i915_debugfs.c 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/seq_file.h>
30
#include <linux/debugfs.h>
31
#include <linux/slab.h>
32
#include <linux/export.h>
33 34
#include "drmP.h"
#include "drm.h"
35
#include "intel_drv.h"
36
#include "intel_ringbuffer.h"
37 38 39 40 41 42 43 44
#include "i915_drm.h"
#include "i915_drv.h"

#define DRM_I915_RING_DEBUG 1


#if defined(CONFIG_DEBUG_FS)

C
Chris Wilson 已提交
45
enum {
46
	ACTIVE_LIST,
C
Chris Wilson 已提交
47 48
	FLUSHING_LIST,
	INACTIVE_LIST,
49 50
	PINNED_LIST,
	DEFERRED_FREE_LIST,
C
Chris Wilson 已提交
51
};
52

53 54 55 56 57 58 59 60 61 62 63 64
static const char *yesno(int v)
{
	return v ? "yes" : "no";
}

static int i915_capabilities(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	const struct intel_device_info *info = INTEL_INFO(dev);

	seq_printf(m, "gen: %d\n", info->gen);
65
	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
	B(is_mobile);
	B(is_i85x);
	B(is_i915g);
	B(is_i945gm);
	B(is_g33);
	B(need_gfx_hws);
	B(is_g4x);
	B(is_pineview);
	B(is_broadwater);
	B(is_crestline);
	B(has_fbc);
	B(has_pipe_cxsr);
	B(has_hotplug);
	B(cursor_needs_physical);
	B(has_overlay);
	B(overlay_needs_physical);
83
	B(supports_tv);
84 85
	B(has_bsd_ring);
	B(has_blt_ring);
86 87 88 89
#undef B

	return 0;
}
90

91
static const char *get_pin_flag(struct drm_i915_gem_object *obj)
92
{
93
	if (obj->user_pin_count > 0)
94
		return "P";
95
	else if (obj->pin_count > 0)
96 97 98 99 100
		return "p";
	else
		return " ";
}

101
static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
102
{
103 104 105 106 107 108
	switch (obj->tiling_mode) {
	default:
	case I915_TILING_NONE: return " ";
	case I915_TILING_X: return "X";
	case I915_TILING_Y: return "Y";
	}
109 110
}

111
static const char *cache_level_str(int type)
112 113
{
	switch (type) {
114 115 116
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return " snooped (LLC)";
	case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
117 118 119 120
	default: return "";
	}
}

121 122 123
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
124
	seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
125 126 127
		   &obj->base,
		   get_pin_flag(obj),
		   get_tiling_flag(obj),
128
		   obj->base.size / 1024,
129 130 131
		   obj->base.read_domains,
		   obj->base.write_domain,
		   obj->last_rendering_seqno,
132
		   obj->last_fenced_seqno,
133
		   cache_level_str(obj->cache_level),
134 135 136 137 138 139 140
		   obj->dirty ? " dirty" : "",
		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
	if (obj->base.name)
		seq_printf(m, " (name: %d)", obj->base.name);
	if (obj->fence_reg != I915_FENCE_REG_NONE)
		seq_printf(m, " (fence: %d)", obj->fence_reg);
	if (obj->gtt_space != NULL)
141 142
		seq_printf(m, " (gtt offset: %08x, size: %08x)",
			   obj->gtt_offset, (unsigned int)obj->gtt_space->size);
143 144 145 146 147 148 149 150 151
	if (obj->pin_mappable || obj->fault_mappable) {
		char s[3], *t = s;
		if (obj->pin_mappable)
			*t++ = 'p';
		if (obj->fault_mappable)
			*t++ = 'f';
		*t = '\0';
		seq_printf(m, " (%s mappable)", s);
	}
152 153
	if (obj->ring != NULL)
		seq_printf(m, " (%s)", obj->ring->name);
154 155
}

156
static int i915_gem_object_list_info(struct seq_file *m, void *data)
157 158
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
159 160
	uintptr_t list = (uintptr_t) node->info_ent->data;
	struct list_head *head;
161 162
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
163
	struct drm_i915_gem_object *obj;
164 165
	size_t total_obj_size, total_gtt_size;
	int count, ret;
166 167 168 169

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
170

171 172 173
	switch (list) {
	case ACTIVE_LIST:
		seq_printf(m, "Active:\n");
174
		head = &dev_priv->mm.active_list;
175 176
		break;
	case INACTIVE_LIST:
177
		seq_printf(m, "Inactive:\n");
178 179
		head = &dev_priv->mm.inactive_list;
		break;
C
Chris Wilson 已提交
180 181 182 183
	case PINNED_LIST:
		seq_printf(m, "Pinned:\n");
		head = &dev_priv->mm.pinned_list;
		break;
184 185 186 187
	case FLUSHING_LIST:
		seq_printf(m, "Flushing:\n");
		head = &dev_priv->mm.flushing_list;
		break;
188 189 190 191
	case DEFERRED_FREE_LIST:
		seq_printf(m, "Deferred free:\n");
		head = &dev_priv->mm.deferred_free_list;
		break;
192
	default:
193 194
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
195 196
	}

197
	total_obj_size = total_gtt_size = count = 0;
198
	list_for_each_entry(obj, head, mm_list) {
199
		seq_printf(m, "   ");
200
		describe_obj(m, obj);
201
		seq_printf(m, "\n");
202 203
		total_obj_size += obj->base.size;
		total_gtt_size += obj->gtt_space->size;
204
		count++;
205
	}
206
	mutex_unlock(&dev->struct_mutex);
207

208 209
	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
		   count, total_obj_size, total_gtt_size);
210 211 212
	return 0;
}

213 214 215 216 217 218 219 220 221
#define count_objects(list, member) do { \
	list_for_each_entry(obj, list, member) { \
		size += obj->gtt_space->size; \
		++count; \
		if (obj->map_and_fenceable) { \
			mappable_size += obj->gtt_space->size; \
			++mappable_count; \
		} \
	} \
222
} while (0)
223

