core.c 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2016-2017 Micron Technology, Inc.
 *
 * Authors:
 *	Peter Pan <peterpandong@micron.com>
 *	Boris Brezillon <boris.brezillon@bootlin.com>
 */

#define pr_fmt(fmt)	"spi-nand: " fmt

#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
19
#include <linux/string.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>

static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
{
	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
						      spinand->scratchbuf);
	int ret;

	ret = spi_mem_exec_op(spinand->spimem, &op);
	if (ret)
		return ret;

	*val = *spinand->scratchbuf;
	return 0;
}

static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
{
	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
						      spinand->scratchbuf);

	*spinand->scratchbuf = val;
	return spi_mem_exec_op(spinand->spimem, &op);
}

static int spinand_read_status(struct spinand_device *spinand, u8 *status)
{
	return spinand_read_reg_op(spinand, REG_STATUS, status);
}

static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
{
	struct nand_device *nand = spinand_to_nand(spinand);

	if (WARN_ON(spinand->cur_target < 0 ||
		    spinand->cur_target >= nand->memorg.ntargets))
		return -EINVAL;

	*cfg = spinand->cfg_cache[spinand->cur_target];
	return 0;
}

static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	int ret;

	if (WARN_ON(spinand->cur_target < 0 ||
		    spinand->cur_target >= nand->memorg.ntargets))
		return -EINVAL;

	if (spinand->cfg_cache[spinand->cur_target] == cfg)
		return 0;

	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
	if (ret)
		return ret;

	spinand->cfg_cache[spinand->cur_target] = cfg;
	return 0;
}

/**
 * spinand_upd_cfg() - Update the configuration register
 * @spinand: the spinand device
 * @mask: the mask encoding the bits to update in the config reg
 * @val: the new value to apply
 *
 * Update the configuration register.
 *
 * Return: 0 on success, a negative error code otherwise.
 */
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
{
	int ret;
	u8 cfg;

	ret = spinand_get_cfg(spinand, &cfg);
	if (ret)
		return ret;

	cfg &= ~mask;
	cfg |= val;

	return spinand_set_cfg(spinand, cfg);
}

/**
 * spinand_select_target() - Select a specific NAND target/die
 * @spinand: the spinand device
 * @target: the target/die to select
 *
 * Select a new target/die. If chip only has one die, this function is a NOOP.
 *
 * Return: 0 on success, a negative error code otherwise.
 */
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	int ret;

	if (WARN_ON(target >= nand->memorg.ntargets))
		return -EINVAL;

	if (spinand->cur_target == target)
		return 0;

	if (nand->memorg.ntargets == 1) {
		spinand->cur_target = target;
		return 0;
	}

	ret = spinand->select_target(spinand, target);
	if (ret)
		return ret;

	spinand->cur_target = target;
	return 0;
}

static int spinand_init_cfg_cache(struct spinand_device *spinand)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	struct device *dev = &spinand->spimem->spi->dev;
	unsigned int target;
	int ret;

	spinand->cfg_cache = devm_kcalloc(dev,
					  nand->memorg.ntargets,
					  sizeof(*spinand->cfg_cache),
					  GFP_KERNEL);
	if (!spinand->cfg_cache)
		return -ENOMEM;

	for (target = 0; target < nand->memorg.ntargets; target++) {
		ret = spinand_select_target(spinand, target);
		if (ret)
			return ret;

		/*
		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
		 * here to bypass the config cache.
		 */
		ret = spinand_read_reg_op(spinand, REG_CFG,
					  &spinand->cfg_cache[target]);
		if (ret)
			return ret;
	}

	return 0;
}

static int spinand_init_quad_enable(struct spinand_device *spinand)
{
	bool enable = false;

	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
		return 0;

	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
	    spinand->op_templates.write_cache->data.buswidth == 4 ||
	    spinand->op_templates.update_cache->data.buswidth == 4)
		enable = true;

