file.c 57.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34 35 36

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

241 242
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
262

263
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 265 266
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

267 268 269
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

270 271
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;
272

273 274
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
275
							& ~_PAGE_NO_CACHE);
276
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
277 278
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
279 280
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281
	}
282
	vm_insert_pfn(vma, address, pfn);
283

284
	spu_release(ctx);
285

286
	return NOPFN_REFAULT;
287 288
}

289

290
static struct vm_operations_struct spufs_mem_mmap_vmops = {
291
	.nopfn = spufs_mem_mmap_nopfn,
292 293
};

294
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295
{
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

312 313
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
314

315
	vma->vm_flags |= VM_IO | VM_PFNMAP;
316 317 318 319
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
320 321 322
	return 0;
}

323
#ifdef CONFIG_SPU_FS_64K_LS
324 325 326
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

342
static const struct file_operations spufs_mem_fops = {
343 344 345 346 347 348
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
349 350 351
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
352 353
};

354
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355
				    unsigned long address,
356
				    unsigned long ps_offs,
357
				    unsigned long ps_size)
358 359
{
	struct spu_context *ctx = vma->vm_file->private_data;
360
	unsigned long area, offset = address - vma->vm_start;
361
	int ret = 0;
362

363 364
	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);

365
	offset += vma->vm_pgoff << PAGE_SHIFT;
366
	if (offset >= ps_size)
367
		return NOPFN_SIGBUS;
368

369 370 371 372 373 374 375
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

376 377 378 379 380 381 382
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
383
	 */
384
	if (spu_acquire(ctx))
385
		goto refault;
386

387 388
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
389
		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
390
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
391
		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
392
		down_read(&current->mm->mmap_sem);
393 394 395
	} else {
		area = ctx->spu->problem_phys + ps_offs;
		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
396
		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
397
	}
398

399 400
	if (!ret)
		spu_release(ctx);
401 402 403

refault:
	put_spu_context(ctx);
404
	return NOPFN_REFAULT;
405 406
}

407
#if SPUFS_MMAP_4K
408 409
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
410
{
411
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
412 413 414
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
415
	.nopfn = spufs_cntl_mmap_nopfn,
416 417 418 419 420 421 422 423 424 425
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

426
	vma->vm_flags |= VM_IO | VM_PFNMAP;
427
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
428
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
429 430 431 432

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
433 434 435
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
436

437
static int spufs_cntl_get(void *data, u64 *val)
438
{
439
	struct spu_context *ctx = data;
440
	int ret;
441

442 443 444
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
445
	*val = ctx->ops->status_read(ctx);
446 447
	spu_release(ctx);

448
	return 0;
449 450
}

451
static int spufs_cntl_set(void *data, u64 val)
452
{
453
	struct spu_context *ctx = data;
454
	int ret;
455

456 457 458
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
459 460
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
461 462

	return 0;
463 464
}

465
static int spufs_cntl_open(struct inode *inode, struct file *file)
466
{
467 468 469
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

470
	mutex_lock(&ctx->mapping_lock);
471
	file->private_data = ctx;
472 473
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
474
	mutex_unlock(&ctx->mapping_lock);
475
	return simple_attr_open(inode, file, spufs_cntl_get,
476
					spufs_cntl_set, "0x%08lx");
477 478
}

479 480 481 482 483 484
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

485
	simple_attr_release(inode, file);
486

487
	mutex_lock(&ctx->mapping_lock);
488 489
	if (!--i->i_openers)
		ctx->cntl = NULL;
490
	mutex_unlock(&ctx->mapping_lock);
491 492 493
	return 0;
}

494
static const struct file_operations spufs_cntl_fops = {
495
	.open = spufs_cntl_open,
496
	.release = spufs_cntl_release,
497 498
	.read = simple_attr_read,
	.write = simple_attr_write,
499 500 501
	.mmap = spufs_cntl_mmap,
};

502 503 504 505 506 507 508 509
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

510 511 512 513 514 515 516 517 518
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

519 520 521 522 523
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
524
	struct spu_context *ctx = file->private_data;
525

526 527 528
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
529
	ret = __spufs_regs_read(ctx, buffer, size, pos);
530
	spu_release_saved(ctx);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

547 548 549
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
550 551 552 553

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

554
	spu_release_saved(ctx);
555 556 557
	return ret;
}

558
static const struct file_operations spufs_regs_fops = {
559 560 561
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
562 563 564
	.llseek  = generic_file_llseek,
};

565 566 567 568 569 570 571 572 573
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