224 225 226 227 228
static int i915_gem_object_info(struct seq_file *m, void* data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
229 230 231
	u32 count, mappable_count;
	size_t size, mappable_size;
	struct drm_i915_gem_object *obj;
232 233 234 235 236 237
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	seq_printf(m, "%u objects, %zu bytes\n",
		   dev_priv->mm.object_count,
		   dev_priv->mm.object_memory);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.gtt_list, gtt_list);
	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.active_list, mm_list);
	count_objects(&dev_priv->mm.flushing_list, mm_list);
	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.pinned_list, mm_list);
	seq_printf(m, "  %u [%u] pinned objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.inactive_list, mm_list);
	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.deferred_free_list, mm_list);
	seq_printf(m, "  %u [%u] freed objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->fault_mappable) {
			size += obj->gtt_space->size;
			++count;
		}
		if (obj->pin_mappable) {
			mappable_size += obj->gtt_space->size;
			++mappable_count;
		}
	}
	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
		   mappable_count, mappable_size);
	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
		   count, size);

	seq_printf(m, "%zu [%zu] gtt total\n",
		   dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
286 287 288 289 290 291

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static int i915_gem_gtt_info(struct seq_file *m, void* data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	size_t total_obj_size, total_gtt_size;
	int count, ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	total_obj_size = total_gtt_size = count = 0;
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		seq_printf(m, "   ");
		describe_obj(m, obj);
		seq_printf(m, "\n");
		total_obj_size += obj->base.size;
		total_gtt_size += obj->gtt_space->size;
		count++;
	}

	mutex_unlock(&dev->struct_mutex);

	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
		   count, total_obj_size, total_gtt_size);

	return 0;
}

323

324 325 326 327 328 329 330 331
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	unsigned long flags;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
332 333
		const char pipe = pipe_name(crtc->pipe);
		const char plane = plane_name(crtc->plane);
334 335 336 337 338
		struct intel_unpin_work *work;

		spin_lock_irqsave(&dev->event_lock, flags);
		work = crtc->unpin_work;
		if (work == NULL) {
339
			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
340 341 342
				   pipe, plane);
		} else {
			if (!work->pending) {
343
				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
344 345
					   pipe, plane);
			} else {
346
				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
347 348 349 350 351 352 353 354 355
					   pipe, plane);
			}
			if (work->enable_stall_check)
				seq_printf(m, "Stall check enabled, ");
			else
				seq_printf(m, "Stall check waiting for page flip ioctl, ");
			seq_printf(m, "%d prepares\n", work->pending);

			if (work->old_fb_obj) {
356 357 358
				struct drm_i915_gem_object *obj = work->old_fb_obj;
				if (obj)
					seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
359 360
			}
			if (work->pending_flip_obj) {
361 362 363
				struct drm_i915_gem_object *obj = work->pending_flip_obj;
				if (obj)
					seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
364 365 366 367 368 369 370 371
			}
		}
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	return 0;
}

372 373 374 375 376 377
static int i915_gem_request_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_request *gem_request;
378
	int ret, count;
379 380 381 382

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
383

384
	count = 0;
385
	if (!list_empty(&dev_priv->ring[RCS].request_list)) {
386 387
		seq_printf(m, "Render requests:\n");
		list_for_each_entry(gem_request,
388
				    &dev_priv->ring[RCS].request_list,
389 390 391 392 393 394 395
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
	}
396
	if (!list_empty(&dev_priv->ring[VCS].request_list)) {
397 398
		seq_printf(m, "BSD requests:\n");
		list_for_each_entry(gem_request,
399
				    &dev_priv->ring[VCS].request_list,
400 401 402 403 404 405 406
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
	}
407
	if (!list_empty(&dev_priv->ring[BCS].request_list)) {
408 409
		seq_printf(m, "BLT requests:\n");
		list_for_each_entry(gem_request,
410
				    &dev_priv->ring[BCS].request_list,
411 412 413 414 415 416
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
417
	}
418 419
	mutex_unlock(&dev->struct_mutex);

420 421 422
	if (count == 0)
		seq_printf(m, "No requests\n");

423 424 425
	return 0;
}

426 427 428 429 430 431 432 433 434 435 436 437 438
static void i915_ring_seqno_info(struct seq_file *m,
				 struct intel_ring_buffer *ring)
{
	if (ring->get_seqno) {
		seq_printf(m, "Current sequence (%s): %d\n",
			   ring->name, ring->get_seqno(ring));
		seq_printf(m, "Waiter sequence (%s):  %d\n",
			   ring->name, ring->waiting_seqno);
		seq_printf(m, "IRQ sequence (%s):     %d\n",
			   ring->name, ring->irq_seqno);
	}
}

439 440 441 442 443
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
444
	int ret, i;
445 446 447 448

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
449

450 451
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_ring_seqno_info(m, &dev_priv->ring[i]);
452 453 454

	mutex_unlock(&dev->struct_mutex);

455 456 457 458 459 460 461 462 463
	return 0;
}


static int i915_interrupt_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
464
	int ret, i, pipe;
465 466 467 468

