base.c 67.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20 21 22

#define pr_fmt(fmt)	"OF: " fmt

23
#include <linux/console.h>
24
#include <linux/ctype.h>
25
#include <linux/cpu.h>
26 27
#include <linux/module.h>
#include <linux/of.h>
28
#include <linux/of_device.h>
29
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
30
#include <linux/spinlock.h>
31
#include <linux/slab.h>
32
#include <linux/string.h>
J
Jeremy Kerr 已提交
33
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
34

35
#include "of_private.h"
36

37
LIST_HEAD(aliases_lookup);
38

G
Grant Likely 已提交
39 40
struct device_node *of_root;
EXPORT_SYMBOL(of_root);
41
struct device_node *of_chosen;
42
struct device_node *of_aliases;
43
struct device_node *of_stdout;
44
static const char *of_stdout_options;
45

46
struct kset *of_kset;
47 48

/*
49 50 51 52
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
53
 */
54
DEFINE_MUTEX(of_mutex);
55

G
Grant Likely 已提交
56
/* use when traversing tree through the child, sibling,
S
Stephen Rothwell 已提交
57 58
 * or parent members of struct device_node.
 */
59
DEFINE_RAW_SPINLOCK(devtree_lock);
60 61 62

int of_n_addr_cells(struct device_node *np)
{
63
	const __be32 *ip;
64 65 66 67 68 69

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
70
			return be32_to_cpup(ip);
71 72 73 74 75 76 77 78
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
79
	const __be32 *ip;
80 81 82 83 84 85

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
86
			return be32_to_cpup(ip);
87 88 89 90 91 92
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

93 94 95
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
96
	return NUMA_NO_NODE;
97 98 99
}
#endif

100
#ifndef CONFIG_OF_DYNAMIC
101 102 103 104
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
105
#endif /* CONFIG_OF_DYNAMIC */
106

107 108 109 110 111 112 113 114 115 116 117 118
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

119
/* always return newly allocated name, caller must free after use */
120 121 122 123 124 125 126 127 128 129 130 131 132 133
static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

134 135 136
	if (name == orig_name) {
		name = kstrdup(orig_name, GFP_KERNEL);
	} else {
137
		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138
			kobject_name(kobj), name);
139
	}
140 141 142
	return name;
}

143
int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 145 146 147 148 149
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

150 151 152
	if (!IS_ENABLED(CONFIG_SYSFS))
		return 0;

153 154 155
	if (!of_kset || !of_node_is_attached(np))
		return 0;

156 157 158 159 160 161 162 163 164 165 166
	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

167
int __of_attach_node_sysfs(struct device_node *np)
168 169
{
	const char *name;
170
	struct kobject *parent;
171 172 173
	struct property *pp;
	int rc;

174 175 176
	if (!IS_ENABLED(CONFIG_SYSFS))
		return 0;

177 178 179
	if (!of_kset)
		return 0;

180 181 182
	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
183 184
		name = safe_name(&of_kset->kobj, "base");
		parent = NULL;
185 186
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187
		parent = &np->parent->kobj;
188
	}
189 190 191 192
	if (!name)
		return -ENOMEM;
	rc = kobject_add(&np->kobj, parent, "%s", name);
	kfree(name);
193 194 195 196 197 198 199 200 201
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

202
void __init of_core_init(void)
203 204 205 206
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
207
	mutex_lock(&of_mutex);
208 209
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
210
		mutex_unlock(&of_mutex);
211
		pr_err("failed to register existing nodes\n");
212
		return;
213 214
	}
	for_each_of_allnodes(np)
215
		__of_attach_node_sysfs(np);
216
	mutex_unlock(&of_mutex);
217

G
Grant Likely 已提交
218
	/* Symlink in /proc as required by userspace ABI */
G
Grant Likely 已提交
219
	if (of_root)
220 221 222
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
}

223 224
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
225 226 227
{
	struct property *pp;

228 229 230
	if (!np)
		return NULL;

231
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
232
		if (of_prop_cmp(pp->name, name) == 0) {
233
			if (lenp)
S
Stephen Rothwell 已提交
234 235 236 237
				*lenp = pp->length;
			break;
		}
	}
238 239 240 241 242 243 244 245 246

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
247
	unsigned long flags;
248

249
	raw_spin_lock_irqsave(&devtree_lock, flags);
250
	pp = __of_find_property(np, name, lenp);
251
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
252 253 254 255 256

	return pp;
}
EXPORT_SYMBOL(of_find_property);

G
Grant Likely 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
struct device_node *__of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
	if (!prev) {
		np = of_root;
	} else if (prev->child) {
		np = prev->child;
	} else {
		/* Walk back up looking for a sibling, or the end of the structure */
		np = prev;
		while (np->parent && !np->sibling)
			np = np->parent;
		np = np->sibling; /* Might be null at the end of the tree */
	}
	return np;
}

