menu.c 13.5 KB
Newer Older
1 2 3 4
/*
 * menu.c - the menu idle governor
 *
 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5 6 7
 * Copyright (C) 2009 Intel Corporation
 * Author:
 *        Arjan van de Ven <arjan@linux.intel.com>
8
 *
9 10
 * This code is licenced under the GPL version 2 as described
 * in the COPYING file that acompanies the Linux Kernel.
11 12 13 14
 */

#include <linux/kernel.h>
#include <linux/cpuidle.h>
15
#include <linux/pm_qos.h>
16 17 18 19
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
20
#include <linux/sched.h>
21
#include <linux/math64.h>
22
#include <linux/module.h>
23

24
#define BUCKETS 12
25
#define INTERVALS 8
26
#define RESOLUTION 1024
27
#define DECAY 8
28
#define MAX_INTERESTING 50000
29 30
#define STDDEV_THRESH 400

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/*
 * Concepts and ideas behind the menu governor
 *
 * For the menu governor, there are 3 decision factors for picking a C
 * state:
 * 1) Energy break even point
 * 2) Performance impact
 * 3) Latency tolerance (from pmqos infrastructure)
 * These these three factors are treated independently.
 *
 * Energy break even point
 * -----------------------
 * C state entry and exit have an energy cost, and a certain amount of time in
 * the  C state is required to actually break even on this cost. CPUIDLE
 * provides us this duration in the "target_residency" field. So all that we
 * need is a good prediction of how long we'll be idle. Like the traditional
 * menu governor, we start with the actual known "next timer event" time.
 *
 * Since there are other source of wakeups (interrupts for example) than
 * the next timer event, this estimation is rather optimistic. To get a
 * more realistic estimate, a correction factor is applied to the estimate,
 * that is based on historic behavior. For example, if in the past the actual
 * duration always was 50% of the next timer tick, the correction factor will
 * be 0.5.
 *
 * menu uses a running average for this correction factor, however it uses a
 * set of factors, not just a single factor. This stems from the realization
 * that the ratio is dependent on the order of magnitude of the expected
 * duration; if we expect 500 milliseconds of idle time the likelihood of
 * getting an interrupt very early is much higher than if we expect 50 micro
 * seconds of idle time. A second independent factor that has big impact on
 * the actual factor is if there is (disk) IO outstanding or not.
 * (as a special twist, we consider every sleep longer than 50 milliseconds
 * as perfect; there are no power gains for sleeping longer than this)
 *
 * For these two reasons we keep an array of 12 independent factors, that gets
 * indexed based on the magnitude of the expected duration as well as the
 * "is IO outstanding" property.
 *
71 72 73 74 75 76 77 78 79 80
 * Repeatable-interval-detector
 * ----------------------------
 * There are some cases where "next timer" is a completely unusable predictor:
 * Those cases where the interval is fixed, for example due to hardware
 * interrupt mitigation, but also due to fixed transfer rate devices such as
 * mice.
 * For this, we use a different predictor: We track the duration of the last 8
 * intervals and if the stand deviation of these 8 intervals is below a
 * threshold value, we use the average of these intervals as prediction.
 *
81 82 83
 * Limiting Performance Impact
 * ---------------------------
 * C states, especially those with large exit latencies, can have a real
L
Lucas De Marchi 已提交
84
 * noticeable impact on workloads, which is not acceptable for most sysadmins,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
 * and in addition, less performance has a power price of its own.
 *
 * As a general rule of thumb, menu assumes that the following heuristic
 * holds:
 *     The busier the system, the less impact of C states is acceptable
 *
 * This rule-of-thumb is implemented using a performance-multiplier:
 * If the exit latency times the performance multiplier is longer than
 * the predicted duration, the C state is not considered a candidate
 * for selection due to a too high performance impact. So the higher
 * this multiplier is, the longer we need to be idle to pick a deep C
 * state, and thus the less likely a busy CPU will hit such a deep
 * C state.
 *
 * Two factors are used in determing this multiplier:
 * a value of 10 is added for each point of "per cpu load average" we have.
 * a value of 5 points is added for each process that is waiting for
 * IO on this CPU.
 * (these values are experimentally determined)
 *
 * The load average factor gives a longer term (few seconds) input to the
 * decision, while the iowait value gives a cpu local instantanious input.
 * The iowait factor may look low, but realize that this is also already
 * represented in the system load average.
 *
 */
111 112 113

struct menu_device {
	int		last_state_idx;
114
	int             needs_update;
115 116

	unsigned int	expected_us;
117
	u64		predicted_us;
118 119 120
	unsigned int	exit_us;
	unsigned int	bucket;
	u64		correction_factor[BUCKETS];
121
	unsigned int	intervals[INTERVALS];
122
	int		interval_ptr;
123 124
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int get_loadavg(void)
{
	unsigned long this = this_cpu_load();


	return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
}

static inline int which_bucket(unsigned int duration)
{
	int bucket = 0;

