blk-mq.c 79.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-pm.h"
37
#include "blk-stat.h"
38
#include "blk-mq-sched.h"
39
#include "blk-rq-qos.h"
40

41
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
49
	ddir = rq_data_dir(rq);
50 51 52 53 54 55 56 57 58 59 60 61
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

62 63 64
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
65
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66
{
67 68
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
69
			blk_mq_sched_has_work(hctx);
70 71
}

72 73 74 75 76 77
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
78 79
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 81 82 83 84
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
85
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 87
}

88 89 90 91 92 93 94 95 96 97 98
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

99 100 101 102 103 104 105 106 107
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
108 109 110 111 112 113 114
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

115
	inflight[0] = inflight[1] = 0;
116 117 118
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

138
void blk_freeze_queue_start(struct request_queue *q)
139
{
140
	int freeze_depth;
141

142 143
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
144
		percpu_ref_kill(&q->q_usage_counter);
145 146
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
147
	}
148
}
149
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150

151
void blk_mq_freeze_queue_wait(struct request_queue *q)
152
{
153
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156

157 158 159 160 161 162 163 164
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165

166 167 168 169
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
170
void blk_freeze_queue(struct request_queue *q)
171
{
172 173 174 175 176 177 178
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
179
	blk_freeze_queue_start(q);
180 181
	if (!q->mq_ops)
		blk_drain_queue(q);
182 183
	blk_mq_freeze_queue_wait(q);
}
184 185 186 187 188 189 190 191 192

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
193
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194

195
void blk_mq_unfreeze_queue(struct request_queue *q)
196
{
197
	int freeze_depth;
198

199 200 201
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
202
		percpu_ref_resurrect(&q->q_usage_counter);
203
		wake_up_all(&q->mq_freeze_wq);
204
	}
205
}
206
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207

208 209 210 211 212 213
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
214
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 216 217
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

218
/**
219
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 221 222
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
223 224 225
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
226 227 228 229 230 231 232
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

233
	blk_mq_quiesce_queue_nowait(q);
234

235 236
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
237
			synchronize_srcu(hctx->srcu);
238 239 240 241 242 243 244 245
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

246 247 248 249 250 251 252 253 254
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
255
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256

257 258
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
259 260 261
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

262 263 264 265 266 267 268 269 270 271
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

272 273 274 275 276 277
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

278 279
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
280
{
281 282
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
283
	req_flags_t rq_flags = 0;
284

285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
289
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
290
			rq_flags = RQF_MQ_INFLIGHT;
291 292 293 294 295 296 297
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

298
	/* csd/requeue_work/fifo_time is initialized before use */
299 300
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
301
	rq->rq_flags = rq_flags;
302
	rq->cpu = -1;
303
	rq->cmd_flags = op;
304 305
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
306
	if (blk_queue_io_stat(data->q))
307
		rq->rq_flags |= RQF_IO_STAT;
308
	INIT_LIST_HEAD(&rq->queuelist);
309 310 311 312
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
313
	rq->start_time_ns = ktime_get_ns();
314
	rq->io_start_time_ns = 0;
315 316 317 318 319 320 321
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
322
	rq->__deadline = 0;
323 324

	INIT_LIST_HEAD(&rq->timeout_list);
325 326
	rq->timeout = 0;

327 328 329 330
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

331 332 333 334
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
#endif

335
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
336
	refcount_set(&rq->ref, 1);
337
	return rq;
338 339
}

340 341 342 343 344 345
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
346
	unsigned int tag;
347
	bool put_ctx_on_error = false;
348 349 350

	blk_queue_enter_live(q);
	data->q = q;
351 352 353 354
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
355 356
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 358
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
359 360 361 362 363 364

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
365 366
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
367
		 */
368 369
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
		    !(data->flags & BLK_MQ_REQ_RESERVED))
370
			e->type->ops.mq.limit_depth(op, data);
371 372
	} else {
		blk_mq_tag_busy(data->hctx);
373 374
	}

375 376
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
377 378
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
379 380
			data->ctx = NULL;
		}
381 382
		blk_queue_exit(q);
		return NULL;
383 384
	}

385
	rq = blk_mq_rq_ctx_init(data, tag, op);
386 387
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
388
		if (e && e->type->ops.mq.prepare_request) {
389 390 391
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

392 393
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
394
		}
395 396 397
	}
	data->hctx->queued++;
	return rq;
398 399
}

400
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401
		blk_mq_req_flags_t flags)
402
{
403
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
404
	struct request *rq;
405
	int ret;
406

407
	ret = blk_queue_enter(q, flags);
408 409
	if (ret)
		return ERR_PTR(ret);
410

411
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412
	blk_queue_exit(q);
413

414
	if (!rq)
415
		return ERR_PTR(-EWOULDBLOCK);
416

417 418
	blk_mq_put_ctx(alloc_data.ctx);

419 420 421
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
422 423
	return rq;
}
424
EXPORT_SYMBOL(blk_mq_alloc_request);
425

426
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
428
{
429
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
430
	struct request *rq;
431
	unsigned int cpu;
M
Ming Lin 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

446
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
447 448 449
	if (ret)
		return ERR_PTR(ret);

450 451 452 453
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
454 455 456 457
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
458
	}
459
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
460
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
461

462
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
463
	blk_queue_exit(q);
464

465 466 467 468
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
469 470 471
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
472 473 474 475 476 477 478
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