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
469

470
	if (!HAS_PCH_SPLIT(dev)) {
471 472 473 474 475 476
		seq_printf(m, "Interrupt enable:    %08x\n",
			   I915_READ(IER));
		seq_printf(m, "Interrupt identity:  %08x\n",
			   I915_READ(IIR));
		seq_printf(m, "Interrupt mask:      %08x\n",
			   I915_READ(IMR));
477 478 479 480
		for_each_pipe(pipe)
			seq_printf(m, "Pipe %c stat:         %08x\n",
				   pipe_name(pipe),
				   I915_READ(PIPESTAT(pipe)));
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	} else {
		seq_printf(m, "North Display Interrupt enable:		%08x\n",
			   I915_READ(DEIER));
		seq_printf(m, "North Display Interrupt identity:	%08x\n",
			   I915_READ(DEIIR));
		seq_printf(m, "North Display Interrupt mask:		%08x\n",
			   I915_READ(DEIMR));
		seq_printf(m, "South Display Interrupt enable:		%08x\n",
			   I915_READ(SDEIER));
		seq_printf(m, "South Display Interrupt identity:	%08x\n",
			   I915_READ(SDEIIR));
		seq_printf(m, "South Display Interrupt mask:		%08x\n",
			   I915_READ(SDEIMR));
		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
			   I915_READ(GTIER));
		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
			   I915_READ(GTIIR));
		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
			   I915_READ(GTIMR));
	}
501 502
	seq_printf(m, "Interrupts received: %d\n",
		   atomic_read(&dev_priv->irq_received));
503
	for (i = 0; i < I915_NUM_RINGS; i++) {
504
		if (IS_GEN6(dev) || IS_GEN7(dev)) {
505 506 507 508
			seq_printf(m, "Graphics Interrupt mask (%s):	%08x\n",
				   dev_priv->ring[i].name,
				   I915_READ_IMR(&dev_priv->ring[i]));
		}
509
		i915_ring_seqno_info(m, &dev_priv->ring[i]);
510
	}
511 512
	mutex_unlock(&dev->struct_mutex);

513 514 515
	return 0;
}

516 517 518 519 520
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
521 522 523 524 525
	int i, ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
526 527 528 529

	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
530
		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
531

532 533 534 535
		seq_printf(m, "Fenced object[%2d] = ", i);
		if (obj == NULL)
			seq_printf(m, "unused");
		else
536
			describe_obj(m, obj);
537
		seq_printf(m, "\n");
538 539
	}

540
	mutex_unlock(&dev->struct_mutex);
541 542 543
	return 0;
}

544 545 546 547 548
static int i915_hws_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
549
	struct intel_ring_buffer *ring;
C
Chris Wilson 已提交
550
	const volatile u32 __iomem *hws;
551 552
	int i;

553
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
C
Chris Wilson 已提交
554
	hws = (volatile u32 __iomem *)ring->status_page.page_addr;
555 556 557 558 559 560 561 562 563 564 565
	if (hws == NULL)
		return 0;

	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
			   i * 4,
			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
	}
	return 0;
}

566 567
static void i915_dump_object(struct seq_file *m,
			     struct io_mapping *mapping,
568
			     struct drm_i915_gem_object *obj)
569
{
570
	int page, page_count, i;
571

572
	page_count = obj->base.size / PAGE_SIZE;
573
	for (page = 0; page < page_count; page++) {
574
		u32 *mem = io_mapping_map_wc(mapping,
575
					     obj->gtt_offset + page * PAGE_SIZE);
576 577
		for (i = 0; i < PAGE_SIZE; i += 4)
			seq_printf(m, "%08x :  %08x\n", i, mem[i / 4]);
578
		io_mapping_unmap(mem);
579 580 581 582 583 584 585 586
	}
}

static int i915_batchbuffer_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
587
	struct drm_i915_gem_object *obj;
588 589
	int ret;

590 591 592
	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
593

594 595 596 597
	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
		if (obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) {
		    seq_printf(m, "--- gtt_offset = 0x%08x\n", obj->gtt_offset);
		    i915_dump_object(m, dev_priv->mm.gtt_mapping, obj);
598 599 600
		}
	}

601
	mutex_unlock(&dev->struct_mutex);
602 603 604 605 606 607 608 609
	return 0;
}

static int i915_ringbuffer_data(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
610
	struct intel_ring_buffer *ring;
611 612 613 614 615
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
616

617
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
618
	if (!ring->obj) {
619
		seq_printf(m, "No ringbuffer setup\n");
620
	} else {
C
Chris Wilson 已提交
621
		const u8 __iomem *virt = ring->virtual_start;
622
		uint32_t off;
623

624
		for (off = 0; off < ring->size; off += 4) {
625 626 627
			uint32_t *ptr = (uint32_t *)(virt + off);
			seq_printf(m, "%08x :  %08x\n", off, *ptr);
		}
628
	}
629
	mutex_unlock(&dev->struct_mutex);
630 631 632 633 634 635 636 637 638

	return 0;
}

static int i915_ringbuffer_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
639
	struct intel_ring_buffer *ring;
640
	int ret;
641

642
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
643
	if (ring->size == 0)
644
		return 0;
645

646 647 648 649
	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

650 651 652 653 654
	seq_printf(m, "Ring %s:\n", ring->name);
	seq_printf(m, "  Head :    %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
	seq_printf(m, "  Tail :    %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
	seq_printf(m, "  Size :    %08x\n", ring->size);
	seq_printf(m, "  Active :  %08x\n", intel_ring_get_active_head(ring));
655
	seq_printf(m, "  NOPID :   %08x\n", I915_READ_NOPID(ring));
656
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
657 658 659
		seq_printf(m, "  Sync 0 :   %08x\n", I915_READ_SYNC_0(ring));
		seq_printf(m, "  Sync 1 :   %08x\n", I915_READ_SYNC_1(ring));
	}
660 661
	seq_printf(m, "  Control : %08x\n", I915_READ_CTL(ring));
	seq_printf(m, "  Start :   %08x\n", I915_READ_START(ring));
662

663 664
	mutex_unlock(&dev->struct_mutex);

