i915_gem.c 132.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 42 43 44 45 46 47 48
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 50
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
51 52 53
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
54 55 56
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
57
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
58

59 60 61
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

62 63 64 65 66 67 68 69
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
70 71
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
72 73 74
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
75 76 77
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
78 79 80
		return -EINVAL;
	}

J
Jesse Barnes 已提交
81 82
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
83

J
Jesse Barnes 已提交
84 85 86 87
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
88

J
Jesse Barnes 已提交
89 90 91 92 93 94 95 96 97
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
98 99
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
100
	return ret;
101 102
}

103 104 105 106 107 108 109 110 111 112
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
113 114
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
115 116 117 118

	return 0;
}

119 120 121 122 123 124 125 126 127 128

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
129 130
	int ret;
	u32 handle;
131 132 133 134

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
135
	obj = i915_gem_alloc_object(dev, args->size);
136 137 138 139
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
140 141
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
142
		return ret;
143
	}
144

145 146
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
147

148
	args->handle = handle;
149 150 151
	return 0;
}

152 153 154 155 156 157 158
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
159
	int unwritten;
160 161 162 163

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
164
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
165 166
	kunmap_atomic(vaddr, KM_USER0);

167 168 169 170
	if (unwritten)
		return -EFAULT;

	return 0;
171 172
}

173 174 175
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
176
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
177 178 179 180 181

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

182
static inline void
183 184 185 186 187 188 189 190
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

191 192
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
193 194 195

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

196 197
	kunmap(src_page);
	kunmap(dst_page);
198 199
}

200
static inline void
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

220 221
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

245 246
	kunmap(cpu_page);
	kunmap(gpu_page);
247 248
}

249 250 251 252 253 254 255 256 257 258
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
259
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
260 261 262 263 264 265 266 267 268 269 270
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

271
	ret = i915_gem_object_get_pages(obj, 0);
272 273 274 275 276 277 278 279
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

280
	obj_priv = to_intel_bo(obj);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

315 316 317 318 319
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

320
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
321 322 323 324 325 326 327

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

328 329
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
330 331 332
		if (ret)
			return ret;

333
		ret = i915_gem_object_get_pages(obj, 0);
334 335 336 337 338
	}

	return ret;
}

339 340 341 342 343 344 345 346 347 348 349
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
350
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
351 352 353 354 355 356 357 358 359 360
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
361
	int do_bit17_swizzling;
362 363 364 365 366 367 368 369 370 371 372

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

373
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
374 375 376 377 378
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
379
				      num_pages, 1, 0, user_pages, NULL);
380 381 382 383 384 385
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

386 387
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

388 389
	mutex_lock(&dev->struct_mutex);

390 391
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
392 393 394 395 396 397 398
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

399
	obj_priv = to_intel_bo(obj);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

422
		if (do_bit17_swizzling) {
423
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
424
					      shmem_page_offset,
425 426 427 428 429 430 431 432 433 434
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
435
		}
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
451
	drm_free_large(user_pages);
452 453 454 455

	return ret;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
472
		return -ENOENT;
473
	obj_priv = to_intel_bo(obj);
474 475 476 477 478 479 480

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
481
		drm_gem_object_unreference_unlocked(obj);
482 483 484
		return -EINVAL;
	}

485
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
486
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
487 488 489 490 491 492
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
493

494
	drm_gem_object_unreference_unlocked(obj);
495

496
	return ret;
497 498
}

499 500
/* This is the fast write path which cannot handle
 * page faults in the source data
501
 */
502 503 504 505 506 507

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
508 509
{
	char *vaddr_atomic;
510
	unsigned long unwritten;
511

512
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
513 514
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
515
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
516 517 518 519 520 521 522 523 524
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

525
static inline void
526 527 528 529
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
530
{
531 532
	char __iomem *dst_vaddr;
	char *src_vaddr;
533

534 535 536 537 538 539 540 541 542
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
543 544
}

545 546 547 548 549 550 551
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
552
	unsigned long unwritten;
553 554 555 556

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
557
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
558 559
	kunmap_atomic(vaddr, KM_USER0);

560 561
	if (unwritten)
		return -EFAULT;
562 563 564
	return 0;
}

565 566 567 568
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
569
static int
570 571 572
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
573
{
574
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
575
	drm_i915_private_t *dev_priv = dev->dev_private;
576
	ssize_t remain;
577
	loff_t offset, page_base;
578
	char __user *user_data;
579 580
	int page_offset, page_length;
	int ret;
581 582 583 584 585 586 587 588 589 590 591 592 593

