t4_hw.c 88.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/init.h>
#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4fw_api.h"

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
56 57
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
112 113 114
static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
		  asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
		  ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
 *	t4_wr_mbox_meat - send a command to FW through the given mailbox
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
{
J
Joe Perches 已提交
186
	static const int delay[] = {
187 188 189 190 191 192 193 194 195 196 197 198 199
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

D
Dimitris Michailidis 已提交
200 201 202 203 204 205 206
	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
		v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

	t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID)) {
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
			if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
				fw_asrt(adap, data_reg);
				res = FW_CMD_RETVAL(EIO);
			} else if (rpl)
				get_mbox_rpl(adap, rpl, size / 8, data_reg);

			if (FW_CMD_RETVAL_GET((int)res))
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
			return -FW_CMD_RETVAL_GET((int)res);
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
	return -ETIMEDOUT;
}

/**
 *	t4_mc_read - read from MC through backdoor accesses
 *	@adap: the adapter
 *	@addr: address of first byte requested
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
{
	int i;

	if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
		return -EBUSY;
	t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
	t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
	t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
	t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
		     BIST_CMD_GAP(1));
	i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
	if (i)
		return i;

#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
	return 0;
}

/**
 *	t4_edc_read - read from EDC through backdoor accesses
 *	@adap: the adapter
 *	@idx: which EDC to access
 *	@addr: address of first byte requested
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
	int i;

	idx *= EDC_STRIDE;
	if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
		return -EBUSY;
	t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
	t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
	t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
	t4_write_reg(adap, EDC_BIST_CMD + idx,
		     BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
	i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
	if (i)
		return i;

#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
	return 0;
}

#define EEPROM_STAT_ADDR   0x7bfc
#define VPD_BASE           0
335
#define VPD_LEN            512
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
 *	get_vpd_params - read VPD parameters from VPD EEPROM
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
360
	int i, ret;
361
	int ec, sn;
362
	u8 vpd[VPD_LEN], csum;
D
Dimitris Michailidis 已提交
363
	unsigned int vpdr_len, kw_offset, id_len;
364

365
	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
366 367 368
	if (ret < 0)
		return ret;

D
Dimitris Michailidis 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
		return -EINVAL;
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
		return -EINVAL;
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
387 388 389 390 391
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
		return -EINVAL;
	}

#define FIND_VPD_KW(var, name) do { \
D
Dimitris Michailidis 已提交
392
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
393 394 395 396 397 398 399 400 401 402
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
		return -EINVAL; \
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];
403 404 405 406 407 408 409

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
		return -EINVAL;
	}

410 411 412 413
	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
#undef FIND_VPD_KW

D
Dimitris Michailidis 已提交
414
	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
415
	strim(p->id);
416
	memcpy(p->ec, vpd + ec, EC_LEN);
417
	strim(p->ec);
418 419
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
420 421 422 423 424 425 426 427 428 429 430 431 432 433
	strim(p->sn);
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
434
	SF_RD_ID        = 0x9f,       /* read ID */
435 436
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

437
	FW_MAX_SIZE = 512 * 1024,
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, SF_OP) & BUSY)
		return -EBUSY;
	cont = cont ? SF_CONT : 0;
	lock = lock ? SF_LOCK : 0;
	t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
	if (!ret)
		*valp = t4_read_reg(adapter, SF_DATA);
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, SF_OP) & BUSY)
		return -EBUSY;
	cont = cont ? SF_CONT : 0;
	lock = lock ? SF_LOCK : 0;
	t4_write_reg(adapter, SF_DATA, val);
	t4_write_reg(adapter, SF_OP, lock |
		     cont | BYTECNT(byte_cnt - 1) | OP_WR);
	return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
 *	natural endianess.
 */
536 537
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
			 unsigned int nwords, u32 *data, int byte_oriented)
538 539 540
{
	int ret;

541
	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
			t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
		if (ret)
			return ret;
		if (byte_oriented)
			*data = htonl(*data);
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

579
	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
597
	ret = flash_wait_op(adapter, 8, 1);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	if (ret)
		goto unlock;

	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
	return ret;
}

/**
 *	get_fw_version - read the firmware version
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
static int get_fw_version(struct adapter *adapter, u32 *vers)
{
630 631
	return t4_read_flash(adapter, adapter->params.sf_fw_start +
			     offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
632 633 634 635 636 637 638 639 640 641 642
}