	/*
	 * We keep two groups of stats; one with no
	 * IO pending, one without.
	 * This allows us to calculate
	 * E(duration)|iowait
	 */
147
	if (nr_iowait_cpu(smp_processor_id()))
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
		bucket = BUCKETS/2;

	if (duration < 10)
		return bucket;
	if (duration < 100)
		return bucket + 1;
	if (duration < 1000)
		return bucket + 2;
	if (duration < 10000)
		return bucket + 3;
	if (duration < 100000)
		return bucket + 4;
	return bucket + 5;
}

/*
 * Return a multiplier for the exit latency that is intended
 * to take performance requirements into account.
 * The more performance critical we estimate the system
 * to be, the higher this multiplier, and thus the higher
 * the barrier to go to an expensive C state.
 */
static inline int performance_multiplier(void)
{
	int mult = 1;

	/* for higher loadavg, we are more reluctant */

	mult += 2 * get_loadavg();

	/* for IO wait tasks (per cpu!) we add 5x each */
179
	mult += 10 * nr_iowait_cpu(smp_processor_id());
180 181 182 183

	return mult;
}

184 185
static DEFINE_PER_CPU(struct menu_device, menu_devices);

186
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
187

188 189 190 191 192 193
/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
static u64 div_round64(u64 dividend, u32 divisor)
{
	return div_u64(dividend + (divisor / 2), divisor);
}

194 195 196 197 198 199
/*
 * Try detecting repeating patterns by keeping track of the last 8
 * intervals, and checking if the standard deviation of that set
 * of points is below a threshold. If it is... then use the
 * average of these 8 points as the estimated value.
 */
200
static void get_typical_interval(struct menu_device *data)
201
{
202 203
	int i, divisor;
	uint64_t max, avg, stddev;
204
	int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
205

206
again:
207

208
	/* first calculate average and standard deviation of the past */
209 210 211 212
	max = 0;
	avg = 0;
	divisor = 0;
	stddev = 0;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	for (i = 0; i < INTERVALS; i++) {
		int64_t value = data->intervals[i];
		if (value <= thresh) {
			avg += value;
			divisor++;
			if (value > max)
				max = value;
		}
	}
	do_div(avg, divisor);

	for (i = 0; i < INTERVALS; i++) {
		int64_t value = data->intervals[i];
		if (value <= thresh) {
			int64_t diff = value - avg;
			stddev += diff * diff;
		}
	}
	do_div(stddev, divisor);
232
	/*
233 234
	 * The typical interval is obtained when standard deviation is small
	 * or standard deviation is small compared to the average interval.
235
	 *
236 237 238 239 240 241
	 * int_sqrt() formal parameter type is unsigned long. When the
	 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
	 * the resulting squared standard deviation exceeds the input domain
	 * of int_sqrt on platforms where unsigned long is 32 bits in size.
	 * In such case reject the candidate average.
	 *
242
	 * Use this result only if there is no timer to wake us up sooner.
243
	 */
244 245 246
	if (likely(stddev <= ULONG_MAX)) {
		stddev = int_sqrt(stddev);
		if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
247
							|| stddev <= 20) {
248 249 250 251
			if (data->expected_us > avg)
				data->predicted_us = avg;
			return;
		}
252
	}
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	/*
	 * If we have outliers to the upside in our distribution, discard
	 * those by setting the threshold to exclude these outliers, then
	 * calculate the average and standard deviation again. Once we get
	 * down to the bottom 3/4 of our samples, stop excluding samples.
	 *
	 * This can deal with workloads that have long pauses interspersed
	 * with sporadic activity with a bunch of short pauses.
	 */
	if ((divisor * 4) <= INTERVALS * 3)
		return;

	thresh = max - 1;
	goto again;
268 269
}

270 271
/**
 * menu_select - selects the next idle state to enter
272
 * @drv: cpuidle driver containing state data
273 274
 * @dev: the CPU
 */
275
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
276 277
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
M
Mark Gross 已提交
278
	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
279
	int i;
280
	int multiplier;
281
	struct timespec t;
282

283
	if (data->needs_update) {
284
		menu_update(drv, dev);
285 286 287
		data->needs_update = 0;
	}

288 289 290
	data->last_state_idx = 0;
	data->exit_us = 0;

291
	/* Special case when user has set very strict latency requirement */
292
	if (unlikely(latency_req == 0))
293 294
		return 0;