274 275 276 277 278 279 280 281 282 283 284
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
285
	unsigned long flags;
286

287
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
288 289
	np = __of_find_all_nodes(prev);
	of_node_get(np);
290
	of_node_put(prev);
291
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 293 294 295
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

296 297 298 299
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
300 301
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
302 303 304 305 306 307
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

308 309 310 311 312
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
313
			    int *lenp)
314 315 316 317 318 319
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
354
	if (!cell || !ac)
355
		return false;
356
	prop_len /= sizeof(*cell) * ac;
357 358 359 360 361 362 363 364 365 366 367 368
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

388
	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 390
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
407 408
 * Returns a node pointer for the logical cpu with refcount incremented, use
 * of_node_put() on it when done. Returns NULL if not found.
409 410 411
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
412
	struct device_node *cpun;
413

414 415
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 417 418 419 420 421
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
451
 */
452
static int __of_device_is_compatible(const struct device_node *device,
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
472

473 474 475 476 477
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
478 479
	}

480 481 482 483 484 485 486 487
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
488
}
489 490 491 492 493 494 495

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
496
	unsigned long flags;
497 498
	int res;

499
	raw_spin_lock_irqsave(&devtree_lock, flags);
500
	res = __of_device_is_compatible(device, compat, NULL, NULL);
501
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 503
	return res;
}
504
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/** Checks if the device is compatible with any of the entries in
 *  a NULL terminated array of strings. Returns the best match
 *  score or 0.
 */
int of_device_compatible_match(struct device_node *device,
			       const char *const *compat)
{
	unsigned int tmp, score = 0;

	if (!compat)
		return 0;

	while (*compat) {
		tmp = of_device_is_compatible(device, *compat);
		if (tmp > score)
			score = tmp;
		compat++;
	}

	return score;
}

G
Grant Likely 已提交
528
/**
529
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
530 531
 * @compat: compatible string to look for in root node's compatible property.
 *
532
 * Returns a positive integer if the root node has the given value in its
G
Grant Likely 已提交
533 534
 * compatible property.
 */
535
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
536 537 538 539 540 541 542 543 544 545 546
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
547
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
548

549
/**
550
 *  __of_device_is_available - check if a device is available for use
551
 *
552
 *  @device: Node to check for availability, with locks already held
553
 *
554 555
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
556
 */
557
static bool __of_device_is_available(const struct device_node *device)
558 559 560 561
{
	const char *status;
	int statlen;

562
	if (!device)
563
		return false;
564

565
	status = __of_get_property(device, "status", &statlen);
566
	if (status == NULL)
567
		return true;
568 569 570

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571
			return true;
572 573
	}

574
	return false;
575
}
576 577 578 579 580 581

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
582 583
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
584
 */
585
bool of_device_is_available(const struct device_node *device)
586 587
{
	unsigned long flags;
588
	bool res;
589 590 591 592 593 594 595

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
596 597
EXPORT_SYMBOL(of_device_is_available);

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 *  of_device_is_big_endian - check if a device has BE registers
 *
 *  @device: Node to check for endianness
 *
 *  Returns true if the device has a "big-endian" property, or if the kernel
 *  was compiled for BE *and* the device has a "native-endian" property.
 *  Returns false otherwise.
 *
 *  Callers would nominally use ioread32be/iowrite32be if
 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 */
bool of_device_is_big_endian(const struct device_node *device)
{
	if (of_property_read_bool(device, "big-endian"))
		return true;
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
	    of_property_read_bool(device, "native-endian"))
		return true;
	return false;
}
EXPORT_SYMBOL(of_device_is_big_endian);

S
Stephen Rothwell 已提交
621 622 623 624 625 626 627 628 629 630
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
631
	unsigned long flags;
S
Stephen Rothwell 已提交
632 633 634 635

	if (!node)
		return NULL;

636
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
637
	np = of_node_get(node->parent);
638
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
639 640 641
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
642

643 644 645 646
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
G
Geert Uytterhoeven 已提交
647 648 649
 *	This is like of_get_parent() except that it drops the
 *	refcount on the passed node, making it suitable for iterating
 *	through a node's parents.
650 651 652 653 654 655 656
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
657
	unsigned long flags;
658 659 660 661

	if (!node)
		return NULL;

662
	raw_spin_lock_irqsave(&devtree_lock, flags);
663 664
	parent = of_node_get(node->parent);
	of_node_put(node);
665
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 667
	return parent;
}
668
EXPORT_SYMBOL(of_get_next_parent);
669

670 671 672 673 674
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

675 676 677
	if (!node)
		return NULL;

678 679 680 681 682 683 684 685 686 687 688
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
689 690 691 692 693
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
694 695 696
 *	Returns a node pointer with refcount incremented, use of_node_put() on
 *	it when done. Returns NULL when prev is the last child. Decrements the
 *	refcount of prev.
S
Stephen Rothwell 已提交
697 698 699 700 701
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
702
	unsigned long flags;
S
Stephen Rothwell 已提交
703