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
594
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
595 596 597
	if (ret)
		goto fail;

598
	obj_priv = to_intel_bo(obj);
599 600 601 602 603
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
604 605 606
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
607
		 */
608 609 610 611 612 613 614 615 616 617
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
618 619
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
620
		 */
621 622
		if (ret)
			goto fail;
623

624 625 626
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
627 628 629 630 631 632 633 634 635
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

636 637 638 639 640 641 642
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
643
static int
644 645 646
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
647
{
648
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
649 650 651 652 653 654 655 656
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
657
	int ret;
658 659 660 661 662 663 664 665 666 667 668 669
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

670
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
671 672 673 674 675 676 677 678 679 680 681
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
682 683

	mutex_lock(&dev->struct_mutex);
684 685 686 687 688 689 690 691
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

692
	obj_priv = to_intel_bo(obj);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

715 716 717 718 719
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
720 721 722 723 724 725 726 727 728 729 730 731 732

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
733
	drm_free_large(user_pages);
734 735 736 737

	return ret;
}

738 739 740 741
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
742
static int
743 744 745
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
746
{
747
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
748 749 750 751
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
752
	int ret;
753 754 755

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
756 757 758

	mutex_lock(&dev->struct_mutex);

759
	ret = i915_gem_object_get_pages(obj, 0);
760 761
	if (ret != 0)
		goto fail_unlock;
762

763
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
764 765 766
	if (ret != 0)
		goto fail_put_pages;

767
	obj_priv = to_intel_bo(obj);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
815
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
816 817 818 819 820 821 822 823 824 825
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
826
	int do_bit17_swizzling;
827 828 829 830 831 832 833 834 835 836 837

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

838
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
839 840 841 842 843 844 845 846 847 848
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
849 850
	}

851 852
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

853 854
	mutex_lock(&dev->struct_mutex);

855 856
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
857 858 859 860 861 862
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

863
	obj_priv = to_intel_bo(obj);
864
	offset = args->offset;
865
	obj_priv->dirty = 1;
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

887
		if (do_bit17_swizzling) {
888
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
889 890 891
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
892 893 894 895 896 897 898 899
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
900
		}
901 902 903 904

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
905 906
	}

907 908 909
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
910
	mutex_unlock(&dev->struct_mutex);
911 912 913
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
914
	drm_free_large(user_pages);
915

916
	return ret;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
935
		return -ENOENT;
936
	obj_priv = to_intel_bo(obj);
937 938 939 940 941 942 943

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
944
		drm_gem_object_unreference_unlocked(obj);
945 946 947 948 949 950 951 952 953
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
954 955 956
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
957 958
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
959 960 961 962 963
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
964 965
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
966 967 968 969 970 971 972
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
973 974 975 976 977 978

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

979
	drm_gem_object_unreference_unlocked(obj);
980 981 982 983 984

	return ret;
}

/**
985 986
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
987 988 989 990 991
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
992
	struct drm_i915_private *dev_priv = dev->dev_private;
993 994
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
995
	struct drm_i915_gem_object *obj_priv;
996 997
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
998 999 1000 1001 1002
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1003
	/* Only handle setting domains to types used by the CPU. */
1004
	if (write_domain & I915_GEM_GPU_DOMAINS)
1005 1006
		return -EINVAL;

1007
	if (read_domains & I915_GEM_GPU_DOMAINS)
1008 1009 1010 1011 1012 1013 1014 1015
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1016 1017
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1018
		return -ENOENT;
1019
	obj_priv = to_intel_bo(obj);
1020 1021

	mutex_lock(&dev->struct_mutex);
1022 1023 1024

	intel_mark_busy(dev, obj);

1025
#if WATCH_BUF
1026
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1027
		 obj, obj->size, read_domains, write_domain);
1028
#endif
1029 1030
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1031

1032 1033 1034 1035
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1036 1037 1038
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1039 1040 1041
				       &dev_priv->mm.fence_list);
		}

1042 1043 1044 1045 1046 1047
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1048
	} else {
1049
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1050 1051
	}

1052 1053 1054 1055 1056
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1081
		return -ENOENT;
1082 1083 1084
	}

#if WATCH_BUF
1085
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1086 1087
		 __func__, args->handle, obj, obj->size);
#endif
1088
	obj_priv = to_intel_bo(obj);
1089 1090