/**
 *	get_tp_version - read the TP microcode version
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
static int get_tp_version(struct adapter *adapter, u32 *vers)
{
643 644
	return t4_read_flash(adapter, adapter->params.sf_fw_start +
			     offsetof(struct fw_hdr, tp_microcode_ver),
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
			     1, vers, 0);
}

/**
 *	t4_check_fw_version - check if the FW is compatible with this driver
 *	@adapter: the adapter
 *
 *	Checks if an adapter's FW is compatible with the driver.  Returns 0
 *	if there's exact match, a negative error if the version could not be
 *	read or there's a major version mismatch, and a positive value if the
 *	expected major version is found but there's a minor version mismatch.
 */
int t4_check_fw_version(struct adapter *adapter)
{
	u32 api_vers[2];
	int ret, major, minor, micro;

	ret = get_fw_version(adapter, &adapter->params.fw_vers);
	if (!ret)
		ret = get_tp_version(adapter, &adapter->params.tp_vers);
	if (!ret)
666 667 668
		ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
				    offsetof(struct fw_hdr, intfver_nic),
				    2, api_vers, 1);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (ret)
		return ret;

	major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
	minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
	micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
	memcpy(adapter->params.api_vers, api_vers,
	       sizeof(adapter->params.api_vers));

	if (major != FW_VERSION_MAJOR) {            /* major mismatch - fail */
		dev_err(adapter->pdev_dev,
			"card FW has major version %u, driver wants %u\n",
			major, FW_VERSION_MAJOR);
		return -EINVAL;
	}

	if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
		return 0;                                   /* perfect match */

	/* Minor/micro version mismatch.  Report it but often it's OK. */
	return 1;
}

/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
708
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
	return ret;
}

/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
	const u32 *p = (const u32 *)fw_data;
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
736 737 738
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
	if (ntohs(hdr->len512) * 512 != size) {
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
		csum += ntohl(p[i]);

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

769 770
	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
781
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
782 783 784
	if (ret)
		goto out;

785
	addr = fw_img_start;
786 787 788 789 790 791 792 793 794
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
795
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
	return ret;
}

#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)

/**
 *	t4_link_start - apply link configuration to MAC/PHY
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
		  struct link_config *lc)
{
	struct fw_port_cmd c;
	unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
	c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
			       FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
				  FW_LEN16(c));

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
			       FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
				  FW_LEN16(c));
	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

871 872
typedef void (*int_handler_t)(struct adapter *adap);

873 874 875 876 877
struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
878
	int_handler_t int_handler; /* platform-specific int handler */
879 880 881 882 883 884 885 886 887 888
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
L
Lucas De Marchi 已提交
889
 *	interrupts described by the mask have occurred.  The actions include
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
911 912
		if (acts->int_handler)
			acts->int_handler(adapter);
913 914 915 916 917 918 919 920 921 922 923 924 925
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
926
	static const struct intr_info sysbus_intr_info[] = {
927 928 929 930 931 932 933
		{ RNPP, "RXNP array parity error", -1, 1 },
		{ RPCP, "RXPC array parity error", -1, 1 },
		{ RCIP, "RXCIF array parity error", -1, 1 },
		{ RCCP, "Rx completions control array parity error", -1, 1 },
		{ RFTP, "RXFT array parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
934
	static const struct intr_info pcie_port_intr_info[] = {
935 936 937 938 939 940 941 942 943 944 945
		{ TPCP, "TXPC array parity error", -1, 1 },
		{ TNPP, "TXNP array parity error", -1, 1 },
		{ TFTP, "TXFT array parity error", -1, 1 },
		{ TCAP, "TXCA array parity error", -1, 1 },
		{ TCIP, "TXCIF array parity error", -1, 1 },
		{ RCAP, "RXCA array parity error", -1, 1 },
		{ OTDD, "outbound request TLP discarded", -1, 1 },
		{ RDPE, "Rx data parity error", -1, 1 },
		{ TDUE, "Tx uncorrectable data error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
946
	static const struct intr_info pcie_intr_info[] = {
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter,
				    PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
				    sysbus_intr_info) +
	      t4_handle_intr_status(adapter,
				    PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
				    pcie_port_intr_info) +
	      t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
998
	static const struct intr_info tp_intr_info[] = {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		{ 0x3fffffff, "TP parity error", -1, 1 },
		{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;