704
	raw_spin_lock_irqsave(&devtree_lock, flags);
705
	next = __of_get_next_child(node, prev);
706
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
707 708 709
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
710

711 712 713 714 715 716 717 718 719 720 721 722
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
723
	unsigned long flags;
724

725 726 727
	if (!node)
		return NULL;

728
	raw_spin_lock_irqsave(&devtree_lock, flags);
729 730
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
731
		if (!__of_device_is_available(next))
732 733 734 735 736
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
737
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 739 740 741
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

765 766 767 768
static struct device_node *__of_find_node_by_path(struct device_node *parent,
						const char *path)
{
	struct device_node *child;
769
	int len;
770

771
	len = strcspn(path, "/:");
772 773 774 775 776 777 778 779 780 781 782 783 784 785
	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
		const char *name = strrchr(child->full_name, '/');
		if (WARN(!name, "malformed device_node %s\n", child->full_name))
			continue;
		name++;
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

786
/**
787
 *	of_find_node_opts_by_path - Find a node matching a full OF path
788 789 790 791
 *	@path: Either the full path to match, or if the path does not
 *	       start with '/', the name of a property of the /aliases
 *	       node (an alias).  In the case of an alias, the node
 *	       matching the alias' value will be returned.
792 793 794
 *	@opts: Address of a pointer into which to store the start of
 *	       an options string appended to the end of the path with
 *	       a ':' separator.
795 796 797 798 799
 *
 *	Valid paths:
 *		/foo/bar	Full path
 *		foo		Valid alias
 *		foo/bar		Valid alias + relative path
800 801 802 803
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
804
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
805
{
806 807
	struct device_node *np = NULL;
	struct property *pp;
808
	unsigned long flags;
809 810 811 812
	const char *separator = strchr(path, ':');

	if (opts)
		*opts = separator ? separator + 1 : NULL;
813

814
	if (strcmp(path, "/") == 0)
G
Grant Likely 已提交
815
		return of_node_get(of_root);
816 817 818

	/* The path could begin with an alias */
	if (*path != '/') {
819 820 821 822 823 824
		int len;
		const char *p = separator;

		if (!p)
			p = strchrnul(path, '/');
		len = p - path;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
842
	raw_spin_lock_irqsave(&devtree_lock, flags);
843
	if (!np)
G
Grant Likely 已提交
844
		np = of_node_get(of_root);
845
	while (np && *path == '/') {
846 847
		struct device_node *tmp = np;

848 849
		path++; /* Increment past '/' delimiter */
		np = __of_find_node_by_path(np, path);
850
		of_node_put(tmp);
851
		path = strchrnul(path, '/');
852 853
		if (separator && separator < path)
			break;
854
	}
855
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
856 857
	return np;
}
858
EXPORT_SYMBOL(of_find_node_opts_by_path);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
875
	unsigned long flags;
876

877
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
878
	for_each_of_allnodes_from(from, np)
879 880 881 882
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
883
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
904
	unsigned long flags;
905

906
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
907
	for_each_of_allnodes_from(from, np)
908 909 910 911
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
912
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
935
	unsigned long flags;
936

937
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
938
	for_each_of_allnodes_from(from, np)
939
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
940
		    of_node_get(np))
941 942
			break;
	of_node_put(from);
943
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 945 946
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
965
	unsigned long flags;
966

967
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
968
	for_each_of_allnodes_from(from, np) {
969
		for (pp = np->properties; pp; pp = pp->next) {
970 971 972 973 974 975 976 977
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
978
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
979 980 981 982
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

983 984 985
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
986
{
987 988 989
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

990 991 992
	if (!matches)
		return NULL;

993 994 995 996 997 998 999
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1000
	}
1001 1002

	return best_match;
1003
}
1004 1005

/**
G
Geert Uytterhoeven 已提交
1006
 * of_match_node - Tell if a device_node has a matching of_match structure
1007 1008 1009
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
1010
 *	Low level utility function used by device matching.
1011 1012 1013 1014 1015
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1016
	unsigned long flags;
1017

1018
	raw_spin_lock_irqsave(&devtree_lock, flags);
1019
	match = __of_match_node(matches, node);
1020
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 1022
	return match;
}
1023 1024 1025
EXPORT_SYMBOL(of_match_node);

/**
1026 1027
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
1028 1029 1030 1031 1032
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
1033
 *	@match		Updated to point at the matches entry which matched
1034 1035 1036 1037
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
1038 1039 1040
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1041 1042
{
	struct device_node *np;
1043
	const struct of_device_id *m;
1044
	unsigned long flags;
1045

1046 1047 1048
	if (match)
		*match = NULL;