	/* Pinned buffers may be scanout, so flush the cache */
1091 1092 1093
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1120
		return -ENOENT;
1121 1122 1123 1124 1125 1126 1127 1128

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1129
	drm_gem_object_unreference_unlocked(obj);
1130 1131 1132 1133 1134 1135 1136 1137
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1158
	drm_i915_private_t *dev_priv = dev->dev_private;
1159
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1160 1161 1162
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1163
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1164 1165 1166 1167 1168 1169 1170 1171

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1172
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1173 1174
		if (ret)
			goto unlock;
1175 1176

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1177 1178
		if (ret)
			goto unlock;
1179 1180 1181
	}

	/* Need a new fence register? */
1182
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1183
		ret = i915_gem_object_get_fence_reg(obj);
1184 1185
		if (ret)
			goto unlock;
1186
	}
1187

1188 1189 1190
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1191 1192 1193 1194 1195
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1196
unlock:
1197 1198 1199
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1200 1201 1202
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1203 1204 1205 1206
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1207
		return VM_FAULT_SIGBUS;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1227
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1228
	struct drm_map_list *list;
1229
	struct drm_local_map *map;
1230 1231 1232 1233
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1234
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1262
		ret = -ENOMEM;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1275
	kfree(list->map);
1276 1277 1278 1279

	return ret;
}

1280 1281 1282 1283
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1284
 * Preserve the reservation of the mmapping with the DRM core code, but
1285 1286 1287 1288 1289 1290 1291 1292 1293
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1294
void
1295 1296 1297
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1298
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1299 1300 1301 1302 1303 1304

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1305 1306 1307 1308
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1309
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1322
		kfree(list->map);
1323 1324 1325 1326 1327 1328
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1340
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1394
		return -ENOENT;
1395 1396 1397

	mutex_lock(&dev->struct_mutex);

1398
	obj_priv = to_intel_bo(obj);
1399

1400 1401 1402 1403 1404 1405 1406 1407
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1408 1409
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1410 1411 1412
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1413
			return ret;
1414
		}
1415 1416 1417 1418 1419 1420 1421 1422 1423
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1424
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1438
void
1439
i915_gem_object_put_pages(struct drm_gem_object *obj)
1440
{
1441
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1442 1443 1444
	int page_count = obj->size / PAGE_SIZE;
	int i;

1445
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1446
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1447

1448 1449
	if (--obj_priv->pages_refcount != 0)
		return;
1450

1451 1452 1453
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1454
	if (obj_priv->madv == I915_MADV_DONTNEED)
1455
		obj_priv->dirty = 0;
1456 1457 1458 1459 1460 1461

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1462
			mark_page_accessed(obj_priv->pages[i]);
1463 1464 1465

		page_cache_release(obj_priv->pages[i]);
	}
1466 1467
	obj_priv->dirty = 0;

1468
	drm_free_large(obj_priv->pages);
1469
	obj_priv->pages = NULL;
1470 1471
}

1472 1473 1474 1475 1476 1477 1478 1479
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return dev_priv->next_seqno;
}

1480
static void
1481 1482
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1483 1484 1485
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1486
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1487 1488
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1489 1490 1491 1492 1493 1494

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1495 1496 1497 1498 1499

	/* Take the seqno of the next request if none is given */
	if (seqno == 0)
		seqno = i915_gem_next_request_seqno(dev);

1500
	/* Move from whatever list we were on to the tail of execution. */
1501
	spin_lock(&dev_priv->mm.active_list_lock);
1502
	list_move_tail(&obj_priv->list, &ring->active_list);
1503
	spin_unlock(&dev_priv->mm.active_list_lock);
1504
	obj_priv->last_rendering_seqno = seqno;
1505 1506
}

1507 1508 1509 1510 1511
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 1514 1515 1516 1517

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1518

1519 1520 1521 1522
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1523
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1524
	struct inode *inode;
1525

1526 1527 1528 1529 1530 1531
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1532
	inode = obj->filp->f_path.dentry->d_inode;
1533 1534 1535
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1536 1537

	obj_priv->madv = __I915_MADV_PURGED;
1538 1539 1540 1541 1542 1543 1544 1545
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1546 1547 1548 1549 1550
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1551
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552 1553 1554 1555 1556 1557 1558