J
Joe Perches 已提交
1015
	static const struct intr_info sge_intr_info[] = {
1016 1017 1018 1019 1020
		{ ERR_CPL_EXCEED_IQE_SIZE,
		  "SGE received CPL exceeding IQE size", -1, 1 },
		{ ERR_INVALID_CIDX_INC,
		  "SGE GTS CIDX increment too large", -1, 0 },
		{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
1021 1022 1023
		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
		{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
		  0 },
		{ ERR_ING_CTXT_PRIO,
		  "SGE too many priority ingress contexts", -1, 0 },
		{ ERR_EGR_CTXT_PRIO,
		  "SGE too many priority egress contexts", -1, 0 },
		{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
		{ 0 }
	};

	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
1044
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
1045 1046
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
1047
				(unsigned long long)v);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		t4_write_reg(adapter, SGE_INT_CAUSE1, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
	}

	if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
	    v != 0)
		t4_fatal_err(adapter);
}

/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1062
	static const struct intr_info cim_intr_info[] = {
1063 1064 1065 1066 1067 1068 1069 1070 1071
		{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
		{ OBQPARERR, "CIM OBQ parity error", -1, 1 },
		{ IBQPARERR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1072
	static const struct intr_info cim_upintr_info[] = {
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT, "CIM illegal write", -1, 1 },
		{ ILLRDINT, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
				    cim_intr_info) +
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1119
	static const struct intr_info ulprx_intr_info[] = {
1120
		{ 0x1800000, "ULPRX context error", -1, 1 },
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1134
	static const struct intr_info ulptx_intr_info[] = {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1156
	static const struct intr_info pmtx_intr_info[] = {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
		{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
		{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1178
	static const struct intr_info pmrx_intr_info[] = {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
		{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
		{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1197
	static const struct intr_info cplsw_intr_info[] = {
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1216
	static const struct intr_info le_intr_info[] = {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		{ LIPMISS, "LE LIP miss", -1, 0 },
		{ LIP0, "LE 0 LIP error", -1, 0 },
		{ PARITYERR, "LE parity error", -1, 1 },
		{ UNKNOWNCMD, "LE unknown command", -1, 1 },
		{ REQQPARERR, "LE request queue parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1234
	static const struct intr_info mps_rx_intr_info[] = {
1235 1236 1237
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1238
	static const struct intr_info mps_tx_intr_info[] = {
1239 1240 1241 1242 1243 1244 1245 1246 1247
		{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
		{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
		{ BUBBLE, "MPS Tx underflow", -1, 1 },
		{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR, "MPS Tx framing error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1248
	static const struct intr_info mps_trc_intr_info[] = {
1249 1250 1251 1252 1253
		{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
		{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1254
	static const struct intr_info mps_stat_sram_intr_info[] = {
1255 1256 1257
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1258
	static const struct intr_info mps_stat_tx_intr_info[] = {
1259 1260 1261
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1262
	static const struct intr_info mps_stat_rx_intr_info[] = {
1263 1264 1265
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1266
	static const struct intr_info mps_cls_intr_info[] = {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
				    mps_rx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
				    mps_tx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
				    mps_trc_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
				    mps_stat_sram_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
				    mps_stat_tx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
				    mps_stat_rx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
				    mps_cls_intr_info);

	t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
		     RXINT | TXINT | STATINT);
	t4_read_reg(adapter, MPS_INT_CAUSE);                    /* flush */
	if (fat)
		t4_fatal_err(adapter);
}

#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
	static const char name[3][5] = { "EDC0", "EDC1", "MC" };

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
		addr = EDC_REG(EDC_INT_CAUSE, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
	} else {
		addr = MC_INT_CAUSE;
		cnt_addr = MC_ECC_STATUS;
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
	if (v & PERR_INT_CAUSE)
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
	if (v & ECC_CE_INT_CAUSE) {
		u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));

		t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
	if (v & ECC_UE_INT_CAUSE)
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
	if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);

	if (status & MEM_PERR_INT_CAUSE)
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
	if (status & MEM_WRAP_INT_CAUSE) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
			  MEM_WRAP_CLIENT_NUM_GET(v),
			  MEM_WRAP_ADDRESS_GET(v) << 4);
	}
	t4_write_reg(adap, MA_INT_CAUSE, status);
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1365
	static const struct intr_info smb_intr_info[] = {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1381
	static const struct intr_info ncsi_intr_info[] = {
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
	u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));

	v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
	if (!v)
		return;

	if (v & TXFIFO_PRTY_ERR)
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
	if (v & RXFIFO_PRTY_ERR)
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1419
	static const struct intr_info pl_intr_info[] = {
1420 1421 1422 1423 1424 1425 1426 1427 1428
		{ FATALPERR, "T4 fatal parity error", -1, 1 },
		{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
		t4_fatal_err(adap);
}