1049
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1050
	for_each_of_allnodes_from(from, np) {
1051
		m = __of_match_node(matches, np);
1052
		if (m && of_node_get(np)) {
1053
			if (match)
1054
				*match = m;
1055
			break;
1056
		}
1057 1058
	}
	of_node_put(from);
1059
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1060 1061
	return np;
}
1062
EXPORT_SYMBOL(of_find_matching_node_and_match);
1063 1064 1065 1066 1067 1068 1069

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1070 1071 1072 1073
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1074
 *
1075
 * This routine returns 0 on success, <0 on failure.
1076 1077 1078
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1079 1080
	const char *compatible, *p;
	int cplen;
1081 1082

	compatible = of_get_property(node, "compatible", &cplen);
1083
	if (!compatible || strlen(compatible) > cplen)
1084 1085
		return -ENODEV;
	p = strchr(compatible, ',');
1086
	strlcpy(modalias, p ? p + 1 : compatible, len);
1087 1088 1089 1090
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1101
	unsigned long flags;
J
Jeremy Kerr 已提交
1102

1103 1104 1105
	if (!handle)
		return NULL;

1106
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1107
	for_each_of_allnodes(np)
J
Jeremy Kerr 已提交
1108 1109 1110
		if (np->phandle == handle)
			break;
	of_node_get(np);
1111
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1112 1113 1114 1115
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
		pr_err("size of %s in node %s is not a multiple of %d\n",
		       propname, np->full_name, elem_size);
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

1148 1149 1150 1151 1152
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
1153 1154 1155
 * @min:	minimum allowed length of property value
 * @max:	maximum allowed length of property value (0 means unlimited)
 * @len:	if !=NULL, actual length is written to here
1156 1157 1158 1159
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1160
 * property data is too small or too large.
1161 1162 1163
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
1164
			const char *propname, u32 min, u32 max, size_t *len)
1165 1166 1167 1168 1169 1170 1171
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
1172 1173 1174
	if (prop->length < min)
		return ERR_PTR(-EOVERFLOW);
	if (max && prop->length > max)
1175 1176
		return ERR_PTR(-EOVERFLOW);

1177 1178 1179
	if (len)
		*len = prop->length;

1180 1181 1182
	return prop->value;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1202
	const u32 *val = of_find_property_value_of_size(np, propname,
1203 1204 1205
					((index + 1) * sizeof(*out_value)),
					0,
					NULL);
1206

1207 1208
	if (IS_ERR(val))
		return PTR_ERR(val);
1209

1210
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1211 1212 1213 1214
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1215
/**
1216 1217
 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 * property, with bounds on the minimum and maximum array size.
1218 1219 1220
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1221
 * @out_values:	pointer to return value, modified only if return value is 0.
1222 1223 1224 1225
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1226 1227
 *
 * Search for a property in a device node and read 8-bit value(s) from
1228 1229 1230
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1231 1232 1233 1234
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1235
 * The out_values is modified only if a valid u8 value can be decoded.
1236
 */
1237 1238 1239
int of_property_read_variable_u8_array(const struct device_node *np,
					const char *propname, u8 *out_values,
					size_t sz_min, size_t sz_max)
1240
{
1241
	size_t sz, count;
1242
	const u8 *val = of_find_property_value_of_size(np, propname,
1243 1244 1245
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1246

1247 1248
	if (IS_ERR(val))
		return PTR_ERR(val);
1249

1250 1251 1252 1253 1254 1255 1256
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1257
		*out_values++ = *val++;
1258 1259

	return sz;
1260
}
1261
EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1262 1263

/**
1264 1265
 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 * property, with bounds on the minimum and maximum array size.
1266 1267 1268
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1269
 * @out_values:	pointer to return value, modified only if return value is 0.
1270 1271 1272 1273
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1274 1275
 *
 * Search for a property in a device node and read 16-bit value(s) from
1276 1277 1278
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1279 1280 1281 1282
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1283
 * The out_values is modified only if a valid u16 value can be decoded.
1284
 */
1285 1286 1287
int of_property_read_variable_u16_array(const struct device_node *np,
					const char *propname, u16 *out_values,
					size_t sz_min, size_t sz_max)
1288
{
1289
	size_t sz, count;
1290
	const __be16 *val = of_find_property_value_of_size(np, propname,
1291 1292 1293
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1294

1295 1296
	if (IS_ERR(val))
		return PTR_ERR(val);
1297

1298 1299 1300 1301 1302 1303 1304
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1305
		*out_values++ = be16_to_cpup(val++);
1306 1307

	return sz;
1308
}
1309
EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1310

