sbp2.c 47.3 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31
#include <linux/blkdev.h>
32
#include <linux/bug.h>
S
Stefan Richter 已提交
33
#include <linux/completion.h>
34 35 36
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
37
#include <linux/firewire.h>
S
Stefan Richter 已提交
38 39 40
#include <linux/firewire-constants.h>
#include <linux/init.h>
#include <linux/jiffies.h>
41
#include <linux/kernel.h>
S
Stefan Richter 已提交
42 43
#include <linux/kref.h>
#include <linux/list.h>
44
#include <linux/mod_devicetable.h>
45
#include <linux/module.h>
46
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
47
#include <linux/scatterlist.h>
S
Stefan Richter 已提交
48 49
#include <linux/slab.h>
#include <linux/spinlock.h>
50
#include <linux/string.h>
51
#include <linux/stringify.h>
52
#include <linux/workqueue.h>
S
Stefan Richter 已提交
53 54

#include <asm/byteorder.h>
55
#include <asm/system.h>
56 57 58 59 60 61

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

62 63 64 65 66 67 68 69 70 71 72 73
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
93 94 95
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
96 97 98 99 100
 * - power condition
 *   Set the power condition field in the START STOP UNIT commands sent by
 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
 *   Some disks need this to spin down or to resume properly.
 *
101 102 103 104 105 106 107 108 109
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110 111
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
112
#define SBP2_WORKAROUND_POWER_CONDITION	0x20
113 114 115 116 117 118 119 120 121
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 124
	", set power condition in start stop unit = "
				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 126 127
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

128 129 130 131 132 133 134
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
135 136
	struct fw_address_handler address_handler;
	struct list_head orb_list;
137

138
	u64 command_block_agent_address;
139
	u16 lun;
140 141
	int login_id;

142
	/*
143 144 145 146
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
147
	 */
148
	int generation;
149 150
	int retries;
	struct delayed_work work;
151
	bool has_sdev;
152
	bool blocked;
153 154
};

155 156 157 158 159
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	queue_delayed_work(fw_workqueue, &lu->work, delay);
}

160 161 162 163 164 165
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct fw_unit *unit;
166
	struct list_head lu_list;
167 168

	u64 management_agent_address;
169
	u64 guid;
170 171 172
	int directory_id;
	int node_id;
	int address_high;
173
	unsigned int workarounds;
174
	unsigned int mgt_orb_timeout;
175
	unsigned int max_payload;
176 177 178

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
179 180
};

181
static struct fw_device *target_parent_device(struct sbp2_target *tgt)
182 183 184 185
{
	return fw_parent_device(tgt->unit);
}

186 187 188 189 190 191 192 193 194 195
static const struct device *tgt_dev(const struct sbp2_target *tgt)
{
	return &tgt->unit->device;
}

static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
{
	return &lu->tgt->unit->device;
}

J
Jay Fenlason 已提交
196 197 198
/* Impossible login_id, to detect logout attempt before successful login */
#define INVALID_LOGIN_ID 0x10000

199
#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
200
#define SBP2_ORB_NULL			0x80000000
201 202
#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
203

204 205 206 207 208 209
/*
 * There is no transport protocol limit to the CDB length,  but we implement
 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 */
#define SBP2_MAX_CDB_SIZE		16

210 211 212 213 214 215 216
/*
 * The default maximum s/g segment size of a FireWire controller is
 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
 */
#define SBP2_MAX_SEG_SIZE		0xfffc

217
/* Unit directory keys */
218
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
219 220
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
221
#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
222
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

248 249 250 251 252 253 254 255
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
256 257 258 259 260 261 262 263

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
264 265
	__be32 high;
	__be32 low;
266 267 268 269
};

struct sbp2_orb {
	struct fw_transaction t;
270
	struct kref kref;
271 272
	dma_addr_t request_bus;
	int rcode;
273
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
274 275 276
	struct list_head link;
};

277 278 279
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
280
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
281 282
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
283

284 285
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
286 287 288 289 290 291