	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
			       enable ? CFG_QUAD_ENABLE : 0);
}

static int spinand_ecc_enable(struct spinand_device *spinand,
			      bool enable)
{
	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
			       enable ? CFG_ECC_ENABLE : 0);
}

static int spinand_write_enable_op(struct spinand_device *spinand)
{
	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);

	return spi_mem_exec_op(spinand->spimem, &op);
}

static int spinand_load_page_op(struct spinand_device *spinand,
				const struct nand_page_io_req *req)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);

	return spi_mem_exec_op(spinand->spimem, &op);
}

static int spinand_read_from_cache_op(struct spinand_device *spinand,
				      const struct nand_page_io_req *req)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	struct mtd_info *mtd = nanddev_to_mtd(nand);
218
	struct spi_mem_dirmap_desc *rdesc;
219 220 221
	unsigned int nbytes = 0;
	void *buf = NULL;
	u16 column = 0;
222
	ssize_t ret;
223 224 225

	if (req->datalen) {
		buf = spinand->databuf;
226 227
		nbytes = nanddev_page_size(nand);
		column = 0;
228 229 230 231 232 233 234 235 236 237
	}

	if (req->ooblen) {
		nbytes += nanddev_per_page_oobsize(nand);
		if (!buf) {
			buf = spinand->oobbuf;
			column = nanddev_page_size(nand);
		}
	}

238
	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
239 240

	while (nbytes) {
241 242
		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
		if (ret < 0)
243 244
			return ret;

245 246
		if (!ret || ret > nbytes)
			return -EIO;
247

248 249 250
		nbytes -= ret;
		column += ret;
		buf += ret;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	}

	if (req->datalen)
		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
		       req->datalen);

	if (req->ooblen) {
		if (req->mode == MTD_OPS_AUTO_OOB)
			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
						    spinand->oobbuf,
						    req->ooboffs,
						    req->ooblen);
		else
			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
			       req->ooblen);
	}

	return 0;
}

static int spinand_write_to_cache_op(struct spinand_device *spinand,
				     const struct nand_page_io_req *req)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	struct mtd_info *mtd = nanddev_to_mtd(nand);
276 277
	struct spi_mem_dirmap_desc *wdesc;
	unsigned int nbytes, column = 0;
278
	void *buf = spinand->databuf;
279
	ssize_t ret;
280

281 282 283 284 285 286 287 288 289
	/*
	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
	 * the cache content to 0xFF (depends on vendor implementation), so we
	 * must fill the page cache entirely even if we only want to program
	 * the data portion of the page, otherwise we might corrupt the BBM or
	 * user data previously programmed in OOB area.
	 */
	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
	memset(spinand->databuf, 0xff, nbytes);
290

291
	if (req->datalen)
292 293 294 295 296 297 298 299 300 301 302 303 304 305
		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
		       req->datalen);

	if (req->ooblen) {
		if (req->mode == MTD_OPS_AUTO_OOB)
			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
						    spinand->oobbuf,
						    req->ooboffs,
						    req->ooblen);
		else
			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
			       req->ooblen);
	}

306
	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
307 308

	while (nbytes) {
309 310
		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
		if (ret < 0)
311 312
			return ret;

313 314
		if (!ret || ret > nbytes)
			return -EIO;
315

316 317 318
		nbytes -= ret;
		column += ret;
		buf += ret;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	}

	return 0;
}

static int spinand_program_op(struct spinand_device *spinand,
			      const struct nand_page_io_req *req)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);

	return spi_mem_exec_op(spinand->spimem, &op);
}

static int spinand_erase_op(struct spinand_device *spinand,
			    const struct nand_pos *pos)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	unsigned int row = nanddev_pos_to_row(nand, pos);
	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);

	return spi_mem_exec_op(spinand->spimem, &op);
}

static int spinand_wait(struct spinand_device *spinand, u8 *s)
{
	unsigned long timeo =  jiffies + msecs_to_jiffies(400);
	u8 status;
	int ret;

	do {
		ret = spinand_read_status(spinand, &status);
		if (ret)
			return ret;

		if (!(status & STATUS_BUSY))
			goto out;
	} while (time_before(jiffies, timeo));

	/*
	 * Extra read, just in case the STATUS_READY bit has changed
	 * since our last check
	 */
	ret = spinand_read_status(spinand, &status);
	if (ret)
		return ret;

out:
	if (s)
		*s = status;

