pgalloc-64.h 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#ifndef _ASM_POWERPC_PGALLOC_64_H
#define _ASM_POWERPC_PGALLOC_64_H
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/slab.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>

14 15 16 17 18
struct vmemmap_backing {
	struct vmemmap_backing *list;
	unsigned long phys;
	unsigned long virt_addr;
};
19
extern struct vmemmap_backing *vmemmap_list;
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Functions that deal with pagetables that could be at any level of
 * the table need to be passed an "index_size" so they know how to
 * handle allocation.  For PTE pages (which are linked to a struct
 * page for now, and drawn from the main get_free_pages() pool), the
 * allocation size will be (2^index_size * sizeof(pointer)) and
 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
 *
 * The maximum index size needs to be big enough to allow any
 * pagetable sizes we need, but small enough to fit in the low bits of
 * any page table pointer.  In other words all pagetables, even tiny
 * ones, must be aligned to allow at least enough low 0 bits to
 * contain this value.  This value is also used as a mask, so it must
 * be one less than a power of two.
 */
#define MAX_PGTABLE_INDEX_SIZE	0xf

38
extern struct kmem_cache *pgtable_cache[];
39 40 41 42
#define PGT_CACHE(shift) ({				\
			BUG_ON(!(shift));		\
			pgtable_cache[(shift) - 1];	\
		})
43 44 45

static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
46
	return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
47 48
}

49
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
50
{
51
	kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
52 53 54 55 56 57 58 59
}

#ifndef CONFIG_PPC_64K_PAGES

#define pgd_populate(MM, PGD, PUD)	pgd_set(PGD, PUD)

static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
60
	return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
61 62 63
				GFP_KERNEL|__GFP_REPEAT);
}

64
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
65
{
66
	kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
67 68 69 70 71 72 73 74 75 76
}

static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
	pud_set(pud, (unsigned long)pmd);
}

#define pmd_populate(mm, pmd, pte_page) \
	pmd_populate_kernel(mm, pmd, page_address(pte_page))
#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
77
#define pmd_pgtable(pmd) pmd_page(pmd)
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
					  unsigned long address)
{
	return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}

static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
				      unsigned long address)
{
	struct page *page;
	pte_t *pte;

	pte = pte_alloc_one_kernel(mm, address);
	if (!pte)
		return NULL;
	page = virt_to_page(pte);
95 96 97 98
	if (!pgtable_page_ctor(page)) {
		__free_page(page);
		return NULL;
	}
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	return page;
}

static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
	free_page((unsigned long)pte);
}

static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
	pgtable_page_dtor(ptepage);
	__free_page(ptepage);
}

static inline void pgtable_free(void *table, unsigned index_size)
{
	if (!index_size)
		free_page((unsigned long)table);
	else {
		BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
		kmem_cache_free(PGT_CACHE(index_size), table);
	}
}

#ifdef CONFIG_SMP
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
				    void *table, int shift)
{
	unsigned long pgf = (unsigned long)table;
	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
	pgf |= shift;
	tlb_remove_table(tlb, (void *)pgf);
}

static inline void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;

	pgtable_free(table, shift);
}
#else /* !CONFIG_SMP */
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
				    void *table, int shift)
{
	pgtable_free(table, shift);
}
#endif /* CONFIG_SMP */

static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
				  unsigned long address)
{
	struct page *page = page_address(table);

	tlb_flush_pgtable(tlb, address);
	pgtable_page_dtor(page);
	pgtable_free_tlb(tlb, page, 0);
}
157

158
#else /* if CONFIG_PPC_64K_PAGES */
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * we support 16 fragments per PTE page.
 */
#define PTE_FRAG_NR	16
/*
 * We use a 2K PTE page fragment and another 2K for storing
 * real_pte_t hash index
 */
#define PTE_FRAG_SIZE_SHIFT  12
#define PTE_FRAG_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))

extern pte_t *page_table_alloc(struct mm_struct *, unsigned long, int);
extern void page_table_free(struct mm_struct *, unsigned long *, int);
extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
#ifdef CONFIG_SMP
extern void __tlb_remove_table(void *_table);
#endif
176 177 178 179 180 181 182 183 184

#define pud_populate(mm, pud, pmd)	pud_set(pud, (unsigned long)pmd)

static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
				       pte_t *pte)
{
	pmd_set(pmd, (unsigned long)pte);
}

185 186
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
				pgtable_t pte_page)
187
{
188
	pmd_set(pmd, (unsigned long)pte_page);
189 190
}

191
static inline pgtable_t pmd_pgtable(pmd_t pmd)
192
{
193
	return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS);
194 195 196 197 198
}

static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
					  unsigned long address)
{
199
	return (pte_t *)page_table_alloc(mm, address, 1);
200 201
}

202
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
203
					unsigned long address)
204
{
205
	return (pgtable_t)page_table_alloc(mm, address, 0);
206 207
}

208 209
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
210
	page_table_free(mm, (unsigned long *)pte, 1);
211 212 213 214
}

static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
215
	page_table_free(mm, (unsigned long *)ptepage, 0);
216 217 218 219 220 221
}

static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
				  unsigned long address)
{
	tlb_flush_pgtable(tlb, address);
222
	pgtable_free_tlb(tlb, table, 0);
223 224 225 226 227
}
#endif /* CONFIG_PPC_64K_PAGES */

static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
228
	return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
229 230 231 232 233
				GFP_KERNEL|__GFP_REPEAT);
}

static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
234
	kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
235 236
}

237
#define __pmd_free_tlb(tlb, pmd, addr)		      \
238
	pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX)
239
#ifndef CONFIG_PPC_64K_PAGES
240
#define __pud_free_tlb(tlb, pud, addr)		      \
241 242
	pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)

243 244 245 246 247
#endif /* CONFIG_PPC_64K_PAGES */

#define check_pgt_cache()	do { } while (0)

#endif /* _ASM_POWERPC_PGALLOC_64_H */