1429
#define PF_INTR_MASK (PFSW)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
		EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
		CPL_SWITCH | SGE | ULP_TX)

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);

	if (!(cause & GLBL_INTR_MASK))
		return 0;
	if (cause & CIM)
		cim_intr_handler(adapter);
	if (cause & MPS)
		mps_intr_handler(adapter);
	if (cause & NCSI)
		ncsi_intr_handler(adapter);
	if (cause & PL)
		pl_intr_handler(adapter);
	if (cause & SMB)
		smb_intr_handler(adapter);
	if (cause & XGMAC0)
		xgmac_intr_handler(adapter, 0);
	if (cause & XGMAC1)
		xgmac_intr_handler(adapter, 1);
	if (cause & XGMAC_KR0)
		xgmac_intr_handler(adapter, 2);
	if (cause & XGMAC_KR1)
		xgmac_intr_handler(adapter, 3);
	if (cause & PCIE)
		pcie_intr_handler(adapter);
	if (cause & MC)
		mem_intr_handler(adapter, MEM_MC);
	if (cause & EDC0)
		mem_intr_handler(adapter, MEM_EDC0);
	if (cause & EDC1)
		mem_intr_handler(adapter, MEM_EDC1);
	if (cause & LE)
		le_intr_handler(adapter);
	if (cause & TP)
		tp_intr_handler(adapter);
	if (cause & MA)
		ma_intr_handler(adapter);
	if (cause & PM_TX)
		pmtx_intr_handler(adapter);
	if (cause & PM_RX)
		pmrx_intr_handler(adapter);
	if (cause & ULP_RX)
		ulprx_intr_handler(adapter);
	if (cause & CPL_SWITCH)
		cplsw_intr_handler(adapter);
	if (cause & SGE)
		sge_intr_handler(adapter);
	if (cause & ULP_TX)
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
	t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
	(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
	u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));

	t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
		     ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
		     ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
		     ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
		     ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
		     ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
		     ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
1523
		     F_DBFIFO_HP_INT | F_DBFIFO_LP_INT |
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		     EGRESS_SIZE_ERR);
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
	u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));

	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by HW inexact
 *	(hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
			       FW_CMD_REQUEST | FW_CMD_WRITE |
			       FW_RSS_IND_TBL_CMD_VIID(viid));
	cmd.retval_len16 = htonl(FW_LEN16(cmd));

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

		cmd.niqid = htons(nq);
		cmd.startidx = htons(start);

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

			v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;
			v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;
			v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;

			*qp++ = htonl(v);
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
			      FW_CMD_REQUEST | FW_CMD_WRITE);
	c.retval_len16 = htonl(FW_LEN16(c));
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
		c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
			htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];

#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
		t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
		v4->tcpOutRsts = STAT(OUT_RST);
		v4->tcpInSegs  = STAT64(IN_SEG);
		v4->tcpOutSegs = STAT64(OUT_SEG);
		v4->tcpRetransSegs = STAT64(RXT_SEG);
	}
	if (v6) {
		t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
		v6->tcpOutRsts = STAT(OUT_RST);
		v6->tcpInSegs  = STAT64(IN_SEG);
		v6->tcpOutSegs = STAT64(OUT_SEG);
		v6->tcpRetransSegs = STAT64(RXT_SEG);
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
		t4_write_reg(adap, TP_MTU_TABLE,
			     MTUINDEX(0xff) | MTUVALUE(i));
		v = t4_read_reg(adap, TP_MTU_TABLE);
		mtus[i] = MTUVALUE_GET(v);
		if (mtu_log)
			mtu_log[i] = MTUWIDTH_GET(v);
	}
}

/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
		t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
			     MTUWIDTH(log2) | MTUVALUE(mtu));

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

			t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

/**
 *	get_mps_bg_map - return the buffer groups associated with a port
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
	u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
	u32 bgmap = get_mps_bg_map(adap, idx);

