signal.h 20.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef _LINUX_SCHED_SIGNAL_H
#define _LINUX_SCHED_SIGNAL_H

5
#include <linux/rculist.h>
6
#include <linux/signal.h>
7
#include <linux/sched.h>
8
#include <linux/sched/jobctl.h>
9
#include <linux/sched/task.h>
10
#include <linux/cred.h>
11
#include <linux/refcount.h>
12
#include <linux/posix-timers.h>
P
Peter Xu 已提交
13 14
#include <linux/mm_types.h>
#include <asm/ptrace.h>
15

16 17 18 19 20 21
/*
 * Types defining task->signal and task->sighand and APIs using them:
 */

struct sighand_struct {
	spinlock_t		siglock;
22
	refcount_t		count;
23
	wait_queue_head_t	signalfd_wqh;
24
	struct k_sigaction	action[_NSIG];
25 26
};

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Per-process accounting stats:
 */
struct pacct_struct {
	int			ac_flag;
	long			ac_exitcode;
	unsigned long		ac_mem;
	u64			ac_utime, ac_stime;
	unsigned long		ac_minflt, ac_majflt;
};

struct cpu_itimer {
	u64 expires;
	u64 incr;
};

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * This is the atomic variant of task_cputime, which can be used for
 * storing and updating task_cputime statistics without locking.
 */
struct task_cputime_atomic {
	atomic64_t utime;
	atomic64_t stime;
	atomic64_t sum_exec_runtime;
};

#define INIT_CPUTIME_ATOMIC \
	(struct task_cputime_atomic) {				\
		.utime = ATOMIC64_INIT(0),			\
		.stime = ATOMIC64_INIT(0),			\
		.sum_exec_runtime = ATOMIC64_INIT(0),		\
	}
/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime_atomic:	atomic thread group interval timers.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
	struct task_cputime_atomic cputime_atomic;
};

70 71 72 73 74
struct multiprocess_signals {
	sigset_t signal;
	struct hlist_node node;
};

75 76 77 78 79 80 81 82
/*
 * NOTE! "signal_struct" does not have its own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
 */
struct signal_struct {
83
	refcount_t		sigcnt;
84 85 86 87 88 89 90 91 92 93 94 95
	atomic_t		live;
	int			nr_threads;
	struct list_head	thread_head;

	wait_queue_head_t	wait_chldexit;	/* for wait4() */

	/* current thread group signal load-balancing target: */
	struct task_struct	*curr_target;

	/* shared signal handling: */
	struct sigpending	shared_pending;

96 97 98
	/* For collecting multiprocess signals during fork */
	struct hlist_head	multiprocess;

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	/* thread group exit support */
	int			group_exit_code;
	/* overloaded:
	 * - notify group_exit_task when ->count is equal to notify_count
	 * - everyone except group_exit_task is stopped during signal delivery
	 *   of fatal signals, group_exit_task processes the signal.
	 */
	int			notify_count;
	struct task_struct	*group_exit_task;

	/* thread group stop support, overloads group_exit_code too */
	int			group_stop_count;
	unsigned int		flags; /* see SIGNAL_* flags below */

	/*
	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
	 * manager, to re-parent orphan (double-forking) child processes
	 * to this process instead of 'init'. The service manager is
	 * able to receive SIGCHLD signals and is able to investigate
	 * the process until it calls wait(). All children of this
	 * process will inherit a flag if they should look for a
	 * child_subreaper process at exit.
	 */
	unsigned int		is_child_subreaper:1;
	unsigned int		has_child_subreaper:1;

#ifdef CONFIG_POSIX_TIMERS

	/* POSIX.1b Interval Timers */
	int			posix_timer_id;
	struct list_head	posix_timers;

	/* ITIMER_REAL timer for the process */
	struct hrtimer real_timer;
	ktime_t it_real_incr;

	/*
	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
	 * values are defined to 0 and 1 respectively
	 */
	struct cpu_itimer it[2];