479
	blk_pm_mark_last_busy(rq);
K
Keith Busch 已提交
480 481 482 483 484 485 486 487
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

488
void blk_mq_free_request(struct request *rq)
489 490
{
	struct request_queue *q = rq->q;
491 492 493 494
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

495
	if (rq->rq_flags & RQF_ELVPRIV) {
496 497 498 499 500 501 502
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
503

504
	ctx->rq_completed[rq_is_sync(rq)]++;
505
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
506
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
507

508 509 510
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

511
	rq_qos_done(q, rq);
512

S
Shaohua Li 已提交
513 514 515
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

K
Keith Busch 已提交
516 517 518
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
519
}
J
Jens Axboe 已提交
520
EXPORT_SYMBOL_GPL(blk_mq_free_request);
521

522
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
523
{
524 525
	u64 now = ktime_get_ns();

526 527
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
528
		blk_stat_add(rq, now);
529 530
	}

531 532 533
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

534
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
535

C
Christoph Hellwig 已提交
536
	if (rq->end_io) {
537
		rq_qos_done(rq->q, rq);
538
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
539 540 541
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
542
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
543
	}
544
}
545
EXPORT_SYMBOL(__blk_mq_end_request);
546

547
void blk_mq_end_request(struct request *rq, blk_status_t error)
548 549 550
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
551
	__blk_mq_end_request(rq, error);
552
}
553
EXPORT_SYMBOL(blk_mq_end_request);
554

555
static void __blk_mq_complete_request_remote(void *data)
556
{
557
	struct request *rq = data;
558

559
	rq->q->softirq_done_fn(rq);
560 561
}

562
static void __blk_mq_complete_request(struct request *rq)
563 564
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
565
	bool shared = false;
566 567
	int cpu;

568
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
569
		return;
570

571 572 573 574 575 576 577 578 579 580 581 582 583 584
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
	if (rq->q->nr_hw_queues == 1) {
		__blk_complete_request(rq);
		return;
	}

C
Christoph Hellwig 已提交
585
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
586 587 588
		rq->q->softirq_done_fn(rq);
		return;
	}
589 590

	cpu = get_cpu();
C
Christoph Hellwig 已提交
591 592 593 594
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
595
		rq->csd.func = __blk_mq_complete_request_remote;
596 597
		rq->csd.info = rq;
		rq->csd.flags = 0;
598
		smp_call_function_single_async(ctx->cpu, &rq->csd);
599
	} else {
600
		rq->q->softirq_done_fn(rq);
601
	}
602 603
	put_cpu();
}
604

605
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
606
	__releases(hctx->srcu)
607 608 609 610
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
611
		srcu_read_unlock(hctx->srcu, srcu_idx);
612 613 614
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
615
	__acquires(hctx->srcu)
616
{
617 618 619
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
620
		rcu_read_lock();
621
	} else
622
		*srcu_idx = srcu_read_lock(hctx->srcu);
623 624
}

625 626 627 628 629 630 631 632
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
633
void blk_mq_complete_request(struct request *rq)
634
{
K
Keith Busch 已提交
635
	if (unlikely(blk_should_fake_timeout(rq->q)))
636
		return;
K
Keith Busch 已提交
637
	__blk_mq_complete_request(rq);
638 639
}
EXPORT_SYMBOL(blk_mq_complete_request);
640

641 642
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
643
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 645 646
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

647
void blk_mq_start_request(struct request *rq)
648 649 650
{
	struct request_queue *q = rq->q;

651 652
	blk_mq_sched_started_request(rq);

653 654
	trace_block_rq_issue(q, rq);

655
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656 657 658 659
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
660
		rq->rq_flags |= RQF_STATS;
661
		rq_qos_issue(q, rq);
662 663
	}

664
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
665

666
	blk_add_timer(rq);
K
Keith Busch 已提交
667
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
668 669 670 671 672 673 674 675 676

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
677
}
678
EXPORT_SYMBOL(blk_mq_start_request);
679

680
static void __blk_mq_requeue_request(struct request *rq)
681 682 683
{
	struct request_queue *q = rq->q;

684 685
	blk_mq_put_driver_tag(rq);

686
	trace_block_rq_requeue(q, rq);
687
	rq_qos_requeue(q, rq);
688

K
Keith Busch 已提交
689 690
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
691
		rq->rq_flags &= ~RQF_TIMED_OUT;
692 693 694
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
695 696
}

697
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
698 699 700
{
	__blk_mq_requeue_request(rq);

701 702 703
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

704
	BUG_ON(blk_queued_rq(rq));
705
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
706 707 708
}
EXPORT_SYMBOL(blk_mq_requeue_request);

709 710 711
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
712
		container_of(work, struct request_queue, requeue_work.work);
713 714 715
	LIST_HEAD(rq_list);
	struct request *rq, *next;

716
	spin_lock_irq(&q->requeue_lock);
717
	list_splice_init(&q->requeue_list, &rq_list);
718
	spin_unlock_irq(&q->requeue_lock);
719 720

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
721
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
722 723
			continue;

724
		rq->rq_flags &= ~RQF_SOFTBARRIER;
725
		list_del_init(&rq->queuelist);
726
		blk_mq_sched_insert_request(rq, true, false, false);
727 728 729 730 731
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
732
		blk_mq_sched_insert_request(rq, false, false, false);
733 734
	}