#define GET_STAT(name) \
	t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
 *	t4_wol_magic_enable - enable/disable magic packet WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@addr: MAC address expected in magic packets, %NULL to disable
 *
 *	Enables/disables magic packet wake-on-LAN for the selected port.
 */
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
			 const u8 *addr)
{
	if (addr) {
		t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
			     (addr[2] << 24) | (addr[3] << 16) |
			     (addr[4] << 8) | addr[5]);
		t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
			     (addr[0] << 8) | addr[1]);
	}
	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
			 addr ? MAGICEN : 0);
}

/**
 *	t4_wol_pat_enable - enable/disable pattern-based WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@map: bitmap of which HW pattern filters to set
 *	@mask0: byte mask for bytes 0-63 of a packet
 *	@mask1: byte mask for bytes 64-127 of a packet
 *	@crc: Ethernet CRC for selected bytes
 *	@enable: enable/disable switch
 *
 *	Sets the pattern filters indicated in @map to mask out the bytes
 *	specified in @mask0/@mask1 in received packets and compare the CRC of
 *	the resulting packet against @crc.  If @enable is %true pattern-based
 *	WoL is enabled, otherwise disabled.
 */
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
	int i;

	if (!enable) {
		t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
				 PATEN, 0);
		return 0;
	}
	if (map > 0xff)
		return -EINVAL;

#define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)

	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);

	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
		if (!(map & 1))
			continue;

		/* write byte masks */
		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
		if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
			return -ETIMEDOUT;

		/* write CRC */
		t4_write_reg(adap, EPIO_REG(DATA0), crc);
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
		if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
			return -ETIMEDOUT;
	}
#undef EPIO_REG

	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
	return 0;
}

#define INIT_CMD(var, cmd, rd_wr) do { \
	(var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
				  FW_CMD_REQUEST | FW_CMD_##rd_wr); \
	(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
			    F_FW_CMD_WRITE |
			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.addrval.addr = htonl(addr);
	c.u.addrval.val = htonl(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/*
 *     t4_mem_win_read_len - read memory through PCIE memory window
 *     @adap: the adapter
 *     @addr: address of first byte requested aligned on 32b.
 *     @data: len bytes to hold the data read
 *     @len: amount of data to read from window.  Must be <=
 *            MEMWIN0_APERATURE after adjusting for 16B alignment
 *            requirements of the the memory window.
 *
 *     Read len bytes of data from MC starting at @addr.
 */
int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
{
	int i;
	int off;

	/*
	 * Align on a 16B boundary.
	 */
	off = addr & 15;
	if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
		return -EINVAL;

	t4_write_reg(adap, A_PCIE_MEM_ACCESS_OFFSET, addr & ~15);
	t4_read_reg(adap, A_PCIE_MEM_ACCESS_OFFSET);

	for (i = 0; i < len; i += 4)
		*data++ = t4_read_reg(adap, (MEMWIN0_BASE + off + i));

	return 0;
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
		FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
				   FW_LDST_CMD_MMD(mmd));
	c.u.mdio.raddr = htons(reg);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		*valp = ntohs(c.u.mdio.rval);
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
		FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
				   FW_LDST_CMD_MMD(mmd));
	c.u.mdio.raddr = htons(reg);
	c.u.mdio.rval = htons(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_hello - establish communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@evt_mbox: mailbox to receive async FW events
 *	@master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state
 *
 *	Issues a command to establish communication with FW.
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;

	INIT_CMD(c, HELLO, WRITE);
	c.err_to_mbasyncnot = htonl(
		FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
		FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
		FW_HELLO_CMD_MBASYNCNOT(evt_mbox));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0 && state) {
		u32 v = ntohl(c.err_to_mbasyncnot);
		if (v & FW_HELLO_CMD_INIT)
			*state = DEV_STATE_INIT;
		else if (v & FW_HELLO_CMD_ERR)
			*state = DEV_STATE_ERR;
		else
			*state = DEV_STATE_UNINIT;
	}
	return ret;
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

	INIT_CMD(c, RESET, WRITE);
	c.val = htonl(reset);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_query_params - query FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
			    FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
			    FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	for (i = 0; i < nparams; i++, p += 2)
		*p = htonl(*params++);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
			*val++ = ntohl(*p);
	return ret;
}

/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
			    FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	while (nparams--) {
		*p++ = htonl(*params++);
		*p++ = htonl(*val++);
	}