295
	/* determine the expected residency time, round up */
296
	t = ktime_to_timespec(tick_nohz_get_sleep_length());
297
	data->expected_us =
298
		t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
299 300 301 302 303 304 305 306 307 308 309 310 311 312


	data->bucket = which_bucket(data->expected_us);

	multiplier = performance_multiplier();

	/*
	 * if the correction factor is 0 (eg first time init or cpu hotplug
	 * etc), we actually want to start out with a unity factor.
	 */
	if (data->correction_factor[data->bucket] == 0)
		data->correction_factor[data->bucket] = RESOLUTION * DECAY;

	/* Make sure to round up for half microseconds */
313 314
	data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
					 RESOLUTION * DECAY);
315

316
	get_typical_interval(data);
317

318 319 320 321
	/*
	 * We want to default to C1 (hlt), not to busy polling
	 * unless the timer is happening really really soon.
	 */
322
	if (data->expected_us > 5 &&
323
	    !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
324
		dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
325
		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
326

327 328 329 330
	/*
	 * Find the idle state with the lowest power while satisfying
	 * our constraints.
	 */
331 332
	for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
		struct cpuidle_state *s = &drv->states[i];
333
		struct cpuidle_state_usage *su = &dev->states_usage[i];
334

335
		if (s->disabled || su->disable)
336
			continue;
337
		if (s->target_residency > data->predicted_us)
338
			continue;
339
		if (s->exit_latency > latency_req)
340
			continue;
341
		if (s->exit_latency * multiplier > data->predicted_us)
342 343
			continue;

344 345
		data->last_state_idx = i;
		data->exit_us = s->exit_latency;
346 347
	}

348
	return data->last_state_idx;
349 350 351
}

/**
352
 * menu_reflect - records that data structures need update
353
 * @dev: the CPU
354
 * @index: the index of actual entered state
355 356 357 358
 *
 * NOTE: it's important to be fast here because this operation will add to
 *       the overall exit latency.
 */
359
static void menu_reflect(struct cpuidle_device *dev, int index)
360 361
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
362 363 364
	data->last_state_idx = index;
	if (index >= 0)
		data->needs_update = 1;
365 366 367 368
}

/**
 * menu_update - attempts to guess what happened after entry
369
 * @drv: cpuidle driver containing state data
370 371
 * @dev: the CPU
 */
372
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
373 374 375
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
	int last_idx = data->last_state_idx;
376
	unsigned int last_idle_us = cpuidle_get_last_residency(dev);
377
	struct cpuidle_state *target = &drv->states[last_idx];
378
	unsigned int measured_us;
379
	u64 new_factor;
380 381 382 383

	/*
	 * Ugh, this idle state doesn't support residency measurements, so we
	 * are basically lost in the dark.  As a compromise, assume we slept
384
	 * for the whole expected time.
385
	 */
386
	if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
387 388 389 390
		last_idle_us = data->expected_us;


	measured_us = last_idle_us;
391

392
	/*
393 394
	 * We correct for the exit latency; we are assuming here that the
	 * exit latency happens after the event that we're interested in.
395
	 */
396 397 398 399 400 401 402 403 404
	if (measured_us > data->exit_us)
		measured_us -= data->exit_us;


	/* update our correction ratio */

	new_factor = data->correction_factor[data->bucket]
			* (DECAY - 1) / DECAY;

405
	if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
406
		new_factor += RESOLUTION * measured_us / data->expected_us;
407
	else
408 409 410 411 412
		/*
		 * we were idle so long that we count it as a perfect
		 * prediction
		 */
		new_factor += RESOLUTION;
413

414 415 416 417 418 419
	/*
	 * We don't want 0 as factor; we always want at least
	 * a tiny bit of estimated time.
	 */
	if (new_factor == 0)
		new_factor = 1;
420

421
	data->correction_factor[data->bucket] = new_factor;
422 423 424 425 426

	/* update the repeating-pattern data */
	data->intervals[data->interval_ptr++] = last_idle_us;
	if (data->interval_ptr >= INTERVALS)
		data->interval_ptr = 0;
427 428 429 430
}

/**
 * menu_enable_device - scans a CPU's states and does setup
431
 * @drv: cpuidle driver
432 433
 * @dev: the CPU
 */
434 435
static int menu_enable_device(struct cpuidle_driver *drv,
				struct cpuidle_device *dev)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);

	memset(data, 0, sizeof(struct menu_device));

	return 0;
}

static struct cpuidle_governor menu_governor = {
	.name =		"menu",
	.rating =	20,
	.enable =	menu_enable_device,
	.select =	menu_select,
	.reflect =	menu_reflect,
	.owner =	THIS_MODULE,
};

/**
 * init_menu - initializes the governor
 */
static int __init init_menu(void)
{
	return cpuidle_register_governor(&menu_governor);
}

461
postcore_initcall(init_menu);