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
292 293
		__be32 misc;
		__be32 length;
294 295 296 297 298 299 300 301 302
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

struct sbp2_login_response {
303
	__be32 misc;
304
	struct sbp2_pointer command_block_agent;
305
	__be32 reconnect_hold;
306
};
307 308 309 310 311
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
312
#define COMMAND_ORB_DIRECTION		((1) << 27)
313 314
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
315 316 317 318 319 320

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
321
		__be32 misc;
322
		u8 command_block[SBP2_MAX_CDB_SIZE];
323 324
	} request;
	struct scsi_cmnd *cmd;
325
	struct sbp2_logical_unit *lu;
326

327
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328 329 330
	dma_addr_t page_table_bus;
};

331 332 333
#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */

334 335 336 337 338 339
/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
340
 * so far.
341 342 343 344
 */
static const struct {
	u32 firmware_revision;
	u32 model;
345
	unsigned int workarounds;
346 347 348 349 350
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
351 352
					  SBP2_WORKAROUND_MODE_SENSE_8 |
					  SBP2_WORKAROUND_POWER_CONDITION,
353
	},
354 355 356
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
357
		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
358
	},
359 360
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
361
		.model			= SBP2_ROM_VALUE_WILDCARD,
362 363
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
364 365
	/* PL-3507 bridge with Prolific firmware */ {
		.firmware_revision	= 0x012800,
366
		.model			= SBP2_ROM_VALUE_WILDCARD,
367 368
		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
	},
369 370
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
371
		.model			= SBP2_ROM_VALUE_WILDCARD,
372 373
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
374 375
	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
		.firmware_revision	= 0x002600,
376
		.model			= SBP2_ROM_VALUE_WILDCARD,
377 378
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
379
	/*
380 381
	 * iPod 2nd generation: needs 128k max transfer size workaround
	 * iPod 3rd generation: needs fix capacity workaround
382
	 */
383 384 385 386 387 388 389
	{
		.firmware_revision	= 0x0a2700,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
					  SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod 4th generation */ {
390 391 392 393
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
394 395 396 397 398
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000022,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
399 400 401 402 403 404 405 406 407 408 409 410
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

411
static void free_orb(struct kref *kref)
412 413 414 415 416 417
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

418 419
static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
			      int tcode, int destination, int source,
420
			      int generation, unsigned long long offset,
421
			      void *payload, size_t length, void *callback_data)
422
{
423
	struct sbp2_logical_unit *lu = callback_data;
424 425 426 427 428
	struct sbp2_orb *orb;
	struct sbp2_status status;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
429
	    length < 8 || length > sizeof(status)) {
430 431 432 433
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

434 435 436 437 438 439
	status.status  = be32_to_cpup(payload);
	status.orb_low = be32_to_cpup(payload + 4);
	memset(status.data, 0, sizeof(status.data));
	if (length > 8)
		memcpy(status.data, payload + 8, length - 8);

440
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
441 442
		dev_notice(lu_dev(lu),
			   "non-ORB related status write, not handled\n");
443 444 445 446 447 448
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
449
	list_for_each_entry(orb, &lu->orb_list, link) {
450
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
451 452
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
453 454 455 456 457 458
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

459
	if (&orb->link != &lu->orb_list) {
460
		orb->callback(orb, &status);
461
		kref_put(&orb->kref, free_orb); /* orb callback reference */
462
	} else {
463
		dev_err(lu_dev(lu), "status write for unknown ORB\n");
464
	}
465

466 467 468
	fw_send_response(card, request, RCODE_COMPLETE);
}

469 470
static void complete_transaction(struct fw_card *card, int rcode,
				 void *payload, size_t length, void *data)
471 472 473 474
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

475 476 477 478 479 480 481 482 483 484 485 486 487
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
488
	if (orb->rcode != RCODE_COMPLETE) {
489
		list_del(&orb->link);
490
		spin_unlock_irqrestore(&card->lock, flags);
491

492
		orb->callback(orb, NULL);
493
		kref_put(&orb->kref, free_orb); /* orb callback reference */
494 495
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
496
	}
497