1311
/**
1312 1313
 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 * integers from a property, with bounds on the minimum and maximum array size.
1314
 *
1315 1316
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1317
 * @out_values:	pointer to return value, modified only if return value is 0.
1318 1319 1320 1321
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1322
 *
1323
 * Search for a property in a device node and read 32-bit value(s) from
1324 1325 1326
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1327
 *
L
Lad, Prabhakar 已提交
1328
 * The out_values is modified only if a valid u32 value can be decoded.
1329
 */
1330
int of_property_read_variable_u32_array(const struct device_node *np,
1331
			       const char *propname, u32 *out_values,
1332
			       size_t sz_min, size_t sz_max)
1333
{
1334
	size_t sz, count;
1335
	const __be32 *val = of_find_property_value_of_size(np, propname,
1336 1337 1338
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1339

1340 1341
	if (IS_ERR(val))
		return PTR_ERR(val);
1342

1343 1344 1345 1346 1347 1348 1349
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1350
		*out_values++ = be32_to_cpup(val++);
1351 1352

	return sz;
1353
}
1354
EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1372
	const __be32 *val = of_find_property_value_of_size(np, propname,
1373 1374 1375
						sizeof(*out_value),
						0,
						NULL);
1376

1377 1378 1379 1380
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1381 1382 1383 1384
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1385
/**
1386 1387
 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 * integers from a property, with bounds on the minimum and maximum array size.
1388 1389 1390 1391
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_values:	pointer to return value, modified only if return value is 0.
1392 1393 1394 1395
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1396 1397
 *
 * Search for a property in a device node and read 64-bit value(s) from
1398 1399 1400
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1401 1402 1403
 *
 * The out_values is modified only if a valid u64 value can be decoded.
 */
1404
int of_property_read_variable_u64_array(const struct device_node *np,
1405
			       const char *propname, u64 *out_values,
1406
			       size_t sz_min, size_t sz_max)
1407
{
1408
	size_t sz, count;
1409
	const __be32 *val = of_find_property_value_of_size(np, propname,
1410 1411 1412
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1413 1414 1415 1416

	if (IS_ERR(val))
		return PTR_ERR(val);

1417 1418 1419 1420 1421 1422 1423
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--) {
1424 1425 1426
		*out_values++ = of_read_number(val, 2);
		val += 2;
	}
1427 1428

	return sz;
1429
}
1430
EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1447
int of_property_read_string(const struct device_node *np, const char *propname,
1448
				const char **out_string)
1449
{
1450
	const struct property *prop = of_find_property(np, propname, NULL);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
1471
int of_property_match_string(const struct device_node *np, const char *propname,
1472 1473
			     const char *string)
{
1474
	const struct property *prop = of_find_property(np, propname, NULL);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
1488
		l = strnlen(p, end - p) + 1;
1489 1490 1491 1492 1493 1494 1495 1496 1497
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1498 1499

/**
1500
 * of_property_read_string_helper() - Utility helper for parsing string properties
1501 1502
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
1503 1504 1505
 * @out_strs:	output array of string pointers.
 * @sz:		number of array elements to read.
 * @skip:	Number of strings to skip over at beginning of list.
1506
 *
1507 1508
 * Don't call this function directly. It is a utility helper for the
 * of_property_read_string*() family of functions.
1509
 */
1510 1511 1512
int of_property_read_string_helper(const struct device_node *np,
				   const char *propname, const char **out_strs,
				   size_t sz, int skip)
1513
{
1514
	const struct property *prop = of_find_property(np, propname, NULL);
1515 1516
	int l = 0, i = 0;
	const char *p, *end;
1517 1518 1519 1520 1521 1522

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	p = prop->value;
1523
	end = p + prop->length;
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533
	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
		l = strnlen(p, end - p) + 1;
		if (p + l > end)
			return -EILSEQ;
		if (out_strs && i >= skip)
			*out_strs++ = p;
	}
	i -= skip;
	return i <= 0 ? -ENODATA : i;
1534
}
1535
EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1536

1537 1538 1539 1540
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
1541 1542 1543 1544 1545 1546
	for (i = 0; i < args->args_count; i++) {
		const char delim = i ? ',' : ':';

		pr_cont("%c%08x", delim, args->args[i]);
	}
	pr_cont("\n");
1547 1548
}

1549 1550 1551 1552 1553
int of_phandle_iterator_init(struct of_phandle_iterator *it,
		const struct device_node *np,
		const char *list_name,
		const char *cells_name,
		int cell_count)
1554
{
1555 1556 1557 1558
	const __be32 *list;
	int size;

	memset(it, 0, sizeof(*it));
1559 1560

	list = of_get_property(np, list_name, &size);
1561
	if (!list)
1562
		return -ENOENT;
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	it->cells_name = cells_name;
	it->cell_count = cell_count;
	it->parent = np;
	it->list_end = list + size / sizeof(*list);
	it->phandle_end = list;
	it->cur = list;

	return 0;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
	uint32_t count = 0;

	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	if (!it->cur || it->phandle_end >= it->list_end)
		return -ENOENT;

	it->cur = it->phandle_end;