735
	blk_mq_run_hw_queues(q, false);
736 737
}

738 739
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
740 741 742 743 744 745
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
746
	 * request head insertion from the workqueue.
747
	 */
748
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
749 750 751

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
752
		rq->rq_flags |= RQF_SOFTBARRIER;
753 754 755 756 757
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
758 759 760

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
761 762 763 764 765
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
766
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
767 768 769
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

770 771 772
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
773 774
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
775 776 777
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

778 779
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
780 781
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
782
		return tags->rqs[tag];
783
	}
784 785

	return NULL;
786 787 788
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

789
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
790
{
791
	req->rq_flags |= RQF_TIMED_OUT;
792 793 794 795 796 797 798
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
799
	}
800 801

	blk_add_timer(req);
802
}
803

K
Keith Busch 已提交
804
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
805
{
K
Keith Busch 已提交
806
	unsigned long deadline;
807

K
Keith Busch 已提交
808 809
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
810 811
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
812

K
Keith Busch 已提交
813 814 815
	deadline = blk_rq_deadline(rq);
	if (time_after_eq(jiffies, deadline))
		return true;
816

K
Keith Busch 已提交
817 818 819 820 821
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
822 823
}

K
Keith Busch 已提交
824
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
825 826
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
		return;

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
		return;

848
	/*
K
Keith Busch 已提交
849 850 851 852
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
853
	 */
K
Keith Busch 已提交
854
	if (blk_mq_req_expired(rq, next))
855
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
856 857
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
858 859
}

860
static void blk_mq_timeout_work(struct work_struct *work)
861
{
862 863
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
864
	unsigned long next = 0;
865
	struct blk_mq_hw_ctx *hctx;
866
	int i;
867

868 869 870 871 872 873 874 875 876
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
877
	 * blk_freeze_queue_start, and the moment the last request is
878 879 880 881
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
882 883
		return;

K
Keith Busch 已提交
884
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
885

K
Keith Busch 已提交
886 887
	if (next != 0) {
		mod_timer(&q->timeout, next);
888
	} else {
889 890 891 892 893 894
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
895 896 897 898 899
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
900
	}
901
	blk_queue_exit(q);
902 903
}

904 905 906 907 908 909 910 911 912 913 914 915 916
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
917
	sbitmap_clear_bit(sb, bitnr);
918 919 920 921
	spin_unlock(&ctx->lock);
	return true;
}

922 923 924 925
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
926
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
927
{
928 929 930 931
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
932

933
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
934
}
935
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
936

937 938 939 940 941 942 943 944 945 946 947 948 949
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
950
	if (!list_empty(&ctx->rq_list)) {
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

976 977 978 979
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
980

981
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
982 983
}

984
bool blk_mq_get_driver_tag(struct request *rq)
985 986 987 988
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
989
		.flags = BLK_MQ_REQ_NOWAIT,
990
	};
991
	bool shared;
992

993 994
	if (rq->tag != -1)
		goto done;
995

996 997 998
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

999
	shared = blk_mq_tag_busy(data.hctx);
1000 1001
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1002
		if (shared) {
1003 1004 1005
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1006 1007 1008
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1009 1010
done:
	return rq->tag != -1;
1011 1012
}

1013 1014
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1015 1016 1017 1018 1019
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1020
	spin_lock(&hctx->dispatch_wait_lock);
1021
	list_del_init(&wait->entry);
1022 1023
	spin_unlock(&hctx->dispatch_wait_lock);

1024 1025 1026 1027
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1028 1029
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1030 1031
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1032 1033
 * marking us as waiting.
 */
1034
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1035
				 struct request *rq)
1036
{
1037
	struct wait_queue_head *wq;
1038 1039
	wait_queue_entry_t *wait;
	bool ret;
1040

1041 1042 1043
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1044

1045 1046 1047 1048 1049 1050 1051 1052
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1053
		return blk_mq_get_driver_tag(rq);
1054 1055
	}

1056
	wait = &hctx->dispatch_wait;
1057 1058 1059
	if (!list_empty_careful(&wait->entry))
		return false;

1060 1061 1062 1063
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1064
	if (!list_empty(&wait->entry)) {
1065 1066
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1067
		return false;
1068 1069
	}

1070 1071
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1072

1073
	/*
1074 1075 1076
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1077
	 */
1078
	ret = blk_mq_get_driver_tag(rq);
1079
	if (!ret) {
1080 1081
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1082
		return false;
1083
	}
1084 1085 1086 1087 1088 1089

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1090 1091
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1092 1093

	return true;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1125 1126
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1127 1128 1129
/*
 * Returns true if we did some work AND can potentially do more.
 */
1130
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1131
			     bool got_budget)
1132
{
1133
	struct blk_mq_hw_ctx *hctx;
1134
	struct request *rq, *nxt;
1135
	bool no_tag = false;
1136
	int errors, queued;
1137
	blk_status_t ret = BLK_STS_OK;
1138

1139 1140 1141
	if (list_empty(list))
		return false;

1142 1143
	WARN_ON(!list_is_singular(list) && got_budget);

1144 1145 1146
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1147
	errors = queued = 0;
1148
	do {
1149
		struct blk_mq_queue_data bd;
1150

1151
		rq = list_first_entry(list, struct request, queuelist);
1152 1153 1154 1155 1156