	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}

374 375
static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
			      u8 ndummy, u8 *buf)
376
{
377 378
	struct spi_mem_op op = SPINAND_READID_OP(
		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	int ret;

	ret = spi_mem_exec_op(spinand->spimem, &op);
	if (!ret)
		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);

	return ret;
}

static int spinand_reset_op(struct spinand_device *spinand)
{
	struct spi_mem_op op = SPINAND_RESET_OP;
	int ret;

	ret = spi_mem_exec_op(spinand->spimem, &op);
	if (ret)
		return ret;

	return spinand_wait(spinand, NULL);
}

static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
{
	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
}

static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
{
	struct nand_device *nand = spinand_to_nand(spinand);

	if (spinand->eccinfo.get_status)
		return spinand->eccinfo.get_status(spinand, status);

	switch (status & STATUS_ECC_MASK) {
	case STATUS_ECC_NO_BITFLIPS:
		return 0;

	case STATUS_ECC_HAS_BITFLIPS:
		/*
		 * We have no way to know exactly how many bitflips have been
		 * fixed, so let's return the maximum possible value so that
		 * wear-leveling layers move the data immediately.
		 */
422
		return nanddev_get_ecc_conf(nand)->strength;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	case STATUS_ECC_UNCOR_ERROR:
		return -EBADMSG;

	default:
		break;
	}

	return -EINVAL;
}

static int spinand_read_page(struct spinand_device *spinand,
			     const struct nand_page_io_req *req,
			     bool ecc_enabled)
{
	u8 status;
	int ret;

	ret = spinand_load_page_op(spinand, req);
	if (ret)
		return ret;

	ret = spinand_wait(spinand, &status);
	if (ret < 0)
		return ret;

	ret = spinand_read_from_cache_op(spinand, req);
	if (ret)
		return ret;

	if (!ecc_enabled)
		return 0;

	return spinand_check_ecc_status(spinand, status);
}

static int spinand_write_page(struct spinand_device *spinand,
			      const struct nand_page_io_req *req)
{
	u8 status;
	int ret;

	ret = spinand_write_enable_op(spinand);
	if (ret)
		return ret;

	ret = spinand_write_to_cache_op(spinand, req);
	if (ret)
		return ret;

	ret = spinand_program_op(spinand, req);
	if (ret)
		return ret;

	ret = spinand_wait(spinand, &status);
	if (!ret && (status & STATUS_PROG_FAILED))
		ret = -EIO;

	return ret;
}

static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
	struct spinand_device *spinand = mtd_to_spinand(mtd);
	struct nand_device *nand = mtd_to_nanddev(mtd);
	unsigned int max_bitflips = 0;
	struct nand_io_iter iter;
	bool enable_ecc = false;
	bool ecc_failed = false;
	int ret = 0;

	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
		enable_ecc = true;

	mutex_lock(&spinand->lock);

500
	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		ret = spinand_select_target(spinand, iter.req.pos.target);
		if (ret)
			break;

		ret = spinand_ecc_enable(spinand, enable_ecc);
		if (ret)
			break;

		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
		if (ret < 0 && ret != -EBADMSG)
			break;

		if (ret == -EBADMSG) {
			ecc_failed = true;
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += ret;
			max_bitflips = max_t(unsigned int, max_bitflips, ret);
		}

521
		ret = 0;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
		ops->retlen += iter.req.datalen;
		ops->oobretlen += iter.req.ooblen;
	}

	mutex_unlock(&spinand->lock);

	if (ecc_failed && !ret)
		ret = -EBADMSG;

	return ret ? ret : max_bitflips;
}

static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
	struct spinand_device *spinand = mtd_to_spinand(mtd);
	struct nand_device *nand = mtd_to_nanddev(mtd);
	struct nand_io_iter iter;
	bool enable_ecc = false;
	int ret = 0;

	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
		enable_ecc = true;

	mutex_lock(&spinand->lock);

