devlink-trap.rst 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
.. SPDX-License-Identifier: GPL-2.0

============
Devlink Trap
============

Background
==========

Devices capable of offloading the kernel's datapath and perform functions such
as bridging and routing must also be able to send specific packets to the
kernel (i.e., the CPU) for processing.

For example, a device acting as a multicast-aware bridge must be able to send
IGMP membership reports to the kernel for processing by the bridge module.
Without processing such packets, the bridge module could never populate its
MDB.

As another example, consider a device acting as router which has received an IP
packet with a TTL of 1. Upon routing the packet the device must send it to the
kernel so that it will route it as well and generate an ICMP Time Exceeded
error datagram. Without letting the kernel route such packets itself, utilities
such as ``traceroute`` could never work.

The fundamental ability of sending certain packets to the kernel for processing
is called "packet trapping".

Overview
========

The ``devlink-trap`` mechanism allows capable device drivers to register their
supported packet traps with ``devlink`` and report trapped packets to
``devlink`` for further analysis.

Upon receiving trapped packets, ``devlink`` will perform a per-trap packets and
bytes accounting and potentially report the packet to user space via a netlink
event along with all the provided metadata (e.g., trap reason, timestamp, input
port). This is especially useful for drop traps (see :ref:`Trap-Types`)
as it allows users to obtain further visibility into packet drops that would
otherwise be invisible.

The following diagram provides a general overview of ``devlink-trap``::

                                    Netlink event: Packet w/ metadata
                                                   Or a summary of recent drops
                                  ^
                                  |
         Userspace                |
        +---------------------------------------------------+
         Kernel                   |
                                  |
                          +-------+--------+
                          |                |
                          |  drop_monitor  |
                          |                |
                          +-------^--------+
                                  |
                                  |
                                  |
                             +----+----+
                             |         |      Kernel's Rx path
                             | devlink |      (non-drop traps)
                             |         |
                             +----^----+      ^
                                  |           |
                                  +-----------+
                                  |
                          +-------+-------+
                          |               |
                          | Device driver |
                          |               |
                          +-------^-------+
         Kernel                   |
        +---------------------------------------------------+
         Hardware                 |
                                  | Trapped packet
                                  |
                               +--+---+
                               |      |
                               | ASIC |
                               |      |
                               +------+

.. _Trap-Types:

Trap Types
==========

The ``devlink-trap`` mechanism supports the following packet trap types:

  * ``drop``: Trapped packets were dropped by the underlying device. Packets
    are only processed by ``devlink`` and not injected to the kernel's Rx path.
    The trap action (see :ref:`Trap-Actions`) can be changed.
  * ``exception``: Trapped packets were not forwarded as intended by the
    underlying device due to an exception (e.g., TTL error, missing neighbour
    entry) and trapped to the control plane for resolution. Packets are
    processed by ``devlink`` and injected to the kernel's Rx path. Changing the
    action of such traps is not allowed, as it can easily break the control
    plane.

.. _Trap-Actions:

Trap Actions
============

The ``devlink-trap`` mechanism supports the following packet trap actions:

  * ``trap``: The sole copy of the packet is sent to the CPU.
  * ``drop``: The packet is dropped by the underlying device and a copy is not
    sent to the CPU.

Generic Packet Traps
====================

Generic packet traps are used to describe traps that trap well-defined packets
or packets that are trapped due to well-defined conditions (e.g., TTL error).
Such traps can be shared by multiple device drivers and their description must
be added to the following table:

.. list-table:: List of Generic Packet Traps
   :widths: 5 5 90

   * - Name
     - Type
     - Description
   * - ``source_mac_is_multicast``
     - ``drop``
     - Traps incoming packets that the device decided to drop because of a
       multicast source MAC
   * - ``vlan_tag_mismatch``
     - ``drop``
     - Traps incoming packets that the device decided to drop in case of VLAN
       tag mismatch: The ingress bridge port is not configured with a PVID and
       the packet is untagged or prio-tagged
   * - ``ingress_vlan_filter``
     - ``drop``
     - Traps incoming packets that the device decided to drop in case they are
       tagged with a VLAN that is not configured on the ingress bridge port
   * - ``ingress_spanning_tree_filter``
     - ``drop``
     - Traps incoming packets that the device decided to drop in case the STP
       state of the ingress bridge port is not "forwarding"
   * - ``port_list_is_empty``
     - ``drop``
     - Traps packets that the device decided to drop in case they need to be
146 147
       flooded (e.g., unknown unicast, unregistered multicast) and there are
       no ports the packets should be flooded to
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
   * - ``port_loopback_filter``
     - ``drop``
     - Traps packets that the device decided to drop in case after layer 2
       forwarding the only port from which they should be transmitted through
       is the port from which they were received
   * - ``blackhole_route``
     - ``drop``
     - Traps packets that the device decided to drop in case they hit a
       blackhole route
   * - ``ttl_value_is_too_small``
     - ``exception``
     - Traps unicast packets that should be forwarded by the device whose TTL
       was decremented to 0 or less
   * - ``tail_drop``
     - ``drop``
     - Traps packets that the device decided to drop because they could not be
       enqueued to a transmission queue which is full
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
   * - ``non_ip``
     - ``drop``
     - Traps packets that the device decided to drop because they need to
       undergo a layer 3 lookup, but are not IP or MPLS packets
   * - ``uc_dip_over_mc_dmac``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and they have a unicast destination IP and a multicast destination
       MAC
   * - ``dip_is_loopback_address``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and their destination IP is the loopback address (i.e., 127.0.0.0/8
       and ::1/128)
   * - ``sip_is_mc``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and their source IP is multicast (i.e., 224.0.0.0/8 and ff::/8)
   * - ``sip_is_loopback_address``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and their source IP is the loopback address (i.e., 127.0.0.0/8 and ::1/128)
   * - ``ip_header_corrupted``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and their IP header is corrupted: wrong checksum, wrong IP version
       or too short Internet Header Length (IHL)
   * - ``ipv4_sip_is_limited_bc``
     - ``drop``
     - Traps packets that the device decided to drop because they need to be
       routed and their source IP is limited broadcast (i.e., 255.255.255.255/32)
   * - ``ipv6_mc_dip_reserved_scope``
     - ``drop``
     - Traps IPv6 packets that the device decided to drop because they need to
       be routed and their IPv6 multicast destination IP has a reserved scope
       (i.e., ffx0::/16)
   * - ``ipv6_mc_dip_interface_local_scope``
     - ``drop``
     - Traps IPv6 packets that the device decided to drop because they need to
       be routed and their IPv6 multicast destination IP has an interface-local scope
       (i.e., ffx1::/16)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
   * - ``mtu_value_is_too_small``
     - ``exception``
     - Traps packets that should have been routed by the device, but were bigger
       than the MTU of the egress interface
   * - ``unresolved_neigh``
     - ``exception``
     - Traps packets that did not have a matching IP neighbour after routing
   * - ``mc_reverse_path_forwarding``
     - ``exception``
     - Traps multicast IP packets that failed reverse-path forwarding (RPF)
       check during multicast routing
   * - ``reject_route``
     - ``exception``
     - Traps packets that hit reject routes (i.e., "unreachable", "prohibit")
   * - ``ipv4_lpm_miss``
     - ``exception``
     - Traps unicast IPv4 packets that did not match any route
   * - ``ipv6_lpm_miss``
     - ``exception``
     - Traps unicast IPv6 packets that did not match any route
226

227 228 229 230 231 232 233 234 235
Driver-specific Packet Traps
============================

Device drivers can register driver-specific packet traps, but these must be
clearly documented. Such traps can correspond to device-specific exceptions and
help debug packet drops caused by these exceptions. The following list includes
links to the description of driver-specific traps registered by various device
drivers:

236
  * :doc:`devlink-trap-netdevsim`
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
Generic Packet Trap Groups
==========================

Generic packet trap groups are used to aggregate logically related packet
traps. These groups allow the user to batch operations such as setting the trap
action of all member traps. In addition, ``devlink-trap`` can report aggregated
per-group packets and bytes statistics, in case per-trap statistics are too
narrow. The description of these groups must be added to the following table:

.. list-table:: List of Generic Packet Trap Groups
   :widths: 10 90

   * - Name
     - Description
   * - ``l2_drops``
     - Contains packet traps for packets that were dropped by the device during
       layer 2 forwarding (i.e., bridge)
   * - ``l3_drops``
     - Contains packet traps for packets that were dropped by the device or hit
       an exception (e.g., TTL error) during layer 3 forwarding
   * - ``buffer_drops``
     - Contains packet traps for packets that were dropped by the device due to
       an enqueue decision
261 262 263 264 265 266 267 268 269 270

Testing
=======

See ``tools/testing/selftests/drivers/net/netdevsim/devlink_trap.sh`` for a
test covering the core infrastructure. Test cases should be added for any new
functionality.

Device drivers should focus their tests on device-specific functionality, such
as the triggering of supported packet traps.