665 666 667
	return 0;
}

668 669 670
static const char *ring_str(int ring)
{
	switch (ring) {
671 672 673
	case RING_RENDER: return " render";
	case RING_BSD: return " bsd";
	case RING_BLT: return " blt";
674 675 676 677
	default: return "";
	}
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static const char *pin_flag(int pinned)
{
	if (pinned > 0)
		return " P";
	else if (pinned < 0)
		return " p";
	else
		return "";
}

static const char *tiling_flag(int tiling)
{
	switch (tiling) {
	default:
	case I915_TILING_NONE: return "";
	case I915_TILING_X: return " X";
	case I915_TILING_Y: return " Y";
	}
}

static const char *dirty_flag(int dirty)
{
	return dirty ? " dirty" : "";
}

static const char *purgeable_flag(int purgeable)
{
	return purgeable ? " purgeable" : "";
}

708 709 710 711 712 713 714 715
static void print_error_buffers(struct seq_file *m,
				const char *name,
				struct drm_i915_error_buffer *err,
				int count)
{
	seq_printf(m, "%s [%d]:\n", name, count);

	while (count--) {
716
		seq_printf(m, "  %08x %8u %04x %04x %08x%s%s%s%s%s%s",
717 718 719 720 721 722 723 724 725
			   err->gtt_offset,
			   err->size,
			   err->read_domains,
			   err->write_domain,
			   err->seqno,
			   pin_flag(err->pinned),
			   tiling_flag(err->tiling),
			   dirty_flag(err->dirty),
			   purgeable_flag(err->purgeable),
726
			   ring_str(err->ring),
727
			   cache_level_str(err->cache_level));
728 729 730 731 732 733 734 735 736 737 738

		if (err->name)
			seq_printf(m, " (name: %d)", err->name);
		if (err->fence_reg != I915_FENCE_REG_NONE)
			seq_printf(m, " (fence: %d)", err->fence_reg);

		seq_printf(m, "\n");
		err++;
	}
}

739 740 741 742 743 744 745
static int i915_error_state(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_error_state *error;
	unsigned long flags;
746
	int i, page, offset, elt;
747 748 749 750 751 752 753 754 755

	spin_lock_irqsave(&dev_priv->error_lock, flags);
	if (!dev_priv->first_error) {
		seq_printf(m, "no error state collected\n");
		goto out;
	}

	error = dev_priv->first_error;

756 757
	seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
		   error->time.tv_usec);
758
	seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
759 760
	seq_printf(m, "EIR: 0x%08x\n", error->eir);
	seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
761 762
	if (INTEL_INFO(dev)->gen >= 6) {
		seq_printf(m, "ERROR: 0x%08x\n", error->error);
763 764 765
		seq_printf(m, "Blitter command stream:\n");
		seq_printf(m, "  ACTHD:    0x%08x\n", error->bcs_acthd);
		seq_printf(m, "  IPEIR:    0x%08x\n", error->bcs_ipeir);
766
		seq_printf(m, "  IPEHR:    0x%08x\n", error->bcs_ipehr);
767 768
		seq_printf(m, "  INSTDONE: 0x%08x\n", error->bcs_instdone);
		seq_printf(m, "  seqno:    0x%08x\n", error->bcs_seqno);
769 770 771
		seq_printf(m, "Video (BSD) command stream:\n");
		seq_printf(m, "  ACTHD:    0x%08x\n", error->vcs_acthd);
		seq_printf(m, "  IPEIR:    0x%08x\n", error->vcs_ipeir);
772
		seq_printf(m, "  IPEHR:    0x%08x\n", error->vcs_ipehr);
773 774
		seq_printf(m, "  INSTDONE: 0x%08x\n", error->vcs_instdone);
		seq_printf(m, "  seqno:    0x%08x\n", error->vcs_seqno);
775
	}
776 777
	seq_printf(m, "Render command stream:\n");
	seq_printf(m, "  ACTHD: 0x%08x\n", error->acthd);
778 779 780
	seq_printf(m, "  IPEIR: 0x%08x\n", error->ipeir);
	seq_printf(m, "  IPEHR: 0x%08x\n", error->ipehr);
	seq_printf(m, "  INSTDONE: 0x%08x\n", error->instdone);
781
	if (INTEL_INFO(dev)->gen >= 4) {
782
		seq_printf(m, "  INSTDONE1: 0x%08x\n", error->instdone1);
783
		seq_printf(m, "  INSTPS: 0x%08x\n", error->instps);
784
	}
785 786
	seq_printf(m, "  INSTPM: 0x%08x\n", error->instpm);
	seq_printf(m, "  seqno: 0x%08x\n", error->seqno);
787

788
	for (i = 0; i < dev_priv->num_fence_regs; i++)
789 790
		seq_printf(m, "  fence[%d] = %08llx\n", i, error->fence[i]);

791 792 793 794 795 796 797 798 799
	if (error->active_bo)
		print_error_buffers(m, "Active",
				    error->active_bo,
				    error->active_bo_count);

	if (error->pinned_bo)
		print_error_buffers(m, "Pinned",
				    error->pinned_bo,
				    error->pinned_bo_count);
800 801 802 803 804

	for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++) {
		if (error->batchbuffer[i]) {
			struct drm_i915_error_object *obj = error->batchbuffer[i];

805 806 807
			seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
				   dev_priv->ring[i].name,
				   obj->gtt_offset);
808 809 810 811 812 813 814 815 816 817
			offset = 0;
			for (page = 0; page < obj->page_count; page++) {
				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
					seq_printf(m, "%08x :  %08x\n", offset, obj->pages[page][elt]);
					offset += 4;
				}
			}
		}
	}

818 819 820 821 822 823 824 825 826 827 828 829 830 831
	for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++) {
		if (error->ringbuffer[i]) {
			struct drm_i915_error_object *obj = error->ringbuffer[i];
			seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
				   dev_priv->ring[i].name,
				   obj->gtt_offset);
			offset = 0;
			for (page = 0; page < obj->page_count; page++) {
				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
					seq_printf(m, "%08x :  %08x\n",
						   offset,
						   obj->pages[page][elt]);
					offset += 4;
				}
832 833 834
			}
		}
	}
835