574 575 576 577 578
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
579
	struct spu_context *ctx = file->private_data;
580

581 582 583
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
584
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
585
	spu_release_saved(ctx);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

601 602 603
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
604

605
	*pos += size;
606 607 608
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

609
	spu_release_saved(ctx);
610 611 612
	return ret;
}

613
static const struct file_operations spufs_fpcr_fops = {
614 615 616 617 618 619
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

620 621 622 623 624 625 626 627 628
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

629 630 631 632 633 634 635 636
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
637 638 639
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
640
	struct spu_context *ctx = file->private_data;
641 642
	u32 mbox_data, __user *udata;
	ssize_t count;
643 644 645 646

	if (len < 4)
		return -EINVAL;

647 648 649 650 651
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

652 653 654 655
	count = spu_acquire(ctx);
	if (count)
		return count;

656
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
674
	spu_release(ctx);
675

676 677
	if (!count)
		count = -EAGAIN;
678

679
	return count;
680 681
}

682
static const struct file_operations spufs_mbox_fops = {
683 684 685 686 687 688 689
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
690
	struct spu_context *ctx = file->private_data;
691
	ssize_t ret;
692 693 694 695 696
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

697 698 699
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
700 701 702 703

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
704 705 706 707 708 709 710

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

711
static const struct file_operations spufs_mbox_stat_fops = {
712 713 714 715 716
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
717
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
718
{
719 720
	return ctx->ops->ibox_read(ctx, data);
}
721

722 723 724
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
725

726
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
727 728
}

729 730
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
731
{
732 733
	struct spu_context *ctx = spu->ctx;

734 735 736
	if (!ctx)
		return;

737 738
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
753 754 755
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
756
	struct spu_context *ctx = file->private_data;
757 758
	u32 ibox_data, __user *udata;
	ssize_t count;
759 760 761 762

	if (len < 4)
		return -EINVAL;

763 764 765 766 767
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

768 769
	count = spu_acquire(ctx);
	if (count)
770
		goto out;
771

772 773
	/* wait only for the first element */
	count = 0;
774
	if (file->f_flags & O_NONBLOCK) {
775
		if (!spu_ibox_read(ctx, &ibox_data)) {
776
			count = -EAGAIN;
777 778
			goto out_unlock;
		}
779
	} else {
780
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
781 782
		if (count)
			goto out;
783 784
	}

785 786 787
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
788
		goto out_unlock;
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
804

805
out_unlock:
806
	spu_release(ctx);
807
out:
808
	return count;
809 810 811 812
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
813
	struct spu_context *ctx = file->private_data;
814 815
	unsigned int mask;

816
	poll_wait(file, &ctx->ibox_wq, wait);
817

818 819 820 821 822
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
823 824
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
825 826 827 828

	return mask;
}

829
static const struct file_operations spufs_ibox_fops = {
830 831 832 833 834 835 836 837 838
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
839
	struct spu_context *ctx = file->private_data;
840
	ssize_t ret;
841 842 843 844 845
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

846 847 848
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
849 850
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
851 852 853 854 855 856 857

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

858
static const struct file_operations spufs_ibox_stat_fops = {
859 860 861 862 863
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
864
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
865
{
866 867
	return ctx->ops->wbox_write(ctx, data);
}
868

869 870 871 872
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
873

874
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
875 876 877 878

	return ret;
}

879 880
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
881
{
882 883
	struct spu_context *ctx = spu->ctx;

884 885 886
	if (!ctx)
		return;

887 888
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
889 890
}

891 892 893 894 895 896 897 898 899 900 901 902
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
903 904 905
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
906
	struct spu_context *ctx = file->private_data;
907 908
	u32 wbox_data, __user *udata;
	ssize_t count;
909 910 911 912

	if (len < 4)
		return -EINVAL;

913 914 915 916 917
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
918 919
		return -EFAULT;

920 921
	count = spu_acquire(ctx);
	if (count)
922
		goto out;
923

924 925 926 927 928
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
929
	if (file->f_flags & O_NONBLOCK) {
930
		if (!spu_wbox_write(ctx, wbox_data)) {
931
			count = -EAGAIN;
932 933
			goto out_unlock;
		}
934
	} else {
935
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
936 937
		if (count)
			goto out;
938 939
	}

940

941
	/* write as much as possible */
942 943 944 945 946 947 948 949 950 951 952
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

953
out_unlock:
954
	spu_release(ctx);
955
out:
956
	return count;
957 958 959 960
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
961
	struct spu_context *ctx = file->private_data;
962 963
	unsigned int mask;