498
	kref_put(&orb->kref, free_orb); /* transaction callback reference */
499 500
}

501 502
static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
			  int node_id, int generation, u64 offset)
503
{
504
	struct fw_device *device = target_parent_device(lu->tgt);
505
	struct sbp2_pointer orb_pointer;
506 507
	unsigned long flags;

508 509
	orb_pointer.high = 0;
	orb_pointer.low = cpu_to_be32(orb->request_bus);
510 511

	spin_lock_irqsave(&device->card->lock, flags);
512
	list_add_tail(&orb->link, &lu->orb_list);
513 514
	spin_unlock_irqrestore(&device->card->lock, flags);

515 516
	kref_get(&orb->kref); /* transaction callback reference */
	kref_get(&orb->kref); /* orb callback reference */
517

518
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
519
			node_id, generation, device->max_speed, offset,
520
			&orb_pointer, 8, complete_transaction, orb);
521 522
}

523
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
524
{
525
	struct fw_device *device = target_parent_device(lu->tgt);
526 527 528
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
529
	int retval = -ENOENT;
530 531 532

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
533
	list_splice_init(&lu->orb_list, &list);
534 535 536
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
537
		retval = 0;
538 539
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;
540

541 542
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
543
		kref_put(&orb->kref, free_orb); /* orb callback reference */
544 545
	}

546
	return retval;
547 548
}

549 550
static void complete_management_orb(struct sbp2_orb *base_orb,
				    struct sbp2_status *status)
551 552
{
	struct sbp2_management_orb *orb =
553
		container_of(base_orb, struct sbp2_management_orb, base);
554 555

	if (status)
556
		memcpy(&orb->status, status, sizeof(*status));
557 558 559
	complete(&orb->done);
}

560 561 562
static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
				    int generation, int function,
				    int lun_or_login_id, void *response)
563
{
564
	struct fw_device *device = target_parent_device(lu->tgt);
565
	struct sbp2_management_orb *orb;
566
	unsigned int timeout;
567 568
	int retval = -ENOMEM;

569 570 571
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

572
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
573 574 575
	if (orb == NULL)
		return -ENOMEM;

576
	kref_init(&orb->base.kref);
577 578
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
579
			       sizeof(orb->response), DMA_FROM_DEVICE);
580
	if (dma_mapping_error(device->card->device, orb->response_bus))
581
		goto fail_mapping_response;
582

583 584
	orb->request.response.high = 0;
	orb->request.response.low  = cpu_to_be32(orb->response_bus);
585

586
	orb->request.misc = cpu_to_be32(
587 588
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
589 590 591
		MANAGEMENT_ORB_LUN(lun_or_login_id));
	orb->request.length = cpu_to_be32(
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
592

593 594 595 596
	orb->request.status_fifo.high =
		cpu_to_be32(lu->address_handler.offset >> 32);
	orb->request.status_fifo.low  =
		cpu_to_be32(lu->address_handler.offset);
597 598

	if (function == SBP2_LOGIN_REQUEST) {
599
		/* Ask for 2^2 == 4 seconds reconnect grace period */
600
		orb->request.misc |= cpu_to_be32(
601
			MANAGEMENT_ORB_RECONNECT(2) |
602
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
603
		timeout = lu->tgt->mgt_orb_timeout;
604 605
	} else {
		timeout = SBP2_ORB_TIMEOUT;
606 607 608 609
	}

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
610

611 612 613
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
614
	if (dma_mapping_error(device->card->device, orb->base.request_bus))
615 616
		goto fail_mapping_request;

617 618
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
619

620
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
621 622

	retval = -EIO;
623
	if (sbp2_cancel_orbs(lu) == 0) {
624 625
		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
			orb->base.rcode);
626 627 628
		goto out;
	}

629
	if (orb->base.rcode != RCODE_COMPLETE) {
630 631
		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
			orb->base.rcode);
632 633 634
		goto out;
	}