548
	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		ret = spinand_select_target(spinand, iter.req.pos.target);
		if (ret)
			break;

		ret = spinand_ecc_enable(spinand, enable_ecc);
		if (ret)
			break;

		ret = spinand_write_page(spinand, &iter.req);
		if (ret)
			break;

		ops->retlen += iter.req.datalen;
		ops->oobretlen += iter.req.ooblen;
	}

	mutex_unlock(&spinand->lock);

	return ret;
}

static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
	struct spinand_device *spinand = nand_to_spinand(nand);
573
	u8 marker[2] = { };
574 575
	struct nand_page_io_req req = {
		.pos = *pos,
576
		.ooblen = sizeof(marker),
577
		.ooboffs = 0,
578
		.oobbuf.in = marker,
579 580 581 582 583
		.mode = MTD_OPS_RAW,
	};

	spinand_select_target(spinand, pos->target);
	spinand_read_page(spinand, &req, false);
584
	if (marker[0] != 0xff || marker[1] != 0xff)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		return true;

	return false;
}

static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
{
	struct nand_device *nand = mtd_to_nanddev(mtd);
	struct spinand_device *spinand = nand_to_spinand(nand);
	struct nand_pos pos;
	int ret;

	nanddev_offs_to_pos(nand, offs, &pos);
	mutex_lock(&spinand->lock);
	ret = nanddev_isbad(nand, &pos);
	mutex_unlock(&spinand->lock);

	return ret;
}

static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
	struct spinand_device *spinand = nand_to_spinand(nand);
608
	u8 marker[2] = { };
609 610 611
	struct nand_page_io_req req = {
		.pos = *pos,
		.ooboffs = 0,
612 613
		.ooblen = sizeof(marker),
		.oobbuf.out = marker,
614
		.mode = MTD_OPS_RAW,
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	};
	int ret;

	ret = spinand_select_target(spinand, pos->target);
	if (ret)
		return ret;

	ret = spinand_write_enable_op(spinand);
	if (ret)
		return ret;

	return spinand_write_page(spinand, &req);
}

static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
{
	struct nand_device *nand = mtd_to_nanddev(mtd);
	struct spinand_device *spinand = nand_to_spinand(nand);
	struct nand_pos pos;
	int ret;

	nanddev_offs_to_pos(nand, offs, &pos);
	mutex_lock(&spinand->lock);
	ret = nanddev_markbad(nand, &pos);
	mutex_unlock(&spinand->lock);

	return ret;
}

static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
	struct spinand_device *spinand = nand_to_spinand(nand);
	u8 status;
	int ret;

	ret = spinand_select_target(spinand, pos->target);
	if (ret)
		return ret;

	ret = spinand_write_enable_op(spinand);
	if (ret)
		return ret;

	ret = spinand_erase_op(spinand, pos);
	if (ret)
		return ret;

	ret = spinand_wait(spinand, &status);
	if (!ret && (status & STATUS_ERASE_FAILED))
		ret = -EIO;

	return ret;
}

static int spinand_mtd_erase(struct mtd_info *mtd,
			     struct erase_info *einfo)
{
	struct spinand_device *spinand = mtd_to_spinand(mtd);
	int ret;

	mutex_lock(&spinand->lock);
	ret = nanddev_mtd_erase(mtd, einfo);
	mutex_unlock(&spinand->lock);

	return ret;
}

static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
{
	struct spinand_device *spinand = mtd_to_spinand(mtd);
	struct nand_device *nand = mtd_to_nanddev(mtd);
	struct nand_pos pos;
	int ret;

	nanddev_offs_to_pos(nand, offs, &pos);
	mutex_lock(&spinand->lock);
	ret = nanddev_isreserved(nand, &pos);
	mutex_unlock(&spinand->lock);

	return ret;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static int spinand_create_dirmap(struct spinand_device *spinand,
				 unsigned int plane)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	struct spi_mem_dirmap_info info = {
		.length = nanddev_page_size(nand) +
			  nanddev_per_page_oobsize(nand),
	};
	struct spi_mem_dirmap_desc *desc;

	/* The plane number is passed in MSB just above the column address */
	info.offset = plane << fls(nand->memorg.pagesize);

	info.op_tmpl = *spinand->op_templates.update_cache;
	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
					  spinand->spimem, &info);
	if (IS_ERR(desc))
		return PTR_ERR(desc);

	spinand->dirmaps[plane].wdesc = desc;

	info.op_tmpl = *spinand->op_templates.read_cache;
	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
					  spinand->spimem, &info);
	if (IS_ERR(desc))
		return PTR_ERR(desc);

	spinand->dirmaps[plane].rdesc = desc;

	return 0;
}

static int spinand_create_dirmaps(struct spinand_device *spinand)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	int i, ret;