964
	poll_wait(file, &ctx->wbox_wq, wait);
965

966 967 968 969 970
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
971 972
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
973 974 975 976

	return mask;
}

977
static const struct file_operations spufs_wbox_fops = {
978 979 980 981 982 983 984 985 986
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
987
	struct spu_context *ctx = file->private_data;
988
	ssize_t ret;
989 990 991 992 993
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

994 995 996
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
997 998
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
999 1000 1001 1002 1003 1004 1005

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1006
static const struct file_operations spufs_wbox_stat_fops = {
1007 1008 1009 1010
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1011 1012 1013 1014
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1015

1016
	mutex_lock(&ctx->mapping_lock);
1017
	file->private_data = ctx;
1018 1019
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1020
	mutex_unlock(&ctx->mapping_lock);
1021 1022 1023
	return nonseekable_open(inode, file);
}

1024 1025 1026 1027 1028 1029
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1030
	mutex_lock(&ctx->mapping_lock);
1031 1032
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1033
	mutex_unlock(&ctx->mapping_lock);
1034 1035 1036
	return 0;
}

1037
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1038 1039
			size_t len, loff_t *pos)
{
1040
	int ret = 0;
1041 1042 1043 1044 1045
	u32 data;

	if (len < 4)
		return -EINVAL;

1046 1047 1048 1049
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1050

1051 1052 1053
	if (!ret)
		goto out;

1054 1055 1056
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1057 1058
out:
	return ret;
1059 1060
}

1061 1062 1063 1064 1065 1066
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1067 1068 1069
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1070
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1071
	spu_release_saved(ctx);
1072 1073 1074 1075

	return ret;
}

1076 1077 1078 1079
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1080
	ssize_t ret;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1091 1092 1093
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1094 1095
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1096 1097 1098 1099

	return 4;
}

1100 1101
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1102
{
1103
#if PAGE_SIZE == 0x1000
1104
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1105 1106 1107 1108
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1109
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1110 1111 1112
#else
#error unsupported page size
#endif
1113 1114 1115
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1116
	.nopfn = spufs_signal1_mmap_nopfn,
1117 1118 1119 1120 1121 1122 1123
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1124
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1125
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1126
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1127 1128 1129 1130 1131

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1132
static const struct file_operations spufs_signal1_fops = {
1133
	.open = spufs_signal1_open,
1134
	.release = spufs_signal1_release,
1135 1136
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1137
	.mmap = spufs_signal1_mmap,
1138 1139
};

1140 1141 1142 1143 1144 1145 1146
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1147 1148 1149 1150
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1151

1152
	mutex_lock(&ctx->mapping_lock);
1153
	file->private_data = ctx;
1154 1155
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1156
	mutex_unlock(&ctx->mapping_lock);
1157 1158 1159
	return nonseekable_open(inode, file);
}

1160 1161 1162 1163 1164 1165
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1166
	mutex_lock(&ctx->mapping_lock);
1167 1168
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1169
	mutex_unlock(&ctx->mapping_lock);
1170 1171 1172
	return 0;
}

1173
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1174 1175
			size_t len, loff_t *pos)
{
1176
	int ret = 0;
1177 1178 1179 1180 1181
	u32 data;

	if (len < 4)
		return -EINVAL;

1182 1183 1184 1185
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1186

1187 1188 1189
	if (!ret)
		goto out;

1190 1191 1192
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1193
out:
1194 1195 1196 1197 1198 1199 1200 1201 1202
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1203 1204 1205
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1206
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1207
	spu_release_saved(ctx);
1208 1209

	return ret;
1210 1211 1212 1213 1214 1215
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1216
	ssize_t ret;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1227 1228 1229
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1230 1231
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1232 1233 1234 1235

	return 4;
}

1236
#if SPUFS_MMAP_4K
1237 1238
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1239
{
1240
#if PAGE_SIZE == 0x1000
1241
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1242 1243 1244 1245
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1246
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1247 1248 1249
#else
#error unsupported page size
#endif
1250 1251 1252
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1253
	.nopfn = spufs_signal2_mmap_nopfn,
1254 1255 1256 1257 1258 1259 1260
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1261
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1262
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1263
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1264 1265 1266 1267

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1268 1269 1270
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1271

1272
static const struct file_operations spufs_signal2_fops = {
1273
	.open = spufs_signal2_open,
1274
	.release = spufs_signal2_release,
1275 1276
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1277
	.mmap = spufs_signal2_mmap,
1278 1279
};