836 837 838
	if (error->overlay)
		intel_overlay_print_error_state(m, error->overlay);

839 840 841
	if (error->display)
		intel_display_print_error_state(m, dev, error->display);

842 843 844 845 846
out:
	spin_unlock_irqrestore(&dev_priv->error_lock, flags);

	return 0;
}
847

848 849 850 851 852
static int i915_rstdby_delays(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
853 854 855 856 857 858 859 860 861 862
	u16 crstanddelay;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	crstanddelay = I915_READ16(CRSTANDVID);

	mutex_unlock(&dev->struct_mutex);
863 864 865 866 867 868 869 870 871 872 873

	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));

	return 0;
}

static int i915_cur_delayinfo(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
874
	int ret;
875 876 877 878 879 880 881 882 883 884 885

	if (IS_GEN5(dev)) {
		u16 rgvswctl = I915_READ16(MEMSWCTL);
		u16 rgvstat = I915_READ16(MEMSTAT_ILK);

		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
			   MEMSTAT_VID_SHIFT);
		seq_printf(m, "Current P-state: %d\n",
			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
886
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
887 888 889
		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
890 891 892
		u32 rpstat;
		u32 rpupei, rpcurup, rpprevup;
		u32 rpdownei, rpcurdown, rpprevdown;
893 894 895
		int max_freq;

		/* RPSTAT1 is in the GT power well */
896 897 898 899
		ret = mutex_lock_interruptible(&dev->struct_mutex);
		if (ret)
			return ret;

900
		gen6_gt_force_wake_get(dev_priv);
901

902 903 904 905 906 907 908 909
		rpstat = I915_READ(GEN6_RPSTAT1);
		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
		rpcurup = I915_READ(GEN6_RP_CUR_UP);
		rpprevup = I915_READ(GEN6_RP_PREV_UP);
		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);

910 911 912
		gen6_gt_force_wake_put(dev_priv);
		mutex_unlock(&dev->struct_mutex);

913
		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
914
		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
915 916 917 918 919 920
		seq_printf(m, "Render p-state ratio: %d\n",
			   (gt_perf_status & 0xff00) >> 8);
		seq_printf(m, "Render p-state VID: %d\n",
			   gt_perf_status & 0xff);
		seq_printf(m, "Render p-state limit: %d\n",
			   rp_state_limits & 0xff);
921
		seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
922
						GEN6_CAGF_SHIFT) * 50);
923 924 925 926 927 928 929 930 931 932 933 934
		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
			   GEN6_CURICONT_MASK);
		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
			   GEN6_CURIAVG_MASK);
		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
			   GEN6_CURBSYTAVG_MASK);
935 936 937

		max_freq = (rp_state_cap & 0xff0000) >> 16;
		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
938
			   max_freq * 50);
939 940 941

		max_freq = (rp_state_cap & 0xff00) >> 8;
		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
942
			   max_freq * 50);
943 944 945

		max_freq = rp_state_cap & 0xff;
		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
946
			   max_freq * 50);
947 948 949
	} else {
		seq_printf(m, "no P-state info available\n");
	}
950 951 952 953 954 955 956 957 958 959

	return 0;
}

static int i915_delayfreq_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 delayfreq;
960 961 962 963 964
	int ret, i;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
965 966 967

	for (i = 0; i < 16; i++) {
		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
968 969
		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
970 971
	}

972 973
	mutex_unlock(&dev->struct_mutex);

974 975 976 977 978 979 980 981 982 983 984 985 986 987
	return 0;
}

static inline int MAP_TO_MV(int map)
{
	return 1250 - (map * 25);
}

static int i915_inttoext_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 inttoext;
988 989 990 991 992
	int ret, i;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
993 994 995 996 997 998

	for (i = 1; i <= 32; i++) {
		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
	}

999 1000
	mutex_unlock(&dev->struct_mutex);

1001 1002 1003
	return 0;
}

1004
static int ironlake_drpc_info(struct seq_file *m)
1005 1006 1007 1008
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	u32 rgvmodectl, rstdbyctl;
	u16 crstandvid;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	rgvmodectl = I915_READ(MEMMODECTL);
	rstdbyctl = I915_READ(RSTDBYCTL);
	crstandvid = I915_READ16(CRSTANDVID);

	mutex_unlock(&dev->struct_mutex);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
		   "yes" : "no");
	seq_printf(m, "Boost freq: %d\n",
		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
		   MEMMODE_BOOST_FREQ_SHIFT);
	seq_printf(m, "HW control enabled: %s\n",
		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
	seq_printf(m, "SW control enabled: %s\n",
		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
	seq_printf(m, "Gated voltage change: %s\n",
		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
	seq_printf(m, "Starting frequency: P%d\n",
		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1036
	seq_printf(m, "Max P-state: P%d\n",
1037
		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1038 1039 1040 1041 1042
	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
	seq_printf(m, "Render standby enabled: %s\n",
		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	seq_printf(m, "Current RS state: ");
	switch (rstdbyctl & RSX_STATUS_MASK) {
	case RSX_STATUS_ON:
		seq_printf(m, "on\n");
		break;
	case RSX_STATUS_RC1:
		seq_printf(m, "RC1\n");
		break;
	case RSX_STATUS_RC1E:
		seq_printf(m, "RC1E\n");
		break;
	case RSX_STATUS_RS1:
		seq_printf(m, "RS1\n");
		break;
	case RSX_STATUS_RS2:
		seq_printf(m, "RS2 (RC6)\n");
		break;
	case RSX_STATUS_RS3:
		seq_printf(m, "RC3 (RC6+)\n");
		break;
	default:
		seq_printf(m, "unknown\n");
		break;
	}
1067 1068 1069 1070

	return 0;
}

1071 1072 1073 1074 1075 1076 1077
static int gen6_drpc_info(struct seq_file *m)
{