	/*
	 * Thread group totals for process CPU timers.
	 * See thread_group_cputimer(), et al, for details.
	 */
	struct thread_group_cputimer cputimer;

#endif
149 150
	/* Empty if CONFIG_POSIX_TIMERS=n */
	struct posix_cputimers posix_cputimers;
151

152 153
	/* PID/PID hash table linkage. */
	struct pid *pids[PIDTYPE_MAX];
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

#ifdef CONFIG_NO_HZ_FULL
	atomic_t tick_dep_mask;
#endif

	struct pid *tty_old_pgrp;

	/* boolean value for session group leader */
	int leader;

	struct tty_struct *tty; /* NULL if no tty */

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
	/*
	 * Cumulative resource counters for dead threads in the group,
	 * and for reaped dead child processes forked by this group.
	 * Live threads maintain their own counters and add to these
	 * in __exit_signal, except for the group leader.
	 */
	seqlock_t stats_lock;
	u64 utime, stime, cutime, cstime;
	u64 gtime;
	u64 cgtime;
	struct prev_cputime prev_cputime;
	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
	unsigned long inblock, oublock, cinblock, coublock;
	unsigned long maxrss, cmaxrss;
	struct task_io_accounting ioac;

	/*
	 * Cumulative ns of schedule CPU time fo dead threads in the
	 * group, not including a zombie group leader, (This only differs
	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
	 * other than jiffies.)
	 */
	unsigned long long sum_sched_runtime;

	/*
	 * We don't bother to synchronize most readers of this at all,
	 * because there is no reader checking a limit that actually needs
	 * to get both rlim_cur and rlim_max atomically, and either one
	 * alone is a single word that can safely be read normally.
	 * getrlimit/setrlimit use task_lock(current->group_leader) to
	 * protect this instead of the siglock, because they really
	 * have no need to disable irqs.
	 */
	struct rlimit rlim[RLIM_NLIMITS];

#ifdef CONFIG_BSD_PROCESS_ACCT
	struct pacct_struct pacct;	/* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
	struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
	unsigned audit_tty;
	struct tty_audit_buf *tty_audit_buf;
#endif

	/*
	 * Thread is the potential origin of an oom condition; kill first on
	 * oom
	 */
	bool oom_flag_origin;
	short oom_score_adj;		/* OOM kill score adjustment */
	short oom_score_adj_min;	/* OOM kill score adjustment min value.
					 * Only settable by CAP_SYS_RESOURCE. */
	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
					 * killed by the oom killer */

	struct mutex cred_guard_mutex;	/* guard against foreign influences on
					 * credential calculations
229 230
					 * (notably. ptrace)
					 * Deprecated do not use in new code.
231
					 * Use exec_update_lock instead.
232
					 */
233 234 235 236 237
	struct rw_semaphore exec_update_lock;	/* Held while task_struct is
						 * being updated during exec,
						 * and may have inconsistent
						 * permissions.
						 */
238
} __randomize_layout;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

/*
 * Bits in flags field of signal_struct.
 */
#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
/*
 * Pending notifications to parent.
 */
#define SIGNAL_CLD_STOPPED	0x00000010
#define SIGNAL_CLD_CONTINUED	0x00000020
#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)

#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */

#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
			  SIGNAL_STOP_CONTINUED)

static inline void signal_set_stop_flags(struct signal_struct *sig,
					 unsigned int flags)
{
	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
}

/* If true, all threads except ->group_exit_task have pending SIGKILL */
static inline int signal_group_exit(const struct signal_struct *sig)
{
	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
		(sig->group_exit_task != NULL);
}

extern void flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
276 277
extern int dequeue_signal(struct task_struct *task,
			  sigset_t *mask, kernel_siginfo_t *info);
278

279
static inline int kernel_dequeue_signal(void)
280
{
281
	struct task_struct *task = current;
282
	kernel_siginfo_t __info;
283 284
	int ret;