1280 1281 1282 1283 1284 1285 1286
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1297
static int __##__get(void *data, u64 *val)				\
1298 1299
{									\
	struct spu_context *ctx = data;					\
1300
	int ret = 0;							\
1301 1302
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1303 1304 1305
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1306
		*val = __get(ctx);					\
1307 1308
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1309 1310 1311
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1312
		*val = __get(ctx);					\
1313 1314
		spu_release_saved(ctx);					\
	} else								\
1315
		*val = __get(ctx);					\
1316
									\
1317
	return 0;							\
1318
}									\
1319
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1320

1321
static int spufs_signal1_type_set(void *data, u64 val)
1322 1323
{
	struct spu_context *ctx = data;
1324
	int ret;
1325

1326 1327 1328
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1329 1330
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1331 1332

	return 0;
1333 1334
}

1335
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1336 1337 1338
{
	return ctx->ops->signal1_type_get(ctx);
}
1339 1340
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1341

1342

1343
static int spufs_signal2_type_set(void *data, u64 val)
1344 1345
{
	struct spu_context *ctx = data;
1346
	int ret;
1347

1348 1349 1350
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1351 1352
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1353 1354

	return 0;
1355 1356
}

1357
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1358 1359 1360
{
	return ctx->ops->signal2_type_get(ctx);
}
1361 1362
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1363

1364
#if SPUFS_MMAP_4K
1365 1366
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1367
{
1368
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1369 1370 1371
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1372
	.nopfn = spufs_mss_mmap_nopfn,
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1383
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1384
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1385
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1386 1387 1388 1389

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1390 1391 1392
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1393 1394 1395 1396

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1397
	struct spu_context *ctx = i->i_ctx;
1398 1399

	file->private_data = i->i_ctx;
1400

1401
	mutex_lock(&ctx->mapping_lock);
1402 1403
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1404
	mutex_unlock(&ctx->mapping_lock);
1405 1406 1407
	return nonseekable_open(inode, file);
}

1408 1409 1410 1411 1412 1413
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1414
	mutex_lock(&ctx->mapping_lock);
1415 1416
	if (!--i->i_openers)
		ctx->mss = NULL;
1417
	mutex_unlock(&ctx->mapping_lock);
1418 1419 1420
	return 0;
}

1421
static const struct file_operations spufs_mss_fops = {
1422
	.open	 = spufs_mss_open,
1423
	.release = spufs_mss_release,
1424
	.mmap	 = spufs_mss_mmap,
1425 1426
};

1427 1428
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1429
{
1430
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1431 1432 1433
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1434
	.nopfn = spufs_psmap_mmap_nopfn,
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1445
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1456
	struct spu_context *ctx = i->i_ctx;
1457

1458
	mutex_lock(&ctx->mapping_lock);
1459
	file->private_data = i->i_ctx;
1460 1461
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1462
	mutex_unlock(&ctx->mapping_lock);
1463 1464 1465
	return nonseekable_open(inode, file);
}

1466 1467 1468 1469 1470 1471
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1472
	mutex_lock(&ctx->mapping_lock);
1473 1474
	if (!--i->i_openers)
		ctx->psmap = NULL;
1475
	mutex_unlock(&ctx->mapping_lock);
1476 1477 1478
	return 0;
}

1479
static const struct file_operations spufs_psmap_fops = {
1480
	.open	 = spufs_psmap_open,
1481
	.release = spufs_psmap_release,
1482
	.mmap	 = spufs_psmap_mmap,
1483 1484 1485
};


1486
#if SPUFS_MMAP_4K
1487 1488
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1489
{
1490
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1491 1492 1493
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1494
	.nopfn = spufs_mfc_mmap_nopfn,
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1505
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1506
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1507
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1508 1509 1510 1511

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1512 1513 1514
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1528
	mutex_lock(&ctx->mapping_lock);
1529
	file->private_data = ctx;
1530 1531
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1532
	mutex_unlock(&ctx->mapping_lock);
1533 1534 1535
	return nonseekable_open(inode, file);
}

1536 1537 1538 1539 1540 1541
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1542
	mutex_lock(&ctx->mapping_lock);
1543 1544
	if (!--i->i_openers)
		ctx->mfc = NULL;
1545
	mutex_unlock(&ctx->mapping_lock);
1546 1547 1548
	return 0;
}

1549 1550 1551 1552 1553
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1554 1555 1556
	if (!ctx)
		return;