	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rpmodectl1, gt_core_status, rcctl1;
1078
	unsigned forcewake_count;
1079 1080 1081 1082 1083 1084 1085
	int count=0, ret;


	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

1086 1087 1088 1089 1090 1091 1092
	spin_lock_irq(&dev_priv->gt_lock);
	forcewake_count = dev_priv->forcewake_count;
	spin_unlock_irq(&dev_priv->gt_lock);

	if (forcewake_count) {
		seq_printf(m, "RC information inaccurate because somebody "
			      "holds a forcewake reference \n");
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	} else {
		/* NB: we cannot use forcewake, else we read the wrong values */
		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
			udelay(10);
		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
	}

	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);

	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
	rcctl1 = I915_READ(GEN6_RC_CONTROL);
	mutex_unlock(&dev->struct_mutex);

	seq_printf(m, "Video Turbo Mode: %s\n",
		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
	seq_printf(m, "HW control enabled: %s\n",
		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
	seq_printf(m, "SW control enabled: %s\n",
		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
			  GEN6_RP_MEDIA_SW_MODE));
1114
	seq_printf(m, "RC1e Enabled: %s\n",
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
	seq_printf(m, "RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
	seq_printf(m, "Deep RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
	seq_printf(m, "Deepest RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
	seq_printf(m, "Current RC state: ");
	switch (gt_core_status & GEN6_RCn_MASK) {
	case GEN6_RC0:
		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
			seq_printf(m, "Core Power Down\n");
		else
			seq_printf(m, "on\n");
		break;
	case GEN6_RC3:
		seq_printf(m, "RC3\n");
		break;
	case GEN6_RC6:
		seq_printf(m, "RC6\n");
		break;
	case GEN6_RC7:
		seq_printf(m, "RC7\n");
		break;
	default:
		seq_printf(m, "Unknown\n");
		break;
	}

	seq_printf(m, "Core Power Down: %s\n",
		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
	return 0;
}

static int i915_drpc_info(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;

	if (IS_GEN6(dev) || IS_GEN7(dev))
		return gen6_drpc_info(m);
	else
		return ironlake_drpc_info(m);
}

1160 1161 1162 1163 1164 1165
static int i915_fbc_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

1166
	if (!I915_HAS_FBC(dev)) {
1167 1168 1169 1170
		seq_printf(m, "FBC unsupported on this chipset\n");
		return 0;
	}

1171
	if (intel_fbc_enabled(dev)) {
1172 1173 1174 1175
		seq_printf(m, "FBC enabled\n");
	} else {
		seq_printf(m, "FBC disabled: ");
		switch (dev_priv->no_fbc_reason) {
C
Chris Wilson 已提交
1176 1177 1178
		case FBC_NO_OUTPUT:
			seq_printf(m, "no outputs");
			break;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		case FBC_STOLEN_TOO_SMALL:
			seq_printf(m, "not enough stolen memory");
			break;
		case FBC_UNSUPPORTED_MODE:
			seq_printf(m, "mode not supported");
			break;
		case FBC_MODE_TOO_LARGE:
			seq_printf(m, "mode too large");
			break;
		case FBC_BAD_PLANE:
			seq_printf(m, "FBC unsupported on plane");
			break;
		case FBC_NOT_TILED:
			seq_printf(m, "scanout buffer not tiled");
			break;
1194 1195 1196
		case FBC_MULTIPLE_PIPES:
			seq_printf(m, "multiple pipes are enabled");
			break;
1197 1198 1199
		case FBC_MODULE_PARAM:
			seq_printf(m, "disabled per module param (default off)");
			break;
1200 1201 1202 1203 1204 1205 1206 1207
		default:
			seq_printf(m, "unknown reason");
		}
		seq_printf(m, "\n");
	}
	return 0;
}

1208 1209 1210 1211 1212 1213 1214
static int i915_sr_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool sr_enabled = false;

1215
	if (HAS_PCH_SPLIT(dev))
1216
		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1217
	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1218 1219 1220 1221 1222 1223
		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
	else if (IS_I915GM(dev))
		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
	else if (IS_PINEVIEW(dev))
		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;

1224 1225
	seq_printf(m, "self-refresh: %s\n",
		   sr_enabled ? "enabled" : "disabled");
1226 1227 1228 1229

	return 0;
}

1230 1231 1232 1233 1234 1235
static int i915_emon_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	unsigned long temp, chipset, gfx;
1236 1237 1238 1239 1240
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
1241 1242 1243 1244

	temp = i915_mch_val(dev_priv);
	chipset = i915_chipset_val(dev_priv);
	gfx = i915_gfx_val(dev_priv);
1245
	mutex_unlock(&dev->struct_mutex);
1246 1247 1248 1249 1250 1251 1252 1253 1254

	seq_printf(m, "GMCH temp: %ld\n", temp);
	seq_printf(m, "Chipset power: %ld\n", chipset);
	seq_printf(m, "GFX power: %ld\n", gfx);
	seq_printf(m, "Total power: %ld\n", chipset + gfx);

	return 0;
}

1255 1256 1257 1258 1259 1260 1261 1262
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	int gpu_freq, ia_freq;

1263
	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		seq_printf(m, "unsupported on this chipset\n");
		return 0;
	}

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");

	for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
	     gpu_freq++) {
		I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
			   GEN6_PCODE_READ_MIN_FREQ_TABLE);
		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
			      GEN6_PCODE_READY) == 0, 10)) {
			DRM_ERROR("pcode read of freq table timed out\n");
			continue;
		}
		ia_freq = I915_READ(GEN6_PCODE_DATA);
		seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
	}

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1293 1294 1295 1296 1297
static int i915_gfxec(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1298 1299 1300 1301 1302
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
1303 1304 1305

	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));

1306 1307
	mutex_unlock(&dev->struct_mutex);