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1157
		if (!blk_mq_get_driver_tag(rq)) {
1158
			/*
1159
			 * The initial allocation attempt failed, so we need to
1160 1161 1162 1163
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1164
			 */
1165
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1166
				blk_mq_put_dispatch_budget(hctx);
1167 1168 1169 1170 1171 1172
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1173 1174 1175 1176
				break;
			}
		}

1177 1178
		list_del_init(&rq->queuelist);

1179
		bd.rq = rq;
1180 1181 1182 1183 1184 1185 1186 1187 1188

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1189
			bd.last = !blk_mq_get_driver_tag(nxt);
1190
		}
1191 1192

		ret = q->mq_ops->queue_rq(hctx, &bd);
1193
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1194 1195
			/*
			 * If an I/O scheduler has been configured and we got a
1196 1197
			 * driver tag for the next request already, free it
			 * again.
1198 1199 1200 1201 1202
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1203
			list_add(&rq->queuelist, list);
1204
			__blk_mq_requeue_request(rq);
1205
			break;
1206 1207 1208
		}

		if (unlikely(ret != BLK_STS_OK)) {
1209
			errors++;
1210
			blk_mq_end_request(rq, BLK_STS_IOERR);
1211
			continue;
1212 1213
		}

1214
		queued++;
1215
	} while (!list_empty(list));
1216

1217
	hctx->dispatched[queued_to_index(queued)]++;
1218 1219 1220 1221 1222

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1223
	if (!list_empty(list)) {
1224 1225
		bool needs_restart;

1226
		spin_lock(&hctx->lock);
1227
		list_splice_init(list, &hctx->dispatch);
1228
		spin_unlock(&hctx->lock);
1229

1230
		/*
1231 1232 1233
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1234
		 *
1235 1236 1237 1238
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1239
		 *
1240 1241 1242 1243 1244 1245 1246
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1247
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1248
		 *   and dm-rq.
1249 1250 1251 1252
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1253
		 */
1254 1255
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1256
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1257
			blk_mq_run_hw_queue(hctx, true);
1258 1259
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1260

1261
		blk_mq_update_dispatch_busy(hctx, true);
1262
		return false;
1263 1264
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1265

1266 1267 1268 1269 1270 1271 1272
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1273
	return (queued + errors) != 0;
1274 1275
}

1276 1277 1278 1279
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1280 1281 1282
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1296
	 */
1297 1298 1299 1300 1301 1302 1303
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1304

1305 1306 1307 1308 1309 1310
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1311
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1312

1313 1314 1315
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1316 1317
}

1318 1319 1320 1321 1322 1323 1324 1325 1326
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1327 1328 1329 1330 1331 1332 1333 1334
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1335
	bool tried = false;
1336
	int next_cpu = hctx->next_cpu;
1337

1338 1339
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1340 1341

	if (--hctx->next_cpu_batch <= 0) {
1342
select_cpu:
1343
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1344
				cpu_online_mask);
1345
		if (next_cpu >= nr_cpu_ids)
1346
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1347 1348 1349
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1350 1351 1352 1353
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1354
	if (!cpu_online(next_cpu)) {
1355 1356 1357 1358 1359 1360 1361 1362 1363
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1364
		hctx->next_cpu = next_cpu;
1365 1366 1367
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1368 1369 1370

	hctx->next_cpu = next_cpu;
	return next_cpu;
1371 1372
}

1373 1374
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1375
{
1376
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1377 1378
		return;

1379
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1380 1381
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1382
			__blk_mq_run_hw_queue(hctx);
1383
			put_cpu();
1384 1385
			return;
		}
1386

1387
		put_cpu();
1388
	}
1389

1390 1391
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1392 1393 1394 1395 1396 1397 1398 1399
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1400
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1401
{
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1413 1414 1415 1416
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1417 1418

	if (need_run) {
1419 1420 1421 1422 1423
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1424
}
O
Omar Sandoval 已提交
1425
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1426

1427
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1428 1429 1430 1431 1432
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1433
		if (blk_mq_hctx_stopped(hctx))
1434 1435
			continue;

1436
		blk_mq_run_hw_queue(hctx, async);
1437 1438
	}
}
1439
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1461 1462 1463
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1464
 * BLK_STS_RESOURCE is usually returned.
1465 1466 1467 1468 1469
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1470 1471
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1472
	cancel_delayed_work(&hctx->run_work);
1473

1474
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1475
}
1476
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1477

1478 1479 1480
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1481
 * BLK_STS_RESOURCE is usually returned.
1482 1483 1484 1485 1486
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1487 1488
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1489 1490 1491 1492 1493
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1494 1495 1496
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1497 1498 1499
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1500

1501
	blk_mq_run_hw_queue(hctx, false);
1502 1503 1504
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1525
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1526 1527 1528 1529
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1530 1531
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1532 1533 1534
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1535
static void blk_mq_run_work_fn(struct work_struct *work)
1536 1537 1538
{
	struct blk_mq_hw_ctx *hctx;

1539
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1540

1541
	/*
M
Ming Lei 已提交
1542
	 * If we are stopped, don't run the queue.
1543
	 */
M
Ming Lei 已提交
1544
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1545
		return;
1546 1547 1548 1549

	__blk_mq_run_hw_queue(hctx);
}

1550 1551 1552
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1553
{
J
Jens Axboe 已提交
1554 1555
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1556 1557
	lockdep_assert_held(&ctx->lock);