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1603 1604 1605 1606 1607
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1608 1609 1610 1611 1612
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1613
			/* XXX(hch): shouldn't we clear ret here? */
1614 1615 1616 1617
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1618 1619
		if (ret)
			goto out;
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1737 1738 1739 1740
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1741
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1742 1743 1744
	if (ret)
		goto out;

1745 1746 1747 1748 1749 1750
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1751 1752
		if (ret)
			goto out;
1753 1754 1755 1756 1757
		if (status)
			ret = status;
	}

	if (ret)
1758
		goto out_unlock;
1759 1760

	ctx->tagwait |= 1 << cmd.tag;
1761
	ret = size;
1762

1763 1764
out_unlock:
	spu_release(ctx);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1775 1776
	poll_wait(file, &ctx->mfc_wq, wait);

1777 1778 1779 1780 1781
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1799
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1800 1801 1802 1803
{
	struct spu_context *ctx = file->private_data;
	int ret;

1804 1805
	ret = spu_acquire(ctx);
	if (ret)
1806
		goto out;
1807 1808 1809 1810 1811 1812 1813 1814
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1815 1816
	if (ret)
		goto out;
1817 1818 1819 1820
#else
	ret = 0;
#endif
	spu_release(ctx);
1821
out:
1822 1823 1824 1825 1826 1827
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1828
	return spufs_mfc_flush(file, NULL);
1829 1830 1831 1832 1833 1834 1835 1836 1837
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1838
static const struct file_operations spufs_mfc_fops = {
1839
	.open	 = spufs_mfc_open,
1840
	.release = spufs_mfc_release,
1841 1842 1843 1844 1845 1846
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1847
	.mmap	 = spufs_mfc_mmap,
1848 1849
};

1850
static int spufs_npc_set(void *data, u64 val)
1851 1852
{
	struct spu_context *ctx = data;
1853 1854 1855 1856 1857
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1858 1859
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1860 1861

	return 0;
1862 1863
}

1864
static u64 spufs_npc_get(struct spu_context *ctx)
1865 1866 1867
{
	return ctx->ops->npc_read(ctx);
}
1868 1869
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1870

1871
static int spufs_decr_set(void *data, u64 val)
1872 1873 1874
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1875 1876 1877 1878 1879
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1880
	lscsa->decr.slot[0] = (u32) val;
1881
	spu_release_saved(ctx);
1882 1883

	return 0;
1884 1885
}

1886
static u64 spufs_decr_get(struct spu_context *ctx)
1887 1888
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 1890
	return lscsa->decr.slot[0];
}
1891 1892
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1893

1894
static int spufs_decr_status_set(void *data, u64 val)
1895 1896
{
	struct spu_context *ctx = data;
1897 1898 1899 1900 1901
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1902 1903 1904 1905
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1906
	spu_release_saved(ctx);
1907 1908

	return 0;
1909 1910
}

1911
static u64 spufs_decr_status_get(struct spu_context *ctx)
1912
{
1913 1914 1915 1916
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1917
}
1918 1919 1920
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1921

1922
static int spufs_event_mask_set(void *data, u64 val)
1923 1924 1925
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1926 1927 1928 1929 1930
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1931
	lscsa->event_mask.slot[0] = (u32) val;
1932
	spu_release_saved(ctx);
1933 1934

	return 0;
1935 1936
}

1937
static u64 spufs_event_mask_get(struct spu_context *ctx)
1938 1939
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1940 1941 1942
	return lscsa->event_mask.slot[0];
}

1943 1944 1945
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1946

1947
static u64 spufs_event_status_get(struct spu_context *ctx)
1948 1949 1950 1951 1952
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1953 1954 1955
		return state->spu_chnldata_RW[0];
	return 0;
}
1956 1957
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1958

1959
static int spufs_srr0_set(void *data, u64 val)
1960 1961 1962
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1963 1964 1965 1966 1967
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1968
	lscsa->srr0.slot[0] = (u32) val;
1969
	spu_release_saved(ctx);
1970 1971

	return 0;
1972 1973
}

1974
static u64 spufs_srr0_get(struct spu_context *ctx)
1975 1976
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1977
	return lscsa->srr0.slot[0];
1978
}
1979 1980
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1981

1982
static u64 spufs_id_get(struct spu_context *ctx)
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1993 1994
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1995

1996
static u64 spufs_object_id_get(struct spu_context *ctx)
1997 1998
{
	/* FIXME: Should there really be no locking here? */
1999
	return ctx->object_id;
2000 2001
}