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1559 1560
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1561
	obj_priv->last_rendering_seqno = 0;
1562
	obj_priv->ring = NULL;
1563 1564 1565 1566 1567 1568 1569
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1570 1571
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1572 1573
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1574 1575 1576 1577 1578 1579 1580
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1581
		struct drm_gem_object *obj = &obj_priv->base;
1582 1583

		if ((obj->write_domain & flush_domains) ==
1584 1585
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1586 1587 1588 1589
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1590
			i915_gem_object_move_to_active(obj, seqno, ring);
1591 1592

			/* update the fence lru list */
1593 1594 1595 1596
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1597
						&dev_priv->mm.fence_list);
1598
			}
1599 1600 1601 1602 1603 1604 1605

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1606

1607
uint32_t
1608
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1609
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1610 1611
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1612
	struct drm_i915_file_private *i915_file_priv = NULL;
1613 1614 1615 1616
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1617 1618 1619
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1620
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1621 1622 1623
	if (request == NULL)
		return 0;

1624
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1625 1626

	request->seqno = seqno;
1627
	request->ring = ring;
1628
	request->emitted_jiffies = jiffies;
1629 1630 1631
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1632 1633 1634 1635 1636 1637
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1638

1639
	/* Associate any objects on the flushing list matching the write
1640
	 * domain we're flushing with our request.
1641
	 */
1642
	if (flush_domains != 0) 
1643
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1644

B
Ben Gamari 已提交
1645 1646 1647 1648 1649
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1650 1651 1652 1653 1654 1655 1656 1657 1658
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1659
static uint32_t
1660
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1661 1662 1663 1664 1665 1666
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1667 1668 1669

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1683 1684
	trace_i915_gem_request_retire(dev, request->seqno);

1685 1686 1687
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1688
	spin_lock(&dev_priv->mm.active_list_lock);
1689
	while (!list_empty(&request->ring->active_list)) {
1690 1691 1692
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1693
		obj_priv = list_first_entry(&request->ring->active_list,
1694 1695
					    struct drm_i915_gem_object,
					    list);
1696
		obj = &obj_priv->base;
1697 1698 1699 1700 1701 1702

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1703
			goto out;
1704

1705 1706 1707 1708 1709
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1710 1711
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1712 1713 1714 1715 1716 1717 1718 1719
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1720
			i915_gem_object_move_to_inactive(obj);
1721 1722 1723 1724
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1725
	}
1726 1727
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1728 1729 1730 1731 1732
}

/**
 * Returns true if seq1 is later than seq2.
 */
1733
bool
1734 1735 1736 1737 1738 1739
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1740
i915_get_gem_seqno(struct drm_device *dev,
1741
		   struct intel_ring_buffer *ring)
1742
{
1743
	return ring->get_gem_seqno(dev, ring);
1744 1745 1746 1747 1748
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1749 1750 1751
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1752 1753 1754 1755
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1756
	if (!ring->status_page.page_addr
1757
			|| list_empty(&ring->request_list))
1758 1759
		return;

1760
	seqno = i915_get_gem_seqno(dev, ring);
1761

1762
	while (!list_empty(&ring->request_list)) {
1763 1764 1765
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1766
		request = list_first_entry(&ring->request_list,
1767 1768 1769 1770 1771
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1772
		    atomic_read(&dev_priv->mm.wedged)) {
1773 1774 1775
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1776
			list_del(&request->client_list);
1777
			kfree(request);
1778 1779 1780
		} else
			break;
	}
1781 1782 1783

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1784 1785

		ring->user_irq_put(dev, ring);
1786 1787
		dev_priv->trace_irq_seqno = 0;
	}
1788 1789
}

1790 1791 1792 1793 1794
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1809 1810 1811 1812 1813
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1814
static void
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1825
	i915_gem_retire_requests(dev);
1826

1827
	if (!dev_priv->mm.suspended &&
1828 1829 1830
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1831
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1832 1833 1834
	mutex_unlock(&dev->struct_mutex);
}

1835
int
1836 1837
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1838 1839
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1840
	u32 ier;
1841 1842 1843 1844
	int ret = 0;

	BUG_ON(seqno == 0);

1845 1846 1847 1848 1849 1850
	if (seqno == dev_priv->next_seqno) {
		seqno = i915_add_request(dev, NULL, 0, ring);
		if (seqno == 0)
			return -ENOMEM;
	}

1851
	if (atomic_read(&dev_priv->mm.wedged))
1852 1853
		return -EIO;