	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
					sizeof(*spinand->dirmaps) *
					nand->memorg.planes_per_lun,
					GFP_KERNEL);
	if (!spinand->dirmaps)
		return -ENOMEM;

	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
		ret = spinand_create_dirmap(spinand, i);
		if (ret)
			return ret;
	}

	return 0;
}

750 751 752 753 754 755
static const struct nand_ops spinand_ops = {
	.erase = spinand_erase,
	.markbad = spinand_markbad,
	.isbad = spinand_isbad,
};

756
static const struct spinand_manufacturer *spinand_manufacturers[] = {
757
	&gigadevice_spinand_manufacturer,
758
	&macronix_spinand_manufacturer,
759
	&micron_spinand_manufacturer,
760
	&paragon_spinand_manufacturer,
761
	&toshiba_spinand_manufacturer,
762
	&winbond_spinand_manufacturer,
763 764
};

765 766
static int spinand_manufacturer_match(struct spinand_device *spinand,
				      enum spinand_readid_method rdid_method)
767
{
768
	u8 *id = spinand->id.data;
769 770 771 772
	unsigned int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
773 774 775 776 777
		const struct spinand_manufacturer *manufacturer =
			spinand_manufacturers[i];

		if (id[0] != manufacturer->id)
			continue;
778

779 780 781 782 783 784 785 786 787 788
		ret = spinand_match_and_init(spinand,
					     manufacturer->chips,
					     manufacturer->nchips,
					     rdid_method);
		if (ret < 0)
			continue;

		spinand->manufacturer = manufacturer;
		return 0;
	}
789 790 791
	return -ENOTSUPP;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static int spinand_id_detect(struct spinand_device *spinand)
{
	u8 *id = spinand->id.data;
	int ret;

	ret = spinand_read_id_op(spinand, 0, 0, id);
	if (ret)
		return ret;
	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
	if (!ret)
		return 0;

	ret = spinand_read_id_op(spinand, 1, 0, id);
	if (ret)
		return ret;
	ret = spinand_manufacturer_match(spinand,
					 SPINAND_READID_METHOD_OPCODE_ADDR);
	if (!ret)
		return 0;

	ret = spinand_read_id_op(spinand, 0, 1, id);
	if (ret)
		return ret;
	ret = spinand_manufacturer_match(spinand,
					 SPINAND_READID_METHOD_OPCODE_DUMMY);

	return ret;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
	if (spinand->manufacturer->ops->init)
		return spinand->manufacturer->ops->init(spinand);

	return 0;
}

static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
{
	/* Release manufacturer private data */
	if (spinand->manufacturer->ops->cleanup)
		return spinand->manufacturer->ops->cleanup(spinand);
}

static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device *spinand,
			  const struct spinand_op_variants *variants)
{
	struct nand_device *nand = spinand_to_nand(spinand);
	unsigned int i;

	for (i = 0; i < variants->nops; i++) {
		struct spi_mem_op op = variants->ops[i];
		unsigned int nbytes;
		int ret;

		nbytes = nanddev_per_page_oobsize(nand) +
			 nanddev_page_size(nand);

		while (nbytes) {
			op.data.nbytes = nbytes;
			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
			if (ret)
				break;

			if (!spi_mem_supports_op(spinand->spimem, &op))
				break;

			nbytes -= op.data.nbytes;
		}

		if (!nbytes)
			return &variants->ops[i];
	}

	return NULL;
}

/**
 * spinand_match_and_init() - Try to find a match between a device ID and an
 *			      entry in a spinand_info table
 * @spinand: SPI NAND object
 * @table: SPI NAND device description table
 * @table_size: size of the device description table
876
 * @rdid_method: read id method to match
877
 *
878
 * Match between a device ID retrieved through the READ_ID command and an
879 880 881 882 883 884 885 886
 * entry in the SPI NAND description table. If a match is found, the spinand
 * object will be initialized with information provided by the matching
 * spinand_info entry.
 *
 * Return: 0 on success, a negative error code otherwise.
 */
int spinand_match_and_init(struct spinand_device *spinand,
			   const struct spinand_info *table,
887 888
			   unsigned int table_size,
			   enum spinand_readid_method rdid_method)
889
{
890
	u8 *id = spinand->id.data;
891 892 893 894 895 896 897
	struct nand_device *nand = spinand_to_nand(spinand);
	unsigned int i;