2002
static int spufs_object_id_set(void *data, u64 id)
2003 2004 2005
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2006 2007

	return 0;
2008 2009
}

2010 2011
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2012

2013
static u64 spufs_lslr_get(struct spu_context *ctx)
2014 2015 2016
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2017 2018
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2019 2020 2021 2022 2023 2024 2025 2026 2027

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2051 2052 2053 2054 2055
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2056 2057 2058 2059 2060
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2061 2062 2063 2064

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2065 2066 2067
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2068
	int ret;
2069 2070 2071 2072 2073
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2074 2075 2076
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2077
	spin_lock(&ctx->csa.register_lock);
2078
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2079
	spin_unlock(&ctx->csa.register_lock);
2080
	spu_release_saved(ctx);
2081

2082
	return ret;
2083 2084
}

2085
static const struct file_operations spufs_mbox_info_fops = {
2086 2087 2088 2089 2090
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2091 2092 2093 2094 2095
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2096 2097 2098 2099 2100
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2101 2102 2103 2104

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2105 2106 2107 2108
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2109
	int ret;
2110 2111 2112 2113

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2114 2115 2116
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2117
	spin_lock(&ctx->csa.register_lock);
2118
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2119
	spin_unlock(&ctx->csa.register_lock);
2120
	spu_release_saved(ctx);
2121

2122
	return ret;
2123 2124
}

2125
static const struct file_operations spufs_ibox_info_fops = {
2126 2127 2128 2129 2130
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2131 2132
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2133 2134 2135 2136 2137
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2154 2155 2156
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2157 2158 2159
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2160
	spin_lock(&ctx->csa.register_lock);
2161
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2162
	spin_unlock(&ctx->csa.register_lock);
2163
	spu_release_saved(ctx);
2164

2165
	return ret;
2166 2167
}

2168
static const struct file_operations spufs_wbox_info_fops = {
2169 2170 2171 2172 2173
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2174 2175
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2200 2201 2202 2203 2204 2205 2206 2207 2208
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2209 2210 2211
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2212 2213 2214
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2215
	spu_release_saved(ctx);
2216 2217 2218 2219

	return ret;
}

2220
static const struct file_operations spufs_dma_info_fops = {
2221 2222 2223 2224
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2225 2226
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2227 2228 2229
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2230
	int ret = sizeof info;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2262 2263 2264
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2265 2266
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2267
	spin_unlock(&ctx->csa.register_lock);
2268
	spu_release_saved(ctx);
2269 2270 2271 2272

	return ret;
}

2273
static const struct file_operations spufs_proxydma_info_fops = {
2274 2275 2276 2277
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2298 2299 2300 2301 2302
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2303
		enum spu_utilization_state state)
2304
{
2305 2306
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2321

2322
	return time / NSEC_PER_MSEC;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2353 2354 2355 2356 2357
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2358 2359 2360

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2361 2362 2363 2364 2365
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2391
struct tree_descr spufs_dir_contents[] = {
2392
	{ "capabilities", &spufs_caps_fops, 0444, },
2393
	{ "mem",  &spufs_mem_fops,  0666, },
2394
	{ "regs", &spufs_regs_fops,  0666, },
2395 2396 2397 2398 2399 2400
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2401 2402
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2403 2404
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2405
	{ "cntl", &spufs_cntl_fops,  0666, },
2406
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2407 2408 2409 2410 2411
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2412 2413 2414
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2415
	{ "event_status", &spufs_event_status_ops, 0444, },
2416
	{ "psmap", &spufs_psmap_fops, 0666, },
2417 2418
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2419 2420 2421
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2422 2423
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2424
	{ "tid", &spufs_tid_fops, 0444, },
2425
	{ "stat", &spufs_stat_fops, 0444, },
2426 2427
	{},
};
2428 2429

struct tree_descr spufs_dir_nosched_contents[] = {
2430
	{ "capabilities", &spufs_caps_fops, 0444, },
2431 2432 2433 2434 2435 2436 2437
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2438 2439
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2440 2441 2442 2443 2444 2445 2446 2447 2448
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2449
	{ "tid", &spufs_tid_fops, 0444, },
2450
	{ "stat", &spufs_stat_fops, 0444, },
2451 2452
	{},
};
2453 2454

struct spufs_coredump_reader spufs_coredump_read[] = {
2455 2456
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2457 2458 2459
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2460 2461
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2462
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2463
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2464 2465 2466
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2467 2468 2469 2470 2471 2472
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2473 2474
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2475
	{ NULL },
2476
};