1558 1559
	trace_block_rq_insert(hctx->queue, rq);

1560 1561 1562 1563
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1564
}
1565

1566 1567
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1568 1569 1570
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1571 1572
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1573
	__blk_mq_insert_req_list(hctx, rq, at_head);
1574 1575 1576
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1577 1578 1579 1580
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1581
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 1583 1584 1585 1586 1587 1588 1589
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1590 1591
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1592 1593
}

1594 1595
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1596 1597

{
1598 1599
	struct request *rq;

1600 1601 1602 1603
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1604
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1605
		BUG_ON(rq->mq_ctx != ctx);
1606
		trace_block_rq_insert(hctx->queue, rq);
1607
	}
1608 1609 1610

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1611
	blk_mq_hctx_mark_pending(hctx, ctx);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1648
				trace_block_unplug(this_q, depth, !from_schedule);
1649 1650 1651
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1668
		trace_block_unplug(this_q, depth, !from_schedule);
1669 1670
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1671 1672 1673 1674 1675
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1676
	blk_init_request_from_bio(rq, bio);
1677

S
Shaohua Li 已提交
1678 1679
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1680
	blk_account_io_start(rq, true);
1681 1682
}

1683 1684
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1685 1686 1687 1688
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1689 1690
}

1691 1692 1693
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1694 1695 1696 1697
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1698
		.last = true,
1699
	};
1700
	blk_qc_t new_cookie;
1701
	blk_status_t ret;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1713
		blk_mq_update_dispatch_busy(hctx, false);
1714 1715 1716
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1717
	case BLK_STS_DEV_RESOURCE:
1718
		blk_mq_update_dispatch_busy(hctx, true);
1719 1720 1721
		__blk_mq_requeue_request(rq);
		break;
	default:
1722
		blk_mq_update_dispatch_busy(hctx, false);
1723 1724 1725 1726 1727 1728 1729 1730 1731
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1732 1733
						blk_qc_t *cookie,
						bool bypass_insert)
1734 1735
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1736 1737
	bool run_queue = true;

1738 1739 1740 1741
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1742
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1743 1744
	 * and avoid driver to try to dispatch again.
	 */
1745
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1746
		run_queue = false;
1747
		bypass_insert = false;
M
Ming Lei 已提交
1748 1749
		goto insert;
	}
1750

1751
	if (q->elevator && !bypass_insert)
1752 1753
		goto insert;

1754
	if (!blk_mq_get_dispatch_budget(hctx))
1755 1756
		goto insert;

1757
	if (!blk_mq_get_driver_tag(rq)) {
1758
		blk_mq_put_dispatch_budget(hctx);
1759
		goto insert;
1760
	}
1761

1762
	return __blk_mq_issue_directly(hctx, rq, cookie);
1763
insert:
1764 1765
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1766

1767
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1768
	return BLK_STS_OK;
1769 1770
}

1771 1772 1773
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1774
	blk_status_t ret;
1775
	int srcu_idx;
1776

1777
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1778

1779
	hctx_lock(hctx, &srcu_idx);
1780

1781
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1782
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1783
		blk_mq_sched_insert_request(rq, false, true, false);
1784 1785 1786
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1787
	hctx_unlock(hctx, srcu_idx);
1788 1789
}

1790
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1803 1804
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1816 1817 1818 1819 1820 1821
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
				list_add(&rq->queuelist, list);
				break;
			}
			blk_mq_end_request(rq, ret);
1822 1823 1824 1825
		}
	}
}

1826
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1827
{
1828
	const int is_sync = op_is_sync(bio->bi_opf);
1829
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1830
	struct blk_mq_alloc_data data = { .flags = 0 };
1831
	struct request *rq;
1832
	unsigned int request_count = 0;
1833
	struct blk_plug *plug;
1834
	struct request *same_queue_rq = NULL;
1835
	blk_qc_t cookie;
1836 1837 1838

	blk_queue_bounce(q, &bio);

1839
	blk_queue_split(q, &bio);
1840

1841
	if (!bio_integrity_prep(bio))
1842
		return BLK_QC_T_NONE;
1843

1844 1845 1846
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1847

1848 1849 1850
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1851
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1852

1853 1854
	trace_block_getrq(q, bio, bio->bi_opf);

1855
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1856
	if (unlikely(!rq)) {
1857
		rq_qos_cleanup(q, bio);
1858 1859
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1860
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1861 1862
	}

1863
	rq_qos_track(q, rq, bio);
1864

1865
	cookie = request_to_qc_t(data.hctx, rq);
1866

1867
	plug = current->plug;
1868
	if (unlikely(is_flush_fua)) {
1869
		blk_mq_put_ctx(data.ctx);
1870
		blk_mq_bio_to_request(rq, bio);
1871 1872 1873 1874

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1875
	} else if (plug && q->nr_hw_queues == 1) {
1876 1877
		struct request *last = NULL;

1878
		blk_mq_put_ctx(data.ctx);
1879
		blk_mq_bio_to_request(rq, bio);
1880 1881 1882 1883 1884 1885 1886

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1887 1888 1889
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1890
		if (!request_count)
1891
			trace_block_plug(q);
1892 1893
		else
			last = list_entry_rq(plug->mq_list.prev);
1894

1895 1896
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1897 1898
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1899
		}
1900

