah->paprd_training_power;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	desired_gain = ar9003_get_desired_gain(ah, chain, train_power);

	gain_index = 0;
	for (i = 0; i < 32; i++) {
		if (ah->paprd_gain_table_index[i] >= desired_gain)
			break;
		gain_index++;
	}

	ar9003_tx_force_gain(ah, gain_index);

	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
			AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);

	return 0;
}
EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);

729 730
int ar9003_paprd_create_curve(struct ath_hw *ah,
			      struct ath9k_hw_cal_data *caldata, int chain)
731
{
732 733
	u16 *small_signal_gain = &caldata->small_signal_gain[chain];
	u32 *pa_table = caldata->pa_table[chain];
734 735 736 737 738
	u32 *data_L, *data_U;
	int i, status = 0;
	u32 *buf;
	u32 reg;

739
	memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
	if (!buf)
		return -ENOMEM;

	data_L = &buf[0];
	data_U = &buf[48];

	REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);

	reg = AR_PHY_CHAN_INFO_TAB_0;
	for (i = 0; i < 48; i++)
		data_L[i] = REG_READ(ah, reg + (i << 2));

	REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);

	for (i = 0; i < 48; i++)
		data_U[i] = REG_READ(ah, reg + (i << 2));

	if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
		status = -2;

	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);

	kfree(buf);

	return status;
}
EXPORT_SYMBOL(ar9003_paprd_create_curve);

int ar9003_paprd_init_table(struct ath_hw *ah)
{
775 776 777 778 779 780
	int ret;

	ret = ar9003_paprd_setup_single_table(ah);
	if (ret < 0)
	    return ret;

781 782 783 784 785 786 787
	ar9003_paprd_get_gain_table(ah);
	return 0;
}
EXPORT_SYMBOL(ar9003_paprd_init_table);

bool ar9003_paprd_is_done(struct ath_hw *ah)
{
788 789
	int paprd_done, agc2_pwr;
	paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
790
				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

	if (paprd_done == 0x1) {
		agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);

		ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
			"AGC2_PWR = 0x%x training done = 0x%x\n",
			agc2_pwr, paprd_done);
	/*
	 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
	 * when the training is completely done, otherwise retraining is
	 * done to make sure the value is in ideal range
	 */
		if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
			paprd_done = 0;
	}

	return !!paprd_done;
809 810
}
EXPORT_SYMBOL(ar9003_paprd_is_done);