635 636
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
637
		dev_err(lu_dev(lu), "error status: %d:%d\n",
638 639
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
640 641 642 643 644 645
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
646
			 sizeof(orb->request), DMA_TO_DEVICE);
647
 fail_mapping_request:
648
	dma_unmap_single(device->card->device, orb->response_bus,
649
			 sizeof(orb->response), DMA_FROM_DEVICE);
650
 fail_mapping_response:
651
	if (response)
652
		memcpy(response, orb->response, sizeof(orb->response));
653
	kref_put(&orb->base.kref, free_orb);
654 655 656 657

	return retval;
}

658 659
static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
660
	struct fw_device *device = target_parent_device(lu->tgt);
J
Jay Fenlason 已提交
661
	__be32 d = 0;
662

J
Jay Fenlason 已提交
663 664 665
	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
			   lu->tgt->node_id, lu->generation, device->max_speed,
			   lu->command_block_agent_address + SBP2_AGENT_RESET,
666
			   &d, 4);
667 668
}

669 670
static void complete_agent_reset_write_no_wait(struct fw_card *card,
		int rcode, void *payload, size_t length, void *data)
671 672 673 674 675
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
676
{
677
	struct fw_device *device = target_parent_device(lu->tgt);
678
	struct fw_transaction *t;
J
Jay Fenlason 已提交
679
	static __be32 d;
680

681
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
682
	if (t == NULL)
683
		return;
684 685

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
686 687
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
688
			&d, 4, complete_agent_reset_write_no_wait, t);
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
716
	struct fw_card *card = target_parent_device(tgt)->card;
717 718 719 720 721 722 723 724
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
725
		if (++tgt->blocked == 1)
726 727 728 729 730 731 732 733 734 735 736 737 738 739
			scsi_block_requests(shost);
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
740
	struct fw_card *card = target_parent_device(tgt)->card;
741 742 743 744 745 746 747 748 749 750 751 752
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

753
	if (unblock)
754 755 756 757 758 759 760 761 762 763 764
		scsi_unblock_requests(shost);
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
765
	struct fw_card *card = target_parent_device(tgt)->card;
766 767 768 769 770 771 772 773 774 775 776
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

777 778 779 780 781 782 783 784 785 786 787
static int sbp2_lun2int(u16 lun)
{
	struct scsi_lun eight_bytes_lun;

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lun & 0xff;

	return scsilun_to_int(&eight_bytes_lun);
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/*
 * Write retransmit retry values into the BUSY_TIMEOUT register.
 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 *   saner value after logging into the device.
 * - The dual-phase retry protocol is optional to implement, and if not
 *   supported, writes to the dual-phase portion of the register will be
 *   ignored. We try to write the original 1394-1995 default here.
 * - In the case of devices that are also SBP-3-compliant, all writes are
 *   ignored, as the register is read-only, but contains single-phase retry of
 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 *   write attempt is safe and yields more consistent behavior for all devices.
 *
 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 * and section 6.4 of the SBP-3 spec for further details.
 */
804 805
static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
{
806
	struct fw_device *device = target_parent_device(lu->tgt);
J
Jay Fenlason 已提交
807
	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
808

J
Jay Fenlason 已提交
809 810
	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
			   lu->tgt->node_id, lu->generation, device->max_speed,
811
			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
812 813
}

814 815
static void sbp2_reconnect(struct work_struct *work);

816 817
static void sbp2_login(struct work_struct *work)
{
818 819
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
820
	struct sbp2_target *tgt = lu->tgt;
821
	struct fw_device *device = target_parent_device(tgt);
822
	struct Scsi_Host *shost;
823
	struct scsi_device *sdev;
824
	struct sbp2_login_response response;
825
	int generation, node_id, local_node_id;
826

827
	if (fw_device_is_shutdown(device))
828
		return;
829

830
	generation    = device->generation;
831
	smp_rmb();    /* node IDs must not be older than generation */
832 833
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
834

835
	/* If this is a re-login attempt, log out, or we might be rejected. */
836
	if (lu->has_sdev)
837 838 839
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