1854
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1855
		if (HAS_PCH_SPLIT(dev))
1856 1857 1858
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1859 1860 1861 1862 1863 1864 1865
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1866 1867
		trace_i915_gem_request_wait_begin(dev, seqno);

1868
		ring->waiting_gem_seqno = seqno;
1869
		ring->user_irq_get(dev, ring);
1870
		if (interruptible)
1871 1872 1873 1874
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1875
		else
1876 1877 1878 1879
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1880

1881
		ring->user_irq_put(dev, ring);
1882
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1883 1884

		trace_i915_gem_request_wait_end(dev, seqno);
1885
	}
1886
	if (atomic_read(&dev_priv->mm.wedged))
1887 1888 1889
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
1890 1891 1892
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
			  dev_priv->next_seqno);
1893 1894 1895 1896 1897 1898 1899

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1900
		i915_gem_retire_requests_ring(dev, ring);
1901 1902 1903 1904

	return ret;
}

1905 1906 1907 1908 1909
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1910 1911
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1912
{
1913
	return i915_do_wait_request(dev, seqno, 1, ring);
1914 1915
}

1916 1917 1918 1919 1920 1921
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1922

1923 1924
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
1925

1926 1927 1928
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1929 1930 1931 1932 1933

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with the next request.
	 */
	if (flush_domains != 0)  {
		i915_gem_process_flushing_list(dev, flush_domains, 0,
					       &dev_priv->render_ring);
		if (HAS_BSD(dev))
			i915_gem_process_flushing_list(dev, flush_domains, 0,
						       &dev_priv->bsd_ring);
	}
1945 1946
}

1947 1948 1949 1950 1951
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
1952 1953
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
1954 1955
{
	struct drm_device *dev = obj->dev;
1956
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1957 1958
	int ret;

1959 1960
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1961
	 */
1962
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1963 1964 1965 1966 1967 1968 1969 1970 1971

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1972 1973 1974 1975
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1986
int
1987 1988 1989
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1990
	drm_i915_private_t *dev_priv = dev->dev_private;
1991
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2006 2007 2008
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2009 2010 2011 2012 2013 2014
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2015
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2016
	if (ret == -ERESTARTSYS)
2017
		return ret;
2018 2019 2020 2021
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2022

2023 2024 2025 2026
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2027 2028 2029 2030 2031 2032
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2033
	i915_gem_object_put_pages(obj);
2034
	BUG_ON(obj_priv->pages_refcount);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2045
	spin_lock(&dev_priv->mm.active_list_lock);
2046 2047
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2048
	spin_unlock(&dev_priv->mm.active_list_lock);
2049

2050 2051 2052
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2053 2054
	trace_i915_gem_object_unbind(obj);

2055
	return ret;
2056 2057
}

2058
int
2059 2060 2061 2062
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2063
	uint32_t seqno1, seqno2;
2064
	int ret;
2065 2066

	spin_lock(&dev_priv->mm.active_list_lock);
2067 2068 2069 2070
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2071 2072 2073 2074 2075 2076 2077
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2078
	seqno1 = i915_add_request(dev, NULL, 0,
2079
			&dev_priv->render_ring);
2080
	if (seqno1 == 0)
2081
		return -ENOMEM;
2082 2083 2084
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);

	if (HAS_BSD(dev)) {
2085
		seqno2 = i915_add_request(dev, NULL, 0,
2086 2087 2088 2089 2090 2091 2092 2093 2094
				&dev_priv->bsd_ring);
		if (seqno2 == 0)
			return -ENOMEM;

		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2095
	return ret;
2096 2097
}

2098
int
2099 2100
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2101
{
2102
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2103 2104 2105 2106 2107
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2108 2109 2110
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2111
	if (obj_priv->pages_refcount++ != 0)
2112 2113 2114 2115 2116 2117
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2118
	BUG_ON(obj_priv->pages != NULL);
2119
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2120 2121
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2122 2123 2124 2125 2126 2127
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2128
		page = read_cache_page_gfp(mapping, i,
2129
					   GFP_HIGHUSER |
2130
					   __GFP_COLD |
2131
					   __GFP_RECLAIMABLE |
2132
					   gfpmask);
2133 2134 2135
		if (IS_ERR(page))
			goto err_pages;

2136
		obj_priv->pages[i] = page;
2137
	}
2138 2139 2140 2141

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2142
	return 0;
2143 2144 2145 2146 2147 2148 2149 2150 2151