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
			    FW_PFVF_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
			       FW_PFVF_CMD_NIQ(rxq));
2299
	c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
			       FW_PFVF_CMD_PMASK(pmask) |
			       FW_PFVF_CMD_NEQ(txq));
	c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
				FW_PFVF_CMD_NEXACTF(nexact));
	c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
				     FW_PFVF_CMD_WX_CAPS(wxcaps) |
				     FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
			    FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
	c.portid_pkd = FW_VI_CMD_PORTID(port);
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
		*rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
2361
	return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
2373
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
2374 2375 2376 2377 2378
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
2379 2380
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
	if (all_multi < 0)
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
	if (bcast < 0)
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
2393 2394
	if (vlanex < 0)
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
2395 2396 2397 2398 2399

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
	c.retval_len16 = htonl(FW_LEN16(c));
2400 2401 2402 2403 2404
	c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
				  FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
				  FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
				  FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
				  FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
	int i, ret;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p;

	if (naddr > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
			     FW_VI_MAC_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
				    FW_CMD_LEN16((naddr + 2) / 2));

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
		p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
				      FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
		memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
	}

	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
	if (ret)
		return ret;

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
		u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));

		if (idx)
			idx[i] = index >= NEXACT_MAC ? 0xffff : index;
		if (index < NEXACT_MAC)
			ret++;
		else if (hash)
2466
			*hash |= (1ULL << hash_mac_addr(addr[i]));
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	}
	return ret;
}

/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
	p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
				FW_VI_MAC_CMD_SMAC_RESULT(mode) |
				FW_VI_MAC_CMD_IDX(idx));
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
		ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
		if (ret >= NEXACT_MAC)
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
				    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
				    FW_CMD_LEN16(1));
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
			       FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
	c.blinkdur = htons(nblinks);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
			    FW_IQ_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
	c.iqid = htons(iqid);
	c.fl0id = htons(fl0id);
	c.fl1id = htons(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
			    FW_EQ_ETH_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
			    FW_EQ_CTRL_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
			    FW_EQ_OFLD_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
		int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
		int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);

		if (stat & FW_PORT_CMD_RXPAUSE)
			fc |= PAUSE_RX;
		if (stat & FW_PORT_CMD_TXPAUSE)
			fc |= PAUSE_TX;
		if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
			speed = SPEED_100;
		else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
			speed = SPEED_1000;
		else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
			speed = SPEED_10000;

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

static void __devinit get_pci_mode(struct adapter *adapter,
				   struct pci_params *p)
{
	u16 val;
	u32 pcie_cap = pci_pcie_cap(adapter->pdev);

	if (pcie_cap) {
		pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
				     &val);
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
static void __devinit init_link_config(struct link_config *lc,
				       unsigned int caps)
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

D
Dimitris Michailidis 已提交
2779
int t4_wait_dev_ready(struct adapter *adap)
2780 2781 2782 2783 2784 2785 2786
{
	if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
		return 0;
	msleep(500);
	return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static int __devinit get_flash_params(struct adapter *adap)
{
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
	t4_write_reg(adap, SF_OP, 0);                    /* unlock SF */
	if (ret)
		return ret;

	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
		t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
	return 0;
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
int __devinit t4_prep_adapter(struct adapter *adapter)
{
	int ret;

D
Dimitris Michailidis 已提交
2827
	ret = t4_wait_dev_ready(adapter);
2828 2829 2830 2831 2832 2833
	if (ret < 0)
		return ret;

	get_pci_mode(adapter, &adapter->params.pci);
	adapter->params.rev = t4_read_reg(adapter, PL_REV);

2834 2835 2836 2837 2838 2839
	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	ret = get_vpd_params(adapter, &adapter->params.vpd);
	if (ret < 0)
		return ret;

	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
	return 0;
}

int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
2859
	struct fw_rss_vi_config_cmd rvc;
2860 2861

	memset(&c, 0, sizeof(c));
2862
	memset(&rvc, 0, sizeof(rvc));
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

		c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
				       FW_CMD_REQUEST | FW_CMD_READ |
				       FW_PORT_CMD_PORTID(j));
		c.action_to_len16 = htonl(
			FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
		memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
2891
		adap->port[i]->dev_id = j;
2892 2893 2894 2895 2896

		ret = ntohl(c.u.info.lstatus_to_modtype);
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
			FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
2897
		p->mod_type = FW_PORT_MOD_TYPE_NA;
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907
		rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
				       FW_CMD_REQUEST | FW_CMD_READ |
				       FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = htonl(FW_LEN16(rvc));
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);

2908 2909 2910 2911 2912
		init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
		j++;
	}
	return 0;
}