840 841
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
842
		if (lu->retries++ < 5) {
843
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
844
		} else {
845 846
			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
				lu->lun);
847 848 849
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
850
		return;
851 852
	}

853 854
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
855 856
	smp_wmb();	  /* node IDs must not be older than generation */
	lu->generation	  = generation;
857

858
	lu->command_block_agent_address =
859 860 861
		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
		      << 32) | be32_to_cpu(response.command_block_agent.low);
	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
862

863 864
	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
		   lu->lun, lu->retries);
865

866 867
	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
	sbp2_set_busy_timeout(lu);
868

869 870 871
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

872
	/* This was a re-login. */
873
	if (lu->has_sdev) {
874
		sbp2_cancel_orbs(lu);
875
		sbp2_conditionally_unblock(lu);
876 877

		return;
878 879
	}

880 881 882
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

883
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
884
	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
885 886 887 888 889 890 891
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
892

893 894 895 896 897 898 899 900
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
901
		scsi_device_put(sdev);
902
		goto out_logout_login;
903
	}
904 905

	/* No error during __scsi_add_device() */
906 907
	lu->has_sdev = true;
	scsi_device_put(sdev);
908
	sbp2_allow_block(lu);
909 910

	return;
911 912 913 914 915 916 917 918 919 920 921 922 923

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
924
}
925

926 927 928 929 930
static void sbp2_reconnect(struct work_struct *work)
{
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct sbp2_target *tgt = lu->tgt;
931
	struct fw_device *device = target_parent_device(tgt);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	int generation, node_id, local_node_id;

	if (fw_device_is_shutdown(device))
		return;

	generation    = device->generation;
	smp_rmb();    /* node IDs must not be older than generation */
	node_id       = device->node_id;
	local_node_id = device->card->node_id;

	if (sbp2_send_management_orb(lu, node_id, generation,
				     SBP2_RECONNECT_REQUEST,
				     lu->login_id, NULL) < 0) {
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
955
			dev_err(tgt_dev(tgt), "failed to reconnect\n");
956 957 958 959 960 961 962 963 964 965 966 967 968
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
		}
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));

		return;
	}

	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
	smp_wmb();	  /* node IDs must not be older than generation */
	lu->generation	  = generation;

969 970
	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
		   lu->lun, lu->retries);
971 972 973 974 975 976

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
	sbp2_conditionally_unblock(lu);
}

977
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
978
{
979
	struct sbp2_logical_unit *lu;
980

981 982 983
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
984

985 986 987
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
988

989 990 991 992 993
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
994

995 996
	lu->tgt      = tgt;
	lu->lun      = lun_entry & 0xffff;
J
Jay Fenlason 已提交
997
	lu->login_id = INVALID_LOGIN_ID;
998 999 1000
	lu->retries  = 0;
	lu->has_sdev = false;
	lu->blocked  = false;
1001
	++tgt->dont_block;
1002 1003
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1004

1005 1006 1007
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
1008

1009 1010 1011 1012 1013 1014 1015
static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
				    const u32 *leaf)
{
	if ((leaf[0] & 0xffff0000) == 0x00020000)
		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
}

1016 1017
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
				      const u32 *directory)
1018 1019 1020
{
	struct fw_csr_iterator ci;
	int key, value;
1021

1022 1023 1024 1025 1026 1027 1028 1029
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

1030
static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031 1032 1033 1034 1035 1036
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;

	fw_csr_iterator_init(&ci, directory);
1037 1038
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
1039

1040
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041 1042
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
1043
			break;
1044 1045 1046

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
1047
			break;
1048

1049
		case CSR_MODEL:
1050 1051 1052 1053 1054 1055 1056
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

1057 1058
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
1059
			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060 1061
			break;

1062 1063 1064 1065 1066
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

1067 1068 1069 1070
		case SBP2_CSR_UNIT_UNIQUE_ID:
			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
			break;