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2152 2153
}

2154 2155 2156 2157 2158
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2159
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2176 2177 2178 2179 2180
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2181
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2201
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2202
	int regnum = obj_priv->fence_reg;
2203
	int tile_width;
2204
	uint32_t fence_reg, val;
2205 2206 2207 2208
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2209
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2210
		     __func__, obj_priv->gtt_offset, obj->size);
2211 2212 2213
		return;
	}

2214 2215 2216
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2217
	else
2218 2219 2220 2221 2222
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2223

2224 2225 2226 2227 2228 2229
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2230 2231 2232 2233 2234 2235 2236
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2237 2238 2239 2240 2241
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2242 2243 2244 2245 2246 2247 2248
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2249
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2250 2251 2252
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2253
	uint32_t fence_size_bits;
2254

2255
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2256
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2257
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2258
		     __func__, obj_priv->gtt_offset);
2259 2260 2261
		return;
	}

2262 2263 2264 2265
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2266 2267 2268
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2269 2270 2271
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2272 2273 2274 2275 2276 2277
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2293
		obj_priv = to_intel_bo(reg->obj);
2294 2295 2296 2297 2298 2299 2300 2301 2302
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2303 2304 2305 2306
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2344 2345
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2346 2347
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2348
	struct drm_i915_private *dev_priv = dev->dev_private;
2349
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2350
	struct drm_i915_fence_reg *reg = NULL;
2351
	int ret;
2352

2353 2354
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2355 2356
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2357 2358 2359
		return 0;
	}

2360 2361 2362 2363 2364
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2365 2366 2367 2368 2369
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2370 2371
		break;
	case I915_TILING_Y:
2372 2373 2374 2375 2376
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2377 2378 2379
		break;
	}

2380 2381 2382
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2383

2384 2385
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2386
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2387

2388 2389
	reg->obj = obj;

2390 2391 2392
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2393 2394 2395 2396 2397
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2398

2399 2400
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2401

2402
	return 0;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2416
	drm_i915_private_t *dev_priv = dev->dev_private;
2417
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2418 2419
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2420

2421 2422 2423 2424
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2425
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2426
	} else {
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2437

2438
	reg->obj = NULL;
2439
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2440
	list_del_init(&reg->lru_list);
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2455
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2456 2457 2458 2459

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2460 2461 2462 2463 2464 2465
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2466 2467 2468 2469 2470 2471 2472
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

2473 2474 2475 2476
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret != 0)
			return ret;

2477
		ret = i915_gem_object_wait_rendering(obj, true);
2478 2479 2480 2481
		if (ret != 0)
			return ret;
	}

2482
	i915_gem_object_flush_gtt_write_domain(obj);
2483 2484 2485 2486 2487
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2488 2489 2490 2491 2492 2493 2494 2495
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2496
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2497
	struct drm_mm_node *free_space;
2498
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2499
	int ret;
2500

C
Chris Wilson 已提交
2501
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2502 2503 2504 2505
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2506
	if (alignment == 0)
2507
		alignment = i915_gem_get_gtt_alignment(obj);
2508
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2509 2510 2511 2512
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2513 2514 2515 2516 2517 2518 2519 2520
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2521 2522 2523 2524 2525 2526
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2527
		if (obj_priv->gtt_space != NULL)
2528 2529 2530 2531 2532 2533 2534 2535 2536
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2537
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2538
		if (ret)
2539
			return ret;
2540

2541 2542 2543 2544
		goto search_free;
	}

#if WATCH_BUF
2545
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2546 2547
		 obj->size, obj_priv->gtt_offset);
#endif
2548
	ret = i915_gem_object_get_pages(obj, gfpmask);
2549 2550 2551
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2552 2553 2554

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2555 2556
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2557 2558
			if (ret) {
				/* now try to shrink everyone else */
2559 2560 2561
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2562 2563 2564 2565 2566 2567 2568 2569
				}

				return ret;
			}

			goto search_free;
		}

2570 2571 2572 2573 2574 2575 2576
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2577
					       obj_priv->pages,
2578
					       obj->size >> PAGE_SHIFT,
2579 2580
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2581
	if (obj_priv->agp_mem == NULL) {
2582
		i915_gem_object_put_pages(obj);
2583 2584
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2585

2586
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2587
		if (ret)
2588 2589 2590
			return ret;

		goto search_free;
2591 2592 2593 2594
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2595 2596 2597
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2598 2599 2600 2601
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2602 2603
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2604