1901
		list_add_tail(&rq->queuelist, &plug->mq_list);
1902
	} else if (plug && !blk_queue_nomerges(q)) {
1903
		blk_mq_bio_to_request(rq, bio);
1904 1905

		/*
1906
		 * We do limited plugging. If the bio can be merged, do that.
1907 1908
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1909 1910
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1911
		 */
1912 1913 1914 1915 1916 1917
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1918 1919
		blk_mq_put_ctx(data.ctx);

1920 1921 1922
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1923 1924
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1925
		}
1926 1927
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1928
		blk_mq_put_ctx(data.ctx);
1929 1930
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1931
	} else {
1932
		blk_mq_put_ctx(data.ctx);
1933
		blk_mq_bio_to_request(rq, bio);
1934
		blk_mq_sched_insert_request(rq, false, true, true);
1935
	}
1936

1937
	return cookie;
1938 1939
}

1940 1941
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1942
{
1943
	struct page *page;
1944

1945
	if (tags->rqs && set->ops->exit_request) {
1946
		int i;
1947

1948
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1949 1950 1951
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1952
				continue;
1953
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1954
			tags->static_rqs[i] = NULL;
1955
		}
1956 1957
	}

1958 1959
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1960
		list_del_init(&page->lru);
1961 1962 1963 1964 1965
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1966 1967
		__free_pages(page, page->private);
	}
1968
}
1969

1970 1971
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1972
	kfree(tags->rqs);
1973
	tags->rqs = NULL;
J
Jens Axboe 已提交
1974 1975
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1976

1977
	blk_mq_free_tags(tags);
1978 1979
}

1980 1981 1982 1983
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1984
{
1985
	struct blk_mq_tags *tags;
1986
	int node;
1987

1988 1989 1990 1991 1992
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1993
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1994 1995
	if (!tags)
		return NULL;
1996

1997
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999
				 node);
2000 2001 2002 2003
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2004

2005 2006 2007
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2008 2009 2010 2011 2012 2013
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2014 2015 2016 2017 2018 2019 2020 2021
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2033
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2034 2035 2036
	return 0;
}

2037 2038 2039 2040 2041
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2042 2043 2044 2045 2046
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2047 2048 2049

	INIT_LIST_HEAD(&tags->page_list);

2050 2051 2052 2053
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2054
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2055
				cache_line_size());
2056
	left = rq_size * depth;
2057

2058
	for (i = 0; i < depth; ) {
2059 2060 2061 2062 2063
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2064
		while (this_order && left < order_to_size(this_order - 1))
2065 2066 2067
			this_order--;

		do {
2068
			page = alloc_pages_node(node,
2069
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2070
				this_order);
2071 2072 2073 2074 2075 2076 2077 2078 2079
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2080
			goto fail;
2081 2082

		page->private = this_order;
2083
		list_add_tail(&page->lru, &tags->page_list);
2084 2085

		p = page_address(page);
2086 2087 2088 2089
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2090
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2091
		entries_per_page = order_to_size(this_order) / rq_size;
2092
		to_do = min(entries_per_page, depth - i);
2093 2094
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2095 2096 2097
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2098 2099 2100
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2101 2102
			}

2103 2104 2105 2106
			p += rq_size;
			i++;
		}
	}
2107
	return 0;
2108

2109
fail:
2110 2111
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2112 2113
}

J
Jens Axboe 已提交
2114 2115 2116 2117 2118
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2119
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2120
{
2121
	struct blk_mq_hw_ctx *hctx;
2122 2123 2124
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2125
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2126
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2127 2128 2129 2130 2131 2132 2133 2134 2135

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2136
		return 0;
2137

J
Jens Axboe 已提交
2138 2139 2140
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2141 2142

	blk_mq_run_hw_queue(hctx, true);
2143
	return 0;
2144 2145
}

2146
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2147
{
2148 2149
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2150 2151
}

2152
/* hctx->ctxs will be freed in queue's release handler */
2153 2154 2155 2156
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2157 2158
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2159

2160
	if (set->ops->exit_request)
2161
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2162

2163 2164 2165
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2166
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2167
		cleanup_srcu_struct(hctx->srcu);
2168

2169
	blk_mq_remove_cpuhp(hctx);
2170
	blk_free_flush_queue(hctx->fq);
2171
	sbitmap_free(&hctx->ctx_map);
2172 2173
}

M
Ming Lei 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2183
		blk_mq_debugfs_unregister_hctx(hctx);
2184
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2185 2186 2187
	}
}

2188 2189 2190
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191
{
2192 2193 2194 2195 2196 2197
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2198
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 2200 2201
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2202
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203

2204
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205 2206

	hctx->tags = set->tags[hctx_idx];
2207 2208

	/*
2209 2210
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2211
	 */
2212
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 2215
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2216

2217 2218
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219
		goto free_ctxs;
2220

2221
	hctx->nr_ctx = 0;
2222

2223
	spin_lock_init(&hctx->dispatch_wait_lock);
2224 2225 2226
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2227 2228 2229
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2230

2231 2232
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233
	if (!hctx->fq)
2234
		goto exit_hctx;
2235

2236
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237
		goto free_fq;
2238

2239
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2240
		init_srcu_struct(hctx->srcu);
2241