1071
		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072 1073
			/* Adjust for the increment in the iterator */
			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074
				return -ENOMEM;
1075 1076 1077
			break;
		}
	}
1078 1079 1080
	return 0;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
 */
static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
{
	unsigned int timeout = tgt->mgt_orb_timeout;

	if (timeout > 40000)
1091 1092
		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
			   timeout / 1000);
1093 1094 1095 1096

	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
}

1097 1098 1099 1100
static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1101
	unsigned int w = sbp2_param_workarounds;
1102 1103

	if (w)
1104 1105 1106
		dev_notice(tgt_dev(tgt),
			   "Please notify linux1394-devel@lists.sf.net "
			   "if you need the workarounds parameter\n");
1107

1108 1109
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1110 1111

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112

1113 1114 1115
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1116

1117
		if (sbp2_workarounds_table[i].model != model &&
1118
		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119
			continue;
1120

1121
		w |= sbp2_workarounds_table[i].workarounds;
1122 1123
		break;
	}
1124 1125
 out:
	if (w)
1126 1127 1128
		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
			   w, firmware_revision, model);
1129
	tgt->workarounds = w;
1130 1131 1132
}

static struct scsi_host_template scsi_driver_template;
1133
static int sbp2_remove(struct device *dev);
1134 1135 1136 1137

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1138
	struct fw_device *device = fw_parent_device(unit);
1139 1140 1141 1142 1143
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

1144 1145 1146 1147
	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
		BUG_ON(dma_set_max_seg_size(device->card->device,
					    SBP2_MAX_SEG_SIZE));

1148 1149 1150 1151 1152
	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
1153
	dev_set_drvdata(&unit->device, tgt);
1154 1155
	tgt->unit = unit;
	INIT_LIST_HEAD(&tgt->lu_list);
1156
	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1157 1158 1159 1160

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

1161 1162
	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;

1163 1164 1165 1166 1167 1168 1169
	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

1170 1171 1172
	firmware_revision = SBP2_ROM_VALUE_MISSING;
	model		  = SBP2_ROM_VALUE_MISSING;

1173 1174
	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
1175
		goto fail_remove;
1176

1177
	sbp2_clamp_management_orb_timeout(tgt);
1178
	sbp2_init_workarounds(tgt, model, firmware_revision);
1179

1180 1181 1182 1183 1184 1185
	/*
	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
	 * if we set this to max_speed + 7, we get the right value.
	 */
1186 1187
	tgt->max_payload = min3(device->max_speed + 7, 10U,
				device->card->max_receive - 1);
1188

1189
	/* Do the login in a workqueue so we can easily reschedule retries. */
1190
	list_for_each_entry(lu, &tgt->lu_list, link)
1191
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1192

1193
	return 0;
1194

1195 1196
 fail_remove:
	sbp2_remove(dev);
1197 1198 1199 1200 1201
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1202 1203
}

1204
static void sbp2_update(struct fw_unit *unit)
1205
{
1206
	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1207 1208
	struct sbp2_logical_unit *lu;

1209
	fw_device_enable_phys_dma(fw_parent_device(unit));
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219
	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		sbp2_conditionally_block(lu);
		lu->retries = 0;
		sbp2_queue_work(lu, 0);
	}
1220 1221
}

1222
static int sbp2_remove(struct device *dev)
1223
{
1224 1225 1226
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_parent_device(unit);
	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1227 1228 1229 1230
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
1231

1232 1233
	/* prevent deadlocks */
	sbp2_unblock(tgt);
1234

1235
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1236
		cancel_delayed_work_sync(&lu->work);
1237 1238 1239 1240
		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
1241
		}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		if (lu->login_id != INVALID_LOGIN_ID) {
			int generation, node_id;
			/*
			 * tgt->node_id may be obsolete here if we failed
			 * during initial login or after a bus reset where
			 * the topology changed.
			 */
			generation = device->generation;
			smp_rmb(); /* node_id vs. generation */
			node_id    = device->node_id;
			sbp2_send_management_orb(lu, node_id, generation,
						 SBP2_LOGOUT_REQUEST,
						 lu->login_id, NULL);
		}
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
1259
	}
1260
	scsi_remove_host(shost);
1261
	dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1262