C
Chris Wilson 已提交
2605 2606
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2607 2608 2609 2610 2611 2612
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2613
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2614 2615 2616 2617 2618

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2619
	if (obj_priv->pages == NULL)
2620 2621
		return;

C
Chris Wilson 已提交
2622
	trace_i915_gem_object_clflush(obj);
2623

2624
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2625 2626
}

2627
/** Flushes any GPU write domain for the object if it's dirty. */
2628
static int
2629 2630 2631
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2632
	uint32_t old_write_domain;
2633
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2634 2635

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2636
		return 0;
2637 2638

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2639
	old_write_domain = obj->write_domain;
2640
	i915_gem_flush(dev, 0, obj->write_domain);
2641 2642
	if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
		return -ENOMEM;
C
Chris Wilson 已提交
2643 2644 2645 2646

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2647
	return 0;
2648 2649 2650 2651 2652 2653
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2654 2655
	uint32_t old_write_domain;

2656 2657 2658 2659 2660 2661 2662
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2663
	old_write_domain = obj->write_domain;
2664
	obj->write_domain = 0;
C
Chris Wilson 已提交
2665 2666 2667 2668

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2669 2670 2671 2672 2673 2674 2675
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2676
	uint32_t old_write_domain;
2677 2678 2679 2680 2681 2682

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2683
	old_write_domain = obj->write_domain;
2684
	obj->write_domain = 0;
C
Chris Wilson 已提交
2685 2686 2687 2688

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2689 2690
}

2691
int
2692 2693
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
2694 2695
	int ret = 0;

2696 2697 2698 2699 2700 2701 2702 2703
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
2704
		ret = i915_gem_object_flush_gpu_write_domain(obj);
2705 2706
		break;
	}
2707 2708

	return ret;
2709 2710
}

2711 2712 2713 2714 2715 2716
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2717
int
2718 2719
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2720
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2721
	uint32_t old_write_domain, old_read_domains;
2722
	int ret;
2723

2724 2725 2726 2727
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2728 2729 2730 2731
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret != 0)
		return ret;

2732
	/* Wait on any GPU rendering and flushing to occur. */
2733
	ret = i915_gem_object_wait_rendering(obj, true);
2734 2735 2736
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2737 2738 2739
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2740 2741
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2742
	 */
2743 2744
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2745

2746
	i915_gem_object_flush_cpu_write_domain(obj);
2747

2748 2749 2750 2751 2752 2753 2754 2755
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2756 2757
	}

C
Chris Wilson 已提交
2758 2759 2760 2761
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2762 2763 2764
	return 0;
}

2765 2766 2767 2768 2769 2770 2771
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
2772
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2773 2774 2775 2776 2777 2778 2779
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2780 2781 2782
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;
2783 2784

	/* Wait on any GPU rendering and flushing to occur. */
2785 2786 2787
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret != 0)
		return ret;
2788

2789 2790
	i915_gem_object_flush_cpu_write_domain(obj);

2791 2792 2793 2794 2795 2796 2797
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2798
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2809 2810 2811 2812 2813 2814 2815 2816 2817
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2818
	uint32_t old_write_domain, old_read_domains;
2819 2820
	int ret;

2821 2822 2823 2824
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2825
	/* Wait on any GPU rendering and flushing to occur. */
2826
	ret = i915_gem_object_wait_rendering(obj, true);
2827 2828
	if (ret != 0)
		return ret;
2829

2830
	i915_gem_object_flush_gtt_write_domain(obj);
2831

2832 2833
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2834
	 */
2835
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2836

C
Chris Wilson 已提交
2837 2838 2839
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2840 2841
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2842 2843
		i915_gem_clflush_object(obj);

2844
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2845 2846 2847 2848 2849
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2850 2851 2852 2853 2854 2855 2856 2857 2858
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2859

C
Chris Wilson 已提交
2860 2861 2862 2863
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2864 2865 2866
	return 0;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2978
static void
2979
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2980 2981
{
	struct drm_device		*dev = obj->dev;
2982
	drm_i915_private_t		*dev_priv = dev->dev_private;
2983
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2984 2985
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2986
	uint32_t			old_read_domains;
2987

2988 2989
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2990

2991 2992
	intel_mark_busy(dev, obj);