	for (i = 0; i < table_size; i++) {
		const struct spinand_info *info = &table[i];
		const struct spi_mem_op *op;

898 899 900 901
		if (rdid_method != info->devid.method)
			continue;

		if (memcmp(id + 1, info->devid.id, info->devid.len))
902 903 904
			continue;

		nand->memorg = table[i].memorg;
905
		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
906 907
		spinand->eccinfo = table[i].eccinfo;
		spinand->flags = table[i].flags;
908
		spinand->id.len = 1 + table[i].devid.len;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
		spinand->select_target = table[i].select_target;

		op = spinand_select_op_variant(spinand,
					       info->op_variants.read_cache);
		if (!op)
			return -ENOTSUPP;

		spinand->op_templates.read_cache = op;

		op = spinand_select_op_variant(spinand,
					       info->op_variants.write_cache);
		if (!op)
			return -ENOTSUPP;

		spinand->op_templates.write_cache = op;

		op = spinand_select_op_variant(spinand,
					       info->op_variants.update_cache);
		spinand->op_templates.update_cache = op;

		return 0;
	}

	return -ENOTSUPP;
}

static int spinand_detect(struct spinand_device *spinand)
{
	struct device *dev = &spinand->spimem->spi->dev;
	struct nand_device *nand = spinand_to_nand(spinand);
	int ret;

	ret = spinand_reset_op(spinand);
	if (ret)
		return ret;

945
	ret = spinand_id_detect(spinand);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (ret) {
		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
			spinand->id.data);
		return ret;
	}

	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
		dev_err(dev,
			"SPI NANDs with more than one die must implement ->select_target()\n");
		return -EINVAL;
	}

	dev_info(&spinand->spimem->spi->dev,
		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
	dev_info(&spinand->spimem->spi->dev,
		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));

	return 0;
}

static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *region)
{
	return -ERANGE;
}

static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
					struct mtd_oob_region *region)
{
	if (section)
		return -ERANGE;

	/* Reserve 2 bytes for the BBM. */
	region->offset = 2;
	region->length = 62;

	return 0;
}

static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
	.ecc = spinand_noecc_ooblayout_ecc,
	.free = spinand_noecc_ooblayout_free,
};

static int spinand_init(struct spinand_device *spinand)
{
	struct device *dev = &spinand->spimem->spi->dev;
	struct mtd_info *mtd = spinand_to_mtd(spinand);
	struct nand_device *nand = mtd_to_nanddev(mtd);
	int ret, i;

	/*
	 * We need a scratch buffer because the spi_mem interface requires that
	 * buf passed in spi_mem_op->data.buf be DMA-able.
	 */
	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
	if (!spinand->scratchbuf)
		return -ENOMEM;

	ret = spinand_detect(spinand);
	if (ret)
		goto err_free_bufs;

	/*
	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
	 * may use this buffer for DMA access.
	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
	 */
	spinand->databuf = kzalloc(nanddev_page_size(nand) +
			       nanddev_per_page_oobsize(nand),
			       GFP_KERNEL);
	if (!spinand->databuf) {
		ret = -ENOMEM;
		goto err_free_bufs;
	}

	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);

	ret = spinand_init_cfg_cache(spinand);
	if (ret)
		goto err_free_bufs;

	ret = spinand_init_quad_enable(spinand);
	if (ret)
		goto err_free_bufs;

	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
	if (ret)
		goto err_free_bufs;

	ret = spinand_manufacturer_init(spinand);
	if (ret) {
		dev_err(dev,
			"Failed to initialize the SPI NAND chip (err = %d)\n",
			ret);
		goto err_free_bufs;
	}