285 286 287
	spin_lock_irq(&task->sighand->siglock);
	ret = dequeue_signal(task, &task->blocked, &__info);
	spin_unlock_irq(&task->sighand->siglock);
288 289 290 291 292 293 294 295

	return ret;
}

static inline void kernel_signal_stop(void)
{
	spin_lock_irq(&current->sighand->siglock);
	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
296
		set_special_state(TASK_STOPPED);
297 298 299 300
	spin_unlock_irq(&current->sighand->siglock);

	schedule();
}
301 302 303 304 305 306
#ifdef __ia64__
# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
#else
# define ___ARCH_SI_IA64(_a1, _a2, _a3)
#endif

307 308 309
int force_sig_fault_to_task(int sig, int code, void __user *addr
	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
	, struct task_struct *t);
310
int force_sig_fault(int sig, int code, void __user *addr
311
	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
312 313 314 315
int send_sig_fault(int sig, int code, void __user *addr
	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
	, struct task_struct *t);

316
int force_sig_mceerr(int code, void __user *, short);
317 318 319 320
int send_sig_mceerr(int code, void __user *, short, struct task_struct *);

int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
int force_sig_pkuerr(void __user *addr, u32 pkey);
321
int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
322

323
int force_sig_ptrace_errno_trap(int errno, void __user *addr);
324
int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
325 326
int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
			struct task_struct *t);
327
int force_sig_seccomp(int syscall, int reason, bool force_coredump);
328

329
extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
330
extern void force_sigsegv(int sig);
331
extern int force_sig_info(struct kernel_siginfo *);
332 333
extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
334
extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
335
				const struct cred *);
336 337 338 339
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern __must_check bool do_notify_parent(struct task_struct *, int);
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
340
extern void force_sig(int);
341 342 343 344
extern int send_sig(int, struct task_struct *, int);
extern int zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
345
extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
346 347
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);

348 349 350 351 352 353
static inline int restart_syscall(void)
{
	set_tsk_thread_flag(current, TIF_SIGPENDING);
	return -ERESTARTNOINTR;
}

J
Jens Axboe 已提交
354
static inline int task_sigpending(struct task_struct *p)
355 356 357 358
{
	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}

J
Jens Axboe 已提交
359 360
static inline int signal_pending(struct task_struct *p)
{
361 362 363 364 365 366 367
	/*
	 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
	 * behavior in terms of ensuring that we break out of wait loops
	 * so that notify signal callbacks can be processed.
	 */
	if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
		return 1;
J
Jens Axboe 已提交
368 369 370
	return task_sigpending(p);
}

371 372 373 374 375 376 377
static inline int __fatal_signal_pending(struct task_struct *p)
{
	return unlikely(sigismember(&p->pending.signal, SIGKILL));
}

static inline int fatal_signal_pending(struct task_struct *p)
{
J
Jens Axboe 已提交
378
	return task_sigpending(p) && __fatal_signal_pending(p);
379 380
}

381
static inline int signal_pending_state(unsigned int state, struct task_struct *p)
382 383 384 385 386 387 388 389 390
{
	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
		return 0;
	if (!signal_pending(p))
		return 0;

	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}

P
Peter Xu 已提交
391 392 393 394 395 396 397 398 399 400
/*
 * This should only be used in fault handlers to decide whether we
 * should stop the current fault routine to handle the signals
 * instead, especially with the case where we've got interrupted with
 * a VM_FAULT_RETRY.
 */
static inline bool fault_signal_pending(vm_fault_t fault_flags,
					struct pt_regs *regs)
{
	return unlikely((fault_flags & VM_FAULT_RETRY) &&
401 402
			(fatal_signal_pending(current) ||
			 (user_mode(regs) && signal_pending(current))));
P
Peter Xu 已提交
403 404
}