1263 1264
	scsi_host_put(shost);
	return 0;
1265 1266 1267 1268 1269
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1270
static const struct ieee1394_device_id sbp2_id_table[] = {
1271
	{
1272 1273
		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
				IEEE1394_MATCH_VERSION,
1274
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1275
		.version      = SBP2_SW_VERSION_ENTRY,
1276 1277 1278 1279 1280 1281 1282
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
1283
		.name   = KBUILD_MODNAME,
1284 1285 1286 1287 1288 1289 1290 1291
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static void sbp2_unmap_scatterlist(struct device *card_device,
				   struct sbp2_command_orb *orb)
{
	if (scsi_sg_count(orb->cmd))
		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
			     orb->cmd->sc_data_direction);

	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
		dma_unmap_single(card_device, orb->page_table_bus,
				 sizeof(orb->page_table), DMA_TO_DEVICE);
}

1305
static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306
{
1307 1308
	int sam_status;

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1326
	sam_status = sbp2_status[0] & 0x3f;
1327

1328 1329
	switch (sam_status) {
	case SAM_STAT_GOOD:
1330 1331
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1332
	case SAM_STAT_BUSY:
1333 1334
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1335 1336
		return DID_OK << 16 | sam_status;

1337
	default:
1338
		return DID_ERROR << 16;
1339 1340 1341
	}
}

1342 1343
static void complete_command_orb(struct sbp2_orb *base_orb,
				 struct sbp2_status *status)
1344
{
1345 1346
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1347
	struct fw_device *device = target_parent_device(orb->lu->tgt);
1348 1349 1350
	int result;

	if (status != NULL) {
1351
		if (STATUS_GET_DEAD(*status))
1352
			sbp2_agent_reset_no_wait(orb->lu);
1353

1354
		switch (STATUS_GET_RESPONSE(*status)) {
1355
		case SBP2_STATUS_REQUEST_COMPLETE:
1356
			result = DID_OK << 16;
1357 1358
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1359
			result = DID_BUS_BUSY << 16;
1360 1361 1362 1363
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1364
			result = DID_ERROR << 16;
1365 1366 1367
			break;
		}

1368 1369
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1370 1371
							   orb->cmd->sense_buffer);
	} else {
1372 1373
		/*
		 * If the orb completes with status == NULL, something
1374
		 * went wrong, typically a bus reset happened mid-orb
1375 1376
		 * or when sending the write (less likely).
		 */
1377
		result = DID_BUS_BUSY << 16;
1378
		sbp2_conditionally_block(orb->lu);
1379 1380 1381
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1382
			 sizeof(orb->request), DMA_TO_DEVICE);
1383
	sbp2_unmap_scatterlist(device->card->device, orb);
1384

1385
	orb->cmd->result = result;
1386
	orb->cmd->scsi_done(orb->cmd);
1387 1388
}

1389 1390
static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
		struct fw_device *device, struct sbp2_logical_unit *lu)
1391
{
1392 1393 1394 1395 1396 1397
	struct scatterlist *sg = scsi_sglist(orb->cmd);
	int i, n;

	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
		       orb->cmd->sc_data_direction);
	if (n == 0)
1398
		goto fail;
1399

1400 1401
	/*
	 * Handle the special case where there is only one element in
1402 1403 1404
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1405 1406
	 * tables.
	 */
1407
	if (n == 1) {
1408 1409 1410 1411 1412 1413
		orb->request.data_descriptor.high =
			cpu_to_be32(lu->tgt->address_high);
		orb->request.data_descriptor.low  =
			cpu_to_be32(sg_dma_address(sg));
		orb->request.misc |=
			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1414
		return 0;
1415 1416
	}

1417 1418 1419
	for_each_sg(sg, sg, n, i) {
		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1420 1421
	}

1422 1423 1424
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
1425
	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1426
		goto fail_page_table;
1427

1428 1429
	/*
	 * The data_descriptor pointer is the one case where we need
1430 1431 1432
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1433 1434
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1435 1436 1437
	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1438
					 COMMAND_ORB_DATA_SIZE(n));
1439