	/* If phandle is 0, then it is an empty entry with no arguments. */
	it->phandle = be32_to_cpup(it->cur++);

	if (it->phandle) {
1592

1593
		/*
1594 1595
		 * Find the provider node and parse the #*-cells property to
		 * determine the argument length.
1596
		 */
1597
		it->node = of_find_node_by_phandle(it->phandle);
1598

1599 1600 1601 1602 1603
		if (it->cells_name) {
			if (!it->node) {
				pr_err("%s: could not find phandle\n",
				       it->parent->full_name);
				goto err;
1604
			}
1605

1606 1607 1608 1609 1610 1611
			if (of_property_read_u32(it->node, it->cells_name,
						 &count)) {
				pr_err("%s: could not get %s for %s\n",
				       it->parent->full_name,
				       it->cells_name,
				       it->node->full_name);
1612
				goto err;
1613
			}
1614 1615
		} else {
			count = it->cell_count;
1616 1617
		}

1618
		/*
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		 * Make sure that the arguments actually fit in the remaining
		 * property data length
		 */
		if (it->cur + count > it->list_end) {
			pr_err("%s: arguments longer than property\n",
			       it->parent->full_name);
			goto err;
		}
	}

	it->phandle_end = it->cur + count;
	it->cur_count = count;

	return 0;

err:
	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	return -EINVAL;
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
int of_phandle_iterator_args(struct of_phandle_iterator *it,
			     uint32_t *args,
			     int size)
{
	int i, count;

	count = it->cur_count;

	if (WARN_ON(size < count))
		count = size;

	for (i = 0; i < count; i++)
		args[i] = be32_to_cpup(it->cur++);

	return count;
}

1660 1661
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1662 1663
					const char *cells_name,
					int cell_count, int index,
1664
					struct of_phandle_args *out_args)
1665
{
1666 1667
	struct of_phandle_iterator it;
	int rc, cur_index = 0;
1668

1669
	/* Loop over the phandles until all the requested entry is found */
1670
	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1671
		/*
1672
		 * All of the error cases bail out of the loop, so at
1673 1674 1675 1676
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1677
		rc = -ENOENT;
1678
		if (cur_index == index) {
1679
			if (!it.phandle)
1680
				goto err;
1681 1682

			if (out_args) {
1683 1684 1685 1686 1687
				int c;

				c = of_phandle_iterator_args(&it,
							     out_args->args,
							     MAX_PHANDLE_ARGS);
1688
				out_args->np = it.node;
1689
				out_args->args_count = c;
1690
			} else {
1691
				of_node_put(it.node);
1692
			}
1693 1694

			/* Found it! return success */
1695
			return 0;
1696 1697 1698 1699 1700
		}

		cur_index++;
	}

1701 1702 1703 1704 1705
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
	 */
1706

1707
 err:
1708
	of_node_put(it.node);
1709
	return rc;
1710
}
1711

S
Stephen Warren 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1725 1726 1727 1728
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1729

1730 1731
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1732 1733
		return NULL;

1734
	return args.np;
S
Stephen Warren 已提交
1735 1736 1737
}
EXPORT_SYMBOL(of_parse_phandle);

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1750
 * Caller is responsible to call of_node_put() on the returned out_args->np
1751 1752 1753 1754 1755
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
G
Geert Uytterhoeven 已提交
1756
 *	#list-cells = <2>;
1757 1758 1759
 * }
 *
 * phandle2: node2 {
G
Geert Uytterhoeven 已提交
1760
 *	#list-cells = <1>;
1761 1762 1763
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1764
 *	list = <&phandle1 1 2 &phandle2 3>;
1765 1766 1767 1768 1769
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1770 1771 1772 1773 1774 1775
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1776 1777
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1778
}
1779
EXPORT_SYMBOL(of_parse_phandle_with_args);
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1793
 * Caller is responsible to call of_node_put() on the returned out_args->np
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1805
 *	list = <&phandle1 0 2 &phandle2 2 3>;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	struct of_phandle_iterator it;
	int rc, cur_index = 0;

	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
	if (rc)
		return rc;

	while ((rc = of_phandle_iterator_next(&it)) == 0)
		cur_index += 1;

	if (rc != -ENOENT)
		return rc;

	return cur_index;
1854 1855 1856
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1857 1858 1859
/**
 * __of_add_property - Add a property to a node without lock operations
 */
1860
int __of_add_property(struct device_node *np, struct property *prop)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1878
/**
1879
 * of_add_property - Add a property to a node
1880
 */
1881
int of_add_property(struct device_node *np, struct property *prop)
1882 1883
{
	unsigned long flags;
1884 1885
	int rc;

1886
	mutex_lock(&of_mutex);
1887

1888
	raw_spin_lock_irqsave(&devtree_lock, flags);
1889
	rc = __of_add_property(np, prop);
1890
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1891