2242
	return 0;
2243

2244 2245 2246 2247 2248
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2249
 free_bitmap:
2250
	sbitmap_free(&hctx->ctx_map);
2251 2252 2253
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2254
	blk_mq_remove_cpuhp(hctx);
2255 2256
	return -1;
}
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2276
		hctx = blk_mq_map_queue(q, i);
2277
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2278
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2279 2280 2281
	}
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2304 2305 2306 2307 2308
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2309 2310
}

2311
static void blk_mq_map_swqueue(struct request_queue *q)
2312
{
2313
	unsigned int i, hctx_idx;
2314 2315
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2316
	struct blk_mq_tag_set *set = q->tag_set;
2317

2318 2319 2320 2321 2322
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2323
	queue_for_each_hw_ctx(q, hctx, i) {
2324
		cpumask_clear(hctx->cpumask);
2325
		hctx->nr_ctx = 0;
2326
		hctx->dispatch_from = NULL;
2327 2328 2329
	}

	/*
2330
	 * Map software to hardware queues.
2331 2332
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2333
	 */
2334
	for_each_possible_cpu(i) {
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

2348
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2349
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2350

2351
		cpumask_set_cpu(i, hctx->cpumask);
2352 2353 2354
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2355

2356 2357
	mutex_unlock(&q->sysfs_lock);

2358
	queue_for_each_hw_ctx(q, hctx, i) {
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2374

M
Ming Lei 已提交
2375 2376 2377
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2378 2379 2380 2381 2382
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2383
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2384

2385 2386 2387
		/*
		 * Initialize batch roundrobin counts
		 */
2388
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2389 2390
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2391 2392
}

2393 2394 2395 2396
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2397
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2398 2399 2400 2401
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2402
	queue_for_each_hw_ctx(q, hctx, i) {
2403
		if (shared)
2404
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2405
		else
2406 2407 2408 2409
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2410 2411
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2412 2413
{
	struct request_queue *q;
2414

2415 2416
	lockdep_assert_held(&set->tag_list_lock);

2417 2418
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2419
		queue_set_hctx_shared(q, shared);
2420 2421 2422 2423 2424 2425 2426 2427 2428
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2429
	list_del_rcu(&q->tag_set_list);
2430 2431 2432 2433 2434 2435
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2436
	mutex_unlock(&set->tag_list_lock);
2437
	INIT_LIST_HEAD(&q->tag_set_list);
2438 2439 2440 2441 2442 2443 2444 2445
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2446

2447 2448 2449 2450 2451
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2452 2453 2454 2455 2456 2457
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2458
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2459

2460 2461 2462
	mutex_unlock(&set->tag_list_lock);
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2475 2476 2477
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2478
		kobject_put(&hctx->kobj);
2479
	}
2480

2481 2482
	q->mq_map = NULL;

2483 2484
	kfree(q->queue_hw_ctx);

2485 2486 2487 2488 2489 2490
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2491 2492 2493
	free_percpu(q->queue_ctx);
}

2494
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2495 2496 2497
{
	struct request_queue *uninit_q, *q;

2498
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2543 2544 2545 2546
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2547
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2548 2549 2550 2551 2552 2553 2554 2555 2556
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
			node);
	if (!hctx)
		return NULL;

	if (!zalloc_cpumask_var_node(&hctx->cpumask,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node)) {
		kfree(hctx);
		return NULL;
	}

	atomic_set(&hctx->nr_active, 0);
	hctx->numa_node = node;
	hctx->queue_num = hctx_idx;

	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
		free_cpumask_var(hctx->cpumask);
		kfree(hctx);
		return NULL;
	}
	blk_mq_hctx_kobj_init(hctx);

	return hctx;
}

K
Keith Busch 已提交
2590 2591
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2592
{
2593
	int i, j, end;
K
Keith Busch 已提交
2594
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2595

2596 2597
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2598
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2599
		int node;
2600
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2601 2602

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2603 2604 2605 2606 2607 2608 2609
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
			if (hctxs[i]) {
				blk_mq_exit_hctx(q, set, hctxs[i], i);
				kobject_put(&hctxs[i]->kobj);
			}
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2625
		}
2626
	}
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2639

2640
	for (; j < end; j++) {
K
Keith Busch 已提交
2641 2642 2643
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2644 2645
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2646 2647 2648 2649 2650 2651
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
2652
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2653 2654 2655 2656 2657
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2658 2659 2660
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2661
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2662 2663
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2664 2665 2666
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2667 2668
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2669
		goto err_exit;
K
Keith Busch 已提交
2670

2671 2672 2673
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2674
	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2675 2676 2677 2678
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2679
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2680 2681 2682 2683

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2684

2685
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2686
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2687 2688 2689

	q->nr_queues = nr_cpu_ids;

2690
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2691

2692
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2693
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2694

2695 2696
	q->sg_reserved_size = INT_MAX;

2697
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2698 2699 2700
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2701
	blk_queue_make_request(q, blk_mq_make_request);
2702 2703
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2704

2705 2706 2707 2708 2709
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2710 2711 2712 2713 2714
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2715 2716
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2717

2718
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2719
	blk_mq_add_queue_tag_set(set, q);
2720
	blk_mq_map_swqueue(q);
2721

2722 2723 2724
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2725
		ret = elevator_init_mq(q);
2726 2727 2728 2729
		if (ret)
			return ERR_PTR(ret);
	}