2993 2994 2995
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2996 2997
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2998 2999 3000 3001 3002
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3003 3004
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3005 3006 3007 3008 3009 3010 3011 3012 3013
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3014 3015
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3016
		flush_domains |= obj->write_domain;
3017 3018
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3019 3020 3021 3022 3023
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3024
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3025 3026 3027 3028 3029 3030 3031 3032
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3033 3034
	old_read_domains = obj->read_domains;

3035 3036 3037 3038 3039 3040 3041 3042
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3043
	obj->read_domains = obj->pending_read_domains;
3044

3045 3046 3047 3048 3049 3050 3051
	if (flush_domains & I915_GEM_GPU_DOMAINS) {
		if (obj_priv->ring == &dev_priv->render_ring)
			dev_priv->flush_rings |= FLUSH_RENDER_RING;
		else if (obj_priv->ring == &dev_priv->bsd_ring)
			dev_priv->flush_rings |= FLUSH_BSD_RING;
	}

3052 3053 3054 3055 3056 3057 3058 3059
	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3060 3061 3062 3063

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3064 3065 3066
}

/**
3067
 * Moves the object from a partially CPU read to a full one.
3068
 *
3069 3070
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3071
 */
3072 3073
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3074
{
3075
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3088
			drm_clflush_pages(obj_priv->pages + i, 1);
3089 3090 3091 3092 3093 3094
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3095
	kfree(obj_priv->page_cpu_valid);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3115
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3116
	uint32_t old_read_domains;
3117
	int i, ret;
3118

3119 3120
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3121

3122 3123 3124 3125
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3126
	/* Wait on any GPU rendering and flushing to occur. */
3127
	ret = i915_gem_object_wait_rendering(obj, true);
3128
	if (ret != 0)
3129
		return ret;
3130 3131 3132 3133 3134 3135
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3136

3137 3138 3139
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3140
	if (obj_priv->page_cpu_valid == NULL) {
3141 3142
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3143 3144 3145 3146
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3147 3148 3149 3150

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3151 3152
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3153 3154 3155
		if (obj_priv->page_cpu_valid[i])
			continue;

3156
		drm_clflush_pages(obj_priv->pages + i, 1);
3157 3158 3159 3160

		obj_priv->page_cpu_valid[i] = 1;
	}

3161 3162 3163 3164 3165
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3166
	old_read_domains = obj->read_domains;
3167 3168
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3169 3170 3171 3172
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3173 3174 3175 3176 3177 3178 3179 3180 3181
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3182
				 struct drm_i915_gem_exec_object2 *entry,
3183
				 struct drm_i915_gem_relocation_entry *relocs)
3184 3185
{
	struct drm_device *dev = obj->dev;
3186
	drm_i915_private_t *dev_priv = dev->dev_private;
3187
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3188
	int i, ret;
3189
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3190 3191 3192 3193 3194 3195
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3196 3197 3198 3199 3200 3201 3202
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3203 3204 3205 3206 3207 3208

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3221 3222 3223 3224 3225 3226
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3227
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3228 3229
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3230 3231
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3232 3233

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3234
						   reloc->target_handle);
3235 3236
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3237
			return -ENOENT;
3238
		}
3239
		target_obj_priv = to_intel_bo(target_obj);
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3256 3257 3258 3259 3260
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3261
				  reloc->target_handle);
3262 3263 3264 3265 3266
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3267
		/* Validate that the target is in a valid r/w GPU domain */
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3278 3279
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3280 3281 3282
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3283 3284 3285 3286
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3287 3288
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3289 3290
			return -EINVAL;
		}
3291 3292
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3293 3294 3295
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3296 3297 3298
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3299 3300 3301 3302 3303 3304
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3305 3306
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3307 3308 3309 3310

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3311
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3312 3313 3314 3315
			drm_gem_object_unreference(target_obj);
			continue;
		}

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3347 3348 3349 3350 3351
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3352 3353 3354 3355 3356
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3357
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3358 3359
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3360 3361
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3362
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3363
						   (reloc_offset & (PAGE_SIZE - 1)));
3364
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3365 3366 3367

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3368
			  obj, (unsigned int) reloc->offset,
3369 3370 3371
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3372
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3373

3374 3375
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3376
		 */
3377
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3392 3393 3394 3395
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3396 3397 3398 3399 3400 3401 3402 3403
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3404
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3405 3406

	mutex_lock(&dev->struct_mutex);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3417
		ret = i915_wait_request(dev, request->seqno, request->ring);