1892
	if (!rc)
1893
		__of_add_property_sysfs(np, prop);
1894

1895 1896
	mutex_unlock(&of_mutex);

1897 1898 1899
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1900
	return rc;
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1922 1923 1924 1925 1926 1927
void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
{
	sysfs_remove_bin_file(&np->kobj, &prop->attr);
	kfree(prop->attr.attr.name);
}

1928 1929
void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
{
1930 1931 1932
	if (!IS_ENABLED(CONFIG_SYSFS))
		return;

1933 1934
	/* at early boot, bail here and defer setup to of_init() */
	if (of_kset && of_node_is_attached(np))
1935
		__of_sysfs_remove_bin_file(np, prop);
1936 1937
}

1938
/**
1939
 * of_remove_property - Remove a property from a node.
1940 1941 1942 1943 1944 1945
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1946
int of_remove_property(struct device_node *np, struct property *prop)
1947 1948
{
	unsigned long flags;
1949 1950
	int rc;

1951 1952 1953
	if (!prop)
		return -ENODEV;

1954
	mutex_lock(&of_mutex);
1955

1956
	raw_spin_lock_irqsave(&devtree_lock, flags);
1957
	rc = __of_remove_property(np, prop);
1958
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1959

1960 1961
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1962

1963
	mutex_unlock(&of_mutex);
1964

1965 1966
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1967

1968
	return rc;
1969 1970
}

1971 1972
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1973
{
1974
	struct property **next, *oldprop;
1975

1976 1977 1978 1979 1980
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
1981

1982
	if (oldprop) {
1983
		/* replace the node */
1984 1985 1986 1987 1988 1989 1990 1991
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
1992
	}
1993

1994 1995 1996
	return 0;
}

1997 1998 1999
void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
		struct property *oldprop)
{
2000 2001 2002
	if (!IS_ENABLED(CONFIG_SYSFS))
		return;

2003 2004
	/* At early boot, bail out and defer setup to of_init() */
	if (!of_kset)
2005
		return;
2006

2007
	if (oldprop)
2008
		__of_sysfs_remove_bin_file(np, oldprop);
2009
	__of_add_property_sysfs(np, newprop);
2010
}
2011 2012

/*
2013
 * of_update_property - Update a property in a node, if the property does
2014
 * not exist, add it.
2015
 *
2016 2017 2018 2019
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
2020
 */
2021
int of_update_property(struct device_node *np, struct property *newprop)
2022
{
2023
	struct property *oldprop;
2024
	unsigned long flags;
2025 2026
	int rc;

2027 2028
	if (!newprop->name)
		return -EINVAL;
2029

2030
	mutex_lock(&of_mutex);
2031

2032
	raw_spin_lock_irqsave(&devtree_lock, flags);
2033
	rc = __of_update_property(np, newprop, &oldprop);
2034
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2035

2036 2037
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
2038

2039
	mutex_unlock(&of_mutex);
2040

2041 2042
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2043

2044
	return rc;
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2056
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2057 2058 2059
}

/**
2060
 * of_alias_scan - Scan all properties of the 'aliases' node
2061
 *
2062 2063 2064
 * The function scans all the properties of the 'aliases' node and populates
 * the global lookup table with the properties.  It returns the
 * number of alias properties found, or an error code in case of failure.
2065 2066
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
2067
 *		for storing the resulting tree
2068 2069 2070 2071 2072
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

2073
	of_aliases = of_find_node_by_path("/aliases");
2074 2075 2076
	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
2077 2078

	if (of_chosen) {
2079
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2080 2081 2082
		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
		if (!name)
			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2083 2084
		if (IS_ENABLED(CONFIG_PPC) && !name)
			name = of_get_property(of_aliases, "stdout", NULL);
2085
		if (name)
2086
			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2087 2088
	}

2089 2090 2091
	if (!of_aliases)
		return;

2092
	for_each_property_of_node(of_aliases, pp) {
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
2119
		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2120 2121
		if (!ap)
			continue;
2122
		memset(ap, 0, sizeof(*ap) + len + 1);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2133 2134
 * The function travels the lookup table to get the alias id for the given
 * device_node and alias stem.  It returns the alias id if found.
2135 2136 2137 2138 2139 2140
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

2141
	mutex_lock(&of_mutex);
2142 2143 2144 2145 2146 2147 2148 2149 2150
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
2151
	mutex_unlock(&of_mutex);
2152 2153 2154 2155

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/**
 * of_alias_get_highest_id - Get highest alias id for the given stem
 * @stem:	Alias stem to be examined
 *
 * The function travels the lookup table to get the highest alias id for the
 * given alias stem.  It returns the alias id if found.
 */
int of_alias_get_highest_id(const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (app->id > id)
			id = app->id;
	}
	mutex_unlock(&of_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
2223 2224