405 406 407 408 409 410 411 412
/*
 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
 */
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);
413
extern void calculate_sigpending(void);
414 415 416 417 418 419 420 421 422 423 424 425

extern void signal_wake_up_state(struct task_struct *t, unsigned int state);

static inline void signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
}
static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
}

426 427
void task_join_group_stop(struct task_struct *task);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#ifdef TIF_RESTORE_SIGMASK
/*
 * Legacy restore_sigmask accessors.  These are inefficient on
 * SMP architectures because they require atomic operations.
 */

/**
 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 *
 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 * will run before returning to user mode, to process the flag.  For
 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 * arch code will notice on return to user mode, in case those bits
 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 */
static inline void set_restore_sigmask(void)
{
	set_thread_flag(TIF_RESTORE_SIGMASK);
}
449

450
static inline void clear_tsk_restore_sigmask(struct task_struct *task)
451
{
452
	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
453 454
}

455 456 457 458
static inline void clear_restore_sigmask(void)
{
	clear_thread_flag(TIF_RESTORE_SIGMASK);
}
459
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
460
{
461
	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
462
}
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static inline bool test_restore_sigmask(void)
{
	return test_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline bool test_and_clear_restore_sigmask(void)
{
	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
}

#else	/* TIF_RESTORE_SIGMASK */

/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
static inline void set_restore_sigmask(void)
{
	current->restore_sigmask = true;
}
479
static inline void clear_tsk_restore_sigmask(struct task_struct *task)
480
{
481
	task->restore_sigmask = false;
482
}
483 484 485 486 487 488 489 490
static inline void clear_restore_sigmask(void)
{
	current->restore_sigmask = false;
}
static inline bool test_restore_sigmask(void)
{
	return current->restore_sigmask;
}
491
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
492
{
493
	return task->restore_sigmask;
494
}
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static inline bool test_and_clear_restore_sigmask(void)
{
	if (!current->restore_sigmask)
		return false;
	current->restore_sigmask = false;
	return true;
}
#endif

static inline void restore_saved_sigmask(void)
{
	if (test_and_clear_restore_sigmask())
		__set_current_blocked(&current->saved_sigmask);
}

510 511 512 513 514
extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);

static inline void restore_saved_sigmask_unless(bool interrupted)
{
	if (interrupted)
515
		WARN_ON(!signal_pending(current));
516 517 518 519
	else
		restore_saved_sigmask();
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533
static inline sigset_t *sigmask_to_save(void)
{
	sigset_t *res = &current->blocked;
	if (unlikely(test_restore_sigmask()))
		res = &current->saved_sigmask;
	return res;
}

static inline int kill_cad_pid(int sig, int priv)
{
	return kill_pid(cad_pid, sig, priv);
}

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
534 535
#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
#define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
536

537 538 539 540 541 542 543 544 545 546 547
static inline int __on_sig_stack(unsigned long sp)
{
#ifdef CONFIG_STACK_GROWSUP
	return sp >= current->sas_ss_sp &&
		sp - current->sas_ss_sp < current->sas_ss_size;
#else
	return sp > current->sas_ss_sp &&
		sp - current->sas_ss_sp <= current->sas_ss_size;
#endif
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * True if we are on the alternate signal stack.
 */
static inline int on_sig_stack(unsigned long sp)
{
	/*
	 * If the signal stack is SS_AUTODISARM then, by construction, we
	 * can't be on the signal stack unless user code deliberately set
	 * SS_AUTODISARM when we were already on it.
	 *
	 * This improves reliability: if user state gets corrupted such that
	 * the stack pointer points very close to the end of the signal stack,
	 * then this check will enable the signal to be handled anyway.
	 */
	if (current->sas_ss_flags & SS_AUTODISARM)
		return 0;