1440 1441 1442
	return 0;

 fail_page_table:
1443 1444
	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1445 1446
 fail:
	return -ENOMEM;
1447 1448 1449 1450
}

/* SCSI stack integration */

1451 1452
static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
				  struct scsi_cmnd *cmd)
1453
{
1454
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1455
	struct fw_device *device = target_parent_device(lu->tgt);
1456
	struct sbp2_command_orb *orb;
1457
	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1458

1459 1460 1461 1462
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1463
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1464
		dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1465
		cmd->result = DID_ERROR << 16;
1466
		cmd->scsi_done(cmd);
1467
		return 0;
1468 1469
	}

1470
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1471
	if (orb == NULL) {
1472
		dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1473
		return SCSI_MLQUEUE_HOST_BUSY;
1474 1475
	}

1476 1477
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1478
	kref_init(&orb->base.kref);
1479 1480
	orb->lu = lu;
	orb->cmd = cmd;
1481
	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1482
	orb->request.misc = cpu_to_be32(
1483
		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1484
		COMMAND_ORB_SPEED(device->max_speed) |
1485
		COMMAND_ORB_NOTIFY);
1486 1487

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1488
		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1489

1490 1491 1492
	generation = device->generation;
	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */

1493 1494
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1495

1496
	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1497 1498

	orb->base.callback = complete_command_orb;
1499 1500 1501
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
1502 1503
	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
		sbp2_unmap_scatterlist(device->card->device, orb);
1504
		goto out;
1505
	}
1506

1507
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1508 1509 1510
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1511
	kref_put(&orb->base.kref, free_orb);
1512
	return retval;
1513 1514
}

1515 1516
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1517
	struct sbp2_logical_unit *lu = sdev->hostdata;
1518

1519 1520 1521 1522
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1523 1524
	sdev->allow_restart = 1;

1525 1526
	/* SBP-2 requires quadlet alignment of the data buffers. */
	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1527

1528
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1529
		sdev->inquiry_len = 36;
1530

1531 1532 1533
	return 0;
}

1534 1535
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1536
	struct sbp2_logical_unit *lu = sdev->hostdata;
1537

1538 1539
	sdev->use_10_for_rw = 1;

1540 1541 1542
	if (sbp2_param_exclusive_login)
		sdev->manage_start_stop = 1;

1543 1544
	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1545

1546
	if (sdev->type == TYPE_DISK &&
1547
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1548
		sdev->skip_ms_page_8 = 1;
1549 1550

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1551
		sdev->fix_capacity = 1;
1552

1553 1554 1555
	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
		sdev->start_stop_pwr_cond = 1;

1556
	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1557
		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1558

1559 1560
	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);

1561 1562 1563 1564 1565 1566 1567 1568 1569
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1570
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1571

1572
	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1573 1574
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1575 1576 1577 1578

	return SUCCESS;
}

1579 1580 1581 1582 1583 1584 1585
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
1586 1587
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
			struct device_attribute *attr, char *buf)
1588 1589
{
	struct scsi_device *sdev = to_scsi_device(dev);
1590
	struct sbp2_logical_unit *lu;
1591 1592 1593 1594

	if (!sdev)
		return 0;

1595
	lu = sdev->hostdata;
1596

1597 1598
	return sprintf(buf, "%016llx:%06x:%04x\n",
			(unsigned long long)lu->tgt->guid,
1599
			lu->tgt->directory_id, lu->lun);
1600 1601 1602 1603 1604 1605 1606 1607 1608
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1609 1610 1611
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1612
	.proc_name		= "sbp2",
1613
	.queuecommand		= sbp2_scsi_queuecommand,
1614
	.slave_alloc		= sbp2_scsi_slave_alloc,
1615 1616 1617 1618 1619
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1620 1621
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1622
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1623 1624 1625 1626 1627 1628 1629
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1630 1631 1632 1633 1634
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
static int __init sbp2_init(void)
{
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);