1308 1309 1310
	return 0;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
static int i915_opregion(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_opregion *opregion = &dev_priv->opregion;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (opregion->header)
		seq_write(m, opregion->header, OPREGION_SIZE);

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_fbdev *ifbdev;
	struct intel_framebuffer *fb;
	int ret;

	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
	if (ret)
		return ret;

	ifbdev = dev_priv->fbdev;
	fb = to_intel_framebuffer(ifbdev->helper.fb);

	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
		   fb->base.width,
		   fb->base.height,
		   fb->base.depth,
		   fb->base.bits_per_pixel);
1352
	describe_obj(m, fb->obj);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	seq_printf(m, "\n");

	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
		if (&fb->base == ifbdev->helper.fb)
			continue;

		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
			   fb->base.width,
			   fb->base.height,
			   fb->base.depth,
			   fb->base.bits_per_pixel);
1364
		describe_obj(m, fb->obj);
1365 1366 1367 1368 1369 1370 1371 1372
		seq_printf(m, "\n");
	}

	mutex_unlock(&dev->mode_config.mutex);

	return 0;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static int i915_context_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
	if (ret)
		return ret;

1384 1385 1386 1387 1388
	if (dev_priv->pwrctx) {
		seq_printf(m, "power context ");
		describe_obj(m, dev_priv->pwrctx);
		seq_printf(m, "\n");
	}
1389

1390 1391 1392 1393 1394
	if (dev_priv->renderctx) {
		seq_printf(m, "render context ");
		describe_obj(m, dev_priv->renderctx);
		seq_printf(m, "\n");
	}
1395 1396 1397 1398 1399 1400

	mutex_unlock(&dev->mode_config.mutex);

	return 0;
}

1401 1402 1403 1404 1405
static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1406
	unsigned forcewake_count;
1407

1408 1409 1410 1411 1412
	spin_lock_irq(&dev_priv->gt_lock);
	forcewake_count = dev_priv->forcewake_count;
	spin_unlock_irq(&dev_priv->gt_lock);

	seq_printf(m, "forcewake count = %u\n", forcewake_count);
1413 1414 1415 1416

	return 0;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static int
i915_wedged_open(struct inode *inode,
		 struct file *filp)
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
i915_wedged_read(struct file *filp,
		 char __user *ubuf,
		 size_t max,
		 loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	int len;

1436
	len = snprintf(buf, sizeof(buf),
1437 1438 1439
		       "wedged :  %d\n",
		       atomic_read(&dev_priv->mm.wedged));

1440 1441
	if (len > sizeof(buf))
		len = sizeof(buf);
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_wedged_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	char buf[20];
	int val = 1;

	if (cnt > 0) {
1457
		if (cnt > sizeof(buf) - 1)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	DRM_INFO("Manually setting wedged to %d\n", val);
1468
	i915_handle_error(dev, val);
1469 1470 1471 1472 1473 1474 1475 1476 1477

	return cnt;
}

static const struct file_operations i915_wedged_fops = {
	.owner = THIS_MODULE,
	.open = i915_wedged_open,
	.read = i915_wedged_read,
	.write = i915_wedged_write,
1478
	.llseek = default_llseek,
1479 1480
};

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static int
i915_max_freq_open(struct inode *inode,
		   struct file *filp)
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
i915_max_freq_read(struct file *filp,
		   char __user *ubuf,
		   size_t max,
		   loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	int len;

1500
	len = snprintf(buf, sizeof(buf),
1501 1502
		       "max freq: %d\n", dev_priv->max_delay * 50);

1503 1504
	if (len > sizeof(buf))
		len = sizeof(buf);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_max_freq_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	char buf[20];
	int val = 1;

	if (cnt > 0) {
1521
		if (cnt > sizeof(buf) - 1)
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);

	/*
	 * Turbo will still be enabled, but won't go above the set value.
	 */
	dev_priv->max_delay = val / 50;

	gen6_set_rps(dev, val / 50);

	return cnt;
}

static const struct file_operations i915_max_freq_fops = {
	.owner = THIS_MODULE,
	.open = i915_max_freq_open,
	.read = i915_max_freq_read,
	.write = i915_max_freq_write,
	.llseek = default_llseek,
};

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static int
i915_cache_sharing_open(struct inode *inode,
		   struct file *filp)
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
i915_cache_sharing_read(struct file *filp,
		   char __user *ubuf,
		   size_t max,
		   loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	u32 snpcr;
	int len;

	mutex_lock(&dev_priv->dev->struct_mutex);
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	mutex_unlock(&dev_priv->dev->struct_mutex);

1575
	len = snprintf(buf, sizeof(buf),
1576 1577 1578
		       "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
		       GEN6_MBC_SNPCR_SHIFT);

1579 1580
	if (len > sizeof(buf))
		len = sizeof(buf);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_cache_sharing_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	char buf[20];
	u32 snpcr;
	int val = 1;

	if (cnt > 0) {
1598
		if (cnt > sizeof(buf) - 1)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	if (val < 0 || val > 3)
		return -EINVAL;

	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);

	/* Update the cache sharing policy here as well */
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);

	return cnt;
}

static const struct file_operations i915_cache_sharing_fops = {
	.owner = THIS_MODULE,
	.open = i915_cache_sharing_open,
	.read = i915_cache_sharing_read,
	.write = i915_cache_sharing_write,
	.llseek = default_llseek,
};