565
	return __on_sig_stack(sp);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
}

static inline int sas_ss_flags(unsigned long sp)
{
	if (!current->sas_ss_size)
		return SS_DISABLE;

	return on_sig_stack(sp) ? SS_ONSTACK : 0;
}

static inline void sas_ss_reset(struct task_struct *p)
{
	p->sas_ss_sp = 0;
	p->sas_ss_size = 0;
	p->sas_ss_flags = SS_DISABLE;
}

static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
{
	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
#ifdef CONFIG_STACK_GROWSUP
		return current->sas_ss_sp;
#else
		return current->sas_ss_sp + current->sas_ss_size;
#endif
	return sp;
}

extern void __cleanup_sighand(struct sighand_struct *);
extern void flush_itimer_signals(void);

#define tasklist_empty() \
	list_empty(&init_task.tasks)

#define next_task(p) \
	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
	for (p = &init_task ; (p = next_task(p)) != &init_task ; )

extern bool current_is_single_threaded(void);

/*
 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
 */
#define do_each_thread(g, t) \
	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
	while ((t = next_thread(t)) != g)

#define __for_each_thread(signal, t)	\
	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)

#define for_each_thread(p, t)		\
	__for_each_thread((p)->signal, t)

/* Careful: this is a double loop, 'break' won't work as expected. */
#define for_each_process_thread(p, t)	\
	for_each_process(p) for_each_thread(p, t)

typedef int (*proc_visitor)(struct task_struct *p, void *data);
void walk_process_tree(struct task_struct *top, proc_visitor, void *);

631 632 633
static inline
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
{
634 635 636 637 638 639
	struct pid *pid;
	if (type == PIDTYPE_PID)
		pid = task_pid(task);
	else
		pid = task->signal->pids[type];
	return pid;
640 641
}

642 643
static inline struct pid *task_tgid(struct task_struct *task)
{
E
Eric W. Biederman 已提交
644
	return task->signal->pids[PIDTYPE_TGID];
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Without tasklist or RCU lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
	return task->signal->pids[PIDTYPE_PGID];
}

static inline struct pid *task_session(struct task_struct *task)
{
	return task->signal->pids[PIDTYPE_SID];
}

662
static inline int get_nr_threads(struct task_struct *task)
663
{
664
	return task->signal->nr_threads;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

static inline bool thread_group_leader(struct task_struct *p)
{
	return p->exit_signal >= 0;
}

static inline
bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
	return p1->signal == p2->signal;
}

static inline struct task_struct *next_thread(const struct task_struct *p)
{
	return list_entry_rcu(p->thread_group.next,
			      struct task_struct, thread_group);
}

static inline int thread_group_empty(struct task_struct *p)
{
	return list_empty(&p->thread_group);
}

#define delay_group_leader(p) \
		(thread_group_leader(p) && !thread_group_empty(p))

692 693
extern bool thread_group_exited(struct pid *pid);

694
extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
695 696
							unsigned long *flags);

697
static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
698 699 700 701
						       unsigned long *flags)
{
	struct sighand_struct *ret;

702 703
	ret = __lock_task_sighand(task, flags);
	(void)__cond_lock(&task->sighand->siglock, ret);
704 705 706
	return ret;
}

707
static inline void unlock_task_sighand(struct task_struct *task,
708 709
						unsigned long *flags)
{
710
	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
711 712
}

713 714 715 716 717 718
#ifdef CONFIG_LOCKDEP
extern void lockdep_assert_task_sighand_held(struct task_struct *task);
#else
static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
#endif

719
static inline unsigned long task_rlimit(const struct task_struct *task,
720 721
		unsigned int limit)
{
722
	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
723 724
}

725
static inline unsigned long task_rlimit_max(const struct task_struct *task,
726 727
		unsigned int limit)
{
728
	return READ_ONCE(task->signal->rlim[limit].rlim_max);
729 730 731 732 733 734 735 736 737 738 739 740
}

static inline unsigned long rlimit(unsigned int limit)
{
	return task_rlimit(current, limit);
}

static inline unsigned long rlimit_max(unsigned int limit)
{
	return task_rlimit_max(current, limit);
}

741
#endif /* _LINUX_SCHED_SIGNAL_H */