2730
	return q;
2731

2732
err_hctxs:
K
Keith Busch 已提交
2733
	kfree(q->queue_hw_ctx);
2734
err_percpu:
K
Keith Busch 已提交
2735
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2736 2737
err_exit:
	q->mq_ops = NULL;
2738 2739
	return ERR_PTR(-ENOMEM);
}
2740
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2741 2742 2743

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2744
	struct blk_mq_tag_set	*set = q->tag_set;
2745

2746
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2747
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2748 2749
}

2750 2751 2752 2753
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2754 2755
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2756 2757 2758 2759 2760 2761
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2762
		blk_mq_free_rq_map(set->tags[i]);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2802 2803
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (set->ops->map_queues) {
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
2819
		blk_mq_clear_mq_map(set);
2820

2821
		return set->ops->map_queues(set);
2822
	} else
2823 2824 2825
		return blk_mq_map_queues(set);
}

2826 2827 2828
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2829
 * requested depth down, if it's too large. In that case, the set
2830 2831
 * value will be stored in set->queue_depth.
 */
2832 2833
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2834 2835
	int ret;

B
Bart Van Assche 已提交
2836 2837
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2838 2839
	if (!set->nr_hw_queues)
		return -EINVAL;
2840
	if (!set->queue_depth)
2841 2842 2843 2844
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2845
	if (!set->ops->queue_rq)
2846 2847
		return -EINVAL;

2848 2849 2850
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2851 2852 2853 2854 2855
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2866 2867 2868 2869 2870
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2871

2872
	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2873 2874
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2875
		return -ENOMEM;
2876

2877
	ret = -ENOMEM;
2878 2879
	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
				   GFP_KERNEL, set->numa_node);
2880 2881 2882
	if (!set->mq_map)
		goto out_free_tags;

2883
	ret = blk_mq_update_queue_map(set);
2884 2885 2886 2887 2888
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2889
		goto out_free_mq_map;
2890

2891 2892 2893
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2894
	return 0;
2895 2896 2897 2898 2899

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2900 2901
	kfree(set->tags);
	set->tags = NULL;
2902
	return ret;
2903 2904 2905 2906 2907 2908 2909
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2910 2911
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2912

2913 2914 2915
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2916
	kfree(set->tags);
2917
	set->tags = NULL;
2918 2919 2920
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2921 2922 2923 2924 2925 2926
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2927
	if (!set)
2928 2929
		return -EINVAL;

2930
	blk_mq_freeze_queue(q);
2931
	blk_mq_quiesce_queue(q);
2932

2933 2934
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2935 2936
		if (!hctx->tags)
			continue;
2937 2938 2939 2940
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2941
		if (!hctx->sched_tags) {
2942
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2943 2944 2945 2946 2947
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2948 2949 2950 2951 2952 2953 2954
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2955
	blk_mq_unquiesce_queue(q);
2956 2957
	blk_mq_unfreeze_queue(q);

2958 2959 2960
	return ret;
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3031 3032
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3033 3034
{
	struct request_queue *q;
3035
	LIST_HEAD(head);
3036
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3037

3038 3039
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
3040 3041 3042 3043 3044 3045 3046
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3047 3048 3049 3050
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3051 3052 3053 3054 3055 3056 3057 3058
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3059

3060 3061 3062 3063 3064
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3065
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3066
	set->nr_hw_queues = nr_hw_queues;
3067
	blk_mq_update_queue_map(set);
3068
fallback:
K
Keith Busch 已提交
3069 3070
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3071 3072 3073 3074 3075 3076 3077
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
			blk_mq_map_queues(set);
			goto fallback;
		}
3078 3079 3080 3081 3082 3083
		blk_mq_map_swqueue(q);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3084 3085
	}

3086 3087 3088 3089
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3090 3091 3092
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3093 3094 3095 3096 3097 3098 3099

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3100 3101
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3102 3103 3104 3105
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3106
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3128
	int bucket;
3129

3130 3131 3132 3133
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3134 3135
}

3136 3137 3138 3139 3140
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3141
	int bucket;
3142 3143 3144 3145 3146

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3147
	if (!blk_poll_stats_enable(q))
3148 3149 3150 3151 3152 3153 3154 3155
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3156 3157
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3158
	 */
3159 3160 3161 3162 3163 3164
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3165 3166 3167 3168

	return ret;
}

3169
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3170
				     struct blk_mq_hw_ctx *hctx,
3171 3172 3173 3174
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3175
	unsigned int nsecs;
3176 3177
	ktime_t kt;

J
Jens Axboe 已提交
3178
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3196 3197
		return false;

J
Jens Axboe 已提交
3198
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3199 3200 3201 3202 3203

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3204
	kt = nsecs;
3205 3206 3207 3208 3209 3210 3211

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3212
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3227 3228 3229 3230 3231
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3232 3233 3234 3235 3236 3237 3238
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3239
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3240 3241
		return true;

J
Jens Axboe 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3267
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3268 3269 3270
	return false;
}

3271
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3272 3273 3274 3275
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3276
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3277 3278 3279
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3280 3281
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3282
	else {
3283
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3284 3285 3286 3287 3288 3289 3290 3291 3292
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3293 3294 3295 3296

	return __blk_mq_poll(hctx, rq);
}

3297 3298
static int __init blk_mq_init(void)
{
3299 3300
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3301 3302 3303
	return 0;
}
subsys_initcall(blk_mq_init);