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/* As the drm_debugfs_init() routines are called before dev->dev_private is
 * allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
		       struct dentry *ent,
		       const void *key)
{
	struct drm_info_node *node;

	node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
	if (node == NULL) {
		debugfs_remove(ent);
		return -ENOMEM;
	}

	node->minor = minor;
	node->dent = ent;
	node->info_ent = (void *) key;
1648 1649 1650 1651

	mutex_lock(&minor->debugfs_lock);
	list_add(&node->list, &minor->debugfs_list);
	mutex_unlock(&minor->debugfs_lock);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	return 0;
}

static int i915_wedged_create(struct dentry *root, struct drm_minor *minor)
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

	ent = debugfs_create_file("i915_wedged",
				  S_IRUGO | S_IWUSR,
				  root, dev,
				  &i915_wedged_fops);
	if (IS_ERR(ent))
		return PTR_ERR(ent);

	return drm_add_fake_info_node(minor, ent, &i915_wedged_fops);
}
1670

1671 1672 1673 1674 1675 1676
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
	struct drm_device *dev = inode->i_private;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1677
	if (INTEL_INFO(dev)->gen < 6)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		return 0;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
	gen6_gt_force_wake_get(dev_priv);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int i915_forcewake_release(struct inode *inode, struct file *file)
{
	struct drm_device *dev = inode->i_private;
	struct drm_i915_private *dev_priv = dev->dev_private;

1694
	if (INTEL_INFO(dev)->gen < 6)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		return 0;

	/*
	 * It's bad that we can potentially hang userspace if struct_mutex gets
	 * forever stuck.  However, if we cannot acquire this lock it means that
	 * almost certainly the driver has hung, is not unload-able. Therefore
	 * hanging here is probably a minor inconvenience not to be seen my
	 * almost every user.
	 */
	mutex_lock(&dev->struct_mutex);
	gen6_gt_force_wake_put(dev_priv);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

static const struct file_operations i915_forcewake_fops = {
	.owner = THIS_MODULE,
	.open = i915_forcewake_open,
	.release = i915_forcewake_release,
};

static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

	ent = debugfs_create_file("i915_forcewake_user",
B
Ben Widawsky 已提交
1723
				  S_IRUSR,
1724 1725 1726 1727 1728
				  root, dev,
				  &i915_forcewake_fops);
	if (IS_ERR(ent))
		return PTR_ERR(ent);

B
Ben Widawsky 已提交
1729
	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static int i915_max_freq_create(struct dentry *root, struct drm_minor *minor)
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

	ent = debugfs_create_file("i915_max_freq",
				  S_IRUGO | S_IWUSR,
				  root, dev,
				  &i915_max_freq_fops);
	if (IS_ERR(ent))
		return PTR_ERR(ent);

	return drm_add_fake_info_node(minor, ent, &i915_max_freq_fops);
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static int i915_cache_sharing_create(struct dentry *root, struct drm_minor *minor)
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

	ent = debugfs_create_file("i915_cache_sharing",
				  S_IRUGO | S_IWUSR,
				  root, dev,
				  &i915_cache_sharing_fops);
	if (IS_ERR(ent))
		return PTR_ERR(ent);

	return drm_add_fake_info_node(minor, ent, &i915_cache_sharing_fops);
}

1762
static struct drm_info_list i915_debugfs_list[] = {
C
Chris Wilson 已提交
1763
	{"i915_capabilities", i915_capabilities, 0},
1764
	{"i915_gem_objects", i915_gem_object_info, 0},
1765
	{"i915_gem_gtt", i915_gem_gtt_info, 0},
1766 1767 1768
	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
	{"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
C
Chris Wilson 已提交
1769
	{"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST},
1770
	{"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST},
1771
	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
1772 1773
	{"i915_gem_request", i915_gem_request_info, 0},
	{"i915_gem_seqno", i915_gem_seqno_info, 0},
1774
	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1775
	{"i915_gem_interrupt", i915_interrupt_info, 0},
1776 1777 1778 1779 1780 1781 1782 1783 1784
	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
	{"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
	{"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
	{"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
	{"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
	{"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
	{"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
1785
	{"i915_batchbuffers", i915_batchbuffer_info, 0},
1786
	{"i915_error_state", i915_error_state, 0},
1787 1788 1789 1790 1791
	{"i915_rstdby_delays", i915_rstdby_delays, 0},
	{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
	{"i915_delayfreq_table", i915_delayfreq_table, 0},
	{"i915_inttoext_table", i915_inttoext_table, 0},
	{"i915_drpc_info", i915_drpc_info, 0},
1792
	{"i915_emon_status", i915_emon_status, 0},
1793
	{"i915_ring_freq_table", i915_ring_freq_table, 0},
1794
	{"i915_gfxec", i915_gfxec, 0},
1795
	{"i915_fbc_status", i915_fbc_status, 0},
1796
	{"i915_sr_status", i915_sr_status, 0},
1797
	{"i915_opregion", i915_opregion, 0},
1798
	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
1799
	{"i915_context_status", i915_context_status, 0},
1800
	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
1801
};
1802
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1803

1804
int i915_debugfs_init(struct drm_minor *minor)
1805
{
1806 1807 1808 1809 1810 1811
	int ret;

	ret = i915_wedged_create(minor->debugfs_root, minor);
	if (ret)
		return ret;

1812
	ret = i915_forcewake_create(minor->debugfs_root, minor);
1813 1814 1815
	if (ret)
		return ret;
	ret = i915_max_freq_create(minor->debugfs_root, minor);
1816 1817 1818
	if (ret)
		return ret;
	ret = i915_cache_sharing_create(minor->debugfs_root, minor);
1819 1820 1821
	if (ret)
		return ret;

1822 1823
	return drm_debugfs_create_files(i915_debugfs_list,
					I915_DEBUGFS_ENTRIES,
1824 1825 1826
					minor->debugfs_root, minor);
}

1827
void i915_debugfs_cleanup(struct drm_minor *minor)
1828
{
1829 1830
	drm_debugfs_remove_files(i915_debugfs_list,
				 I915_DEBUGFS_ENTRIES, minor);
1831 1832
	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
				 1, minor);
1833 1834
	drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
				 1, minor);
1835 1836
	drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
				 1, minor);
1837 1838
	drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
				 1, minor);
1839 1840 1841
}

#endif /* CONFIG_DEBUG_FS */