1046 1047 1048 1049 1050 1051 1052 1053
	ret = spinand_create_dirmaps(spinand);
	if (ret) {
		dev_err(dev,
			"Failed to create direct mappings for read/write operations (err = %d)\n",
			ret);
		goto err_manuf_cleanup;
	}

1054 1055 1056 1057
	/* After power up, all blocks are locked, so unlock them here. */
	for (i = 0; i < nand->memorg.ntargets; i++) {
		ret = spinand_select_target(spinand, i);
		if (ret)
1058
			goto err_manuf_cleanup;
1059 1060 1061

		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
		if (ret)
1062
			goto err_manuf_cleanup;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	}

	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
	if (ret)
		goto err_manuf_cleanup;

	/*
	 * Right now, we don't support ECC, so let the whole oob
	 * area is available for user.
	 */
	mtd->_read_oob = spinand_mtd_read;
	mtd->_write_oob = spinand_mtd_write;
	mtd->_block_isbad = spinand_mtd_block_isbad;
	mtd->_block_markbad = spinand_mtd_block_markbad;
	mtd->_block_isreserved = spinand_mtd_block_isreserved;
	mtd->_erase = spinand_mtd_erase;
1079
	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

	if (spinand->eccinfo.ooblayout)
		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
	else
		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);

	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		goto err_cleanup_nanddev;

	mtd->oobavail = ret;

1092
	/* Propagate ECC information to mtd_info */
1093 1094
	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	return 0;

err_cleanup_nanddev:
	nanddev_cleanup(nand);

err_manuf_cleanup:
	spinand_manufacturer_cleanup(spinand);

err_free_bufs:
	kfree(spinand->databuf);
	kfree(spinand->scratchbuf);
	return ret;
}

static void spinand_cleanup(struct spinand_device *spinand)
{
	struct nand_device *nand = spinand_to_nand(spinand);

	nanddev_cleanup(nand);
	spinand_manufacturer_cleanup(spinand);
	kfree(spinand->databuf);
	kfree(spinand->scratchbuf);
}

static int spinand_probe(struct spi_mem *mem)
{
	struct spinand_device *spinand;
	struct mtd_info *mtd;
	int ret;

	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
			       GFP_KERNEL);
	if (!spinand)
		return -ENOMEM;

	spinand->spimem = mem;
	spi_mem_set_drvdata(mem, spinand);
	spinand_set_of_node(spinand, mem->spi->dev.of_node);
	mutex_init(&spinand->lock);
	mtd = spinand_to_mtd(spinand);
	mtd->dev.parent = &mem->spi->dev;

	ret = spinand_init(spinand);
	if (ret)
		return ret;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret)
		goto err_spinand_cleanup;

	return 0;

err_spinand_cleanup:
	spinand_cleanup(spinand);

	return ret;
}

static int spinand_remove(struct spi_mem *mem)
{
	struct spinand_device *spinand;
	struct mtd_info *mtd;
	int ret;

	spinand = spi_mem_get_drvdata(mem);
	mtd = spinand_to_mtd(spinand);

	ret = mtd_device_unregister(mtd);
	if (ret)
		return ret;

	spinand_cleanup(spinand);

	return 0;
}

static const struct spi_device_id spinand_ids[] = {
	{ .name = "spi-nand" },
	{ /* sentinel */ },
};
1176
MODULE_DEVICE_TABLE(spi, spinand_ids);
1177 1178 1179 1180 1181 1182

#ifdef CONFIG_OF
static const struct of_device_id spinand_of_ids[] = {
	{ .compatible = "spi-nand" },
	{ /* sentinel */ },
};
1183
MODULE_DEVICE_TABLE(of, spinand_of_ids);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
#endif

static struct spi_mem_driver spinand_drv = {
	.spidrv = {
		.id_table = spinand_ids,
		.driver = {
			.name = "spi-nand",
			.of_match_table = of_match_ptr(spinand_of_ids),
		},
	},
	.probe = spinand_probe,
	.remove = spinand_remove,
};
module_spi_mem_driver(spinand_drv);

MODULE_DESCRIPTION("SPI NAND framework");
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
MODULE_LICENSE("GPL v2");