/**
2225 2226 2227 2228 2229 2230 2231 2232
 * of_console_check() - Test and setup console for DT setup
 * @dn - Pointer to device node
 * @name - Name to use for preferred console without index. ex. "ttyS"
 * @index - Index to use for preferred console.
 *
 * Check if the given device node matches the stdout-path property in the
 * /chosen node. If it does then register it as the preferred console and return
 * TRUE. Otherwise return FALSE.
2233
 */
2234
bool of_console_check(struct device_node *dn, char *name, int index)
2235
{
2236
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2237
		return false;
2238 2239
	return !add_preferred_console(name, index,
				      kstrdup(of_stdout_options, GFP_KERNEL));
2240
}
2241
EXPORT_SYMBOL_GPL(of_console_check);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
2253
	struct device_node *child, *cache_node;
2254

2255 2256 2257
	cache_node = of_parse_phandle(np, "l2-cache", 0);
	if (!cache_node)
		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2258

2259 2260
	if (cache_node)
		return cache_node;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/**
 * of_find_last_cache_level - Find the level at which the last cache is
 * 		present for the given logical cpu
 *
 * @cpu: cpu number(logical index) for which the last cache level is needed
 *
 * Returns the the level at which the last cache is present. It is exactly
 * same as  the total number of cache levels for the given logical cpu.
 */
int of_find_last_cache_level(unsigned int cpu)
{
	u32 cache_level = 0;
	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);

	while (np) {
		prev = np;
		of_node_put(np);
		np = of_find_next_cache_node(np);
	}

	of_property_read_u32(prev, "cache-level", &cache_level);

	return cache_level;
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

2310 2311 2312
	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
		  __func__, node->full_name);

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/**
 * of_graph_get_port_by_id() - get the port matching a given id
 * @parent: pointer to the parent device node
 * @id: id of the port
 *
 * Return: A 'port' node pointer with refcount incremented. The caller
 * has to use of_node_put() on it when done.
 */
struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
{
	struct device_node *node, *port;

	node = of_get_child_by_name(parent, "ports");
	if (node)
		parent = node;

	for_each_child_of_node(parent, port) {
		u32 port_id = 0;

		if (of_node_cmp(port->name, "port") != 0)
			continue;
		of_property_read_u32(port, "reg", &port_id);
		if (id == port_id)
			break;
	}

	of_node_put(node);

	return port;
}
EXPORT_SYMBOL(of_graph_get_port_by_id);

2361 2362 2363 2364 2365 2366
/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2367
 * of the passed @prev node is decremented.
2368 2369 2370 2371 2372
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
2373
	struct device_node *port;
2374 2375 2376 2377

	if (!parent)
		return NULL;

2378 2379 2380 2381 2382
	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
2383 2384
	if (!prev) {
		struct device_node *node;
2385

2386 2387 2388 2389 2390 2391 2392
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

2393
		if (!port) {
2394 2395
			pr_err("graph: no port node found in %s\n",
			       parent->full_name);
2396 2397 2398 2399 2400 2401 2402
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
			return NULL;
2403 2404
	}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}
2416

2417 2418
		/* No more endpoints under this port, try the next one. */
		prev = NULL;
2419

2420 2421 2422 2423 2424 2425
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));
	}
2426 2427 2428
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/**
 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 * @parent: pointer to the parent device node
 * @port_reg: identifier (value of reg property) of the parent port node
 * @reg: identifier (value of reg property) of the endpoint node
 *
 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 * is the child of a port node identified by port_reg. reg and port_reg are
 * ignored when they are -1.
 */
struct device_node *of_graph_get_endpoint_by_regs(
	const struct device_node *parent, int port_reg, int reg)
{
	struct of_endpoint endpoint;
2443
	struct device_node *node = NULL;
2444

2445
	for_each_endpoint_of_node(parent, node) {
2446 2447 2448 2449 2450 2451 2452 2453
		of_graph_parse_endpoint(node, &endpoint);
		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
			((reg == -1) || (endpoint.id == reg)))
			return node;
	}

	return NULL;
}
2454
EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

/**
 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 * @node: pointer to parent device_node containing graph port/endpoint
 * @port: identifier (value of reg property) of the parent port node
 * @endpoint: identifier (value of reg property) of the endpoint node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_node(const struct device_node *node,
					     u32 port, u32 endpoint)
{
	struct device_node *endpoint_node, *remote;

	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
	if (!endpoint_node) {
		pr_debug("no valid endpoint (%d, %d) for node %s\n",
			 port, endpoint, node->full_name);
		return NULL;
	}

	remote = of_graph_get_remote_port_parent(endpoint_node);
	of_node_put(endpoint_node);
	if (!remote) {
		pr_debug("no valid remote node\n");
		return NULL;
	}

	if (!of_device_is_available(remote)) {
		pr_debug("not available for remote node\n");
		return NULL;
	}

	return remote;
}
EXPORT_SYMBOL(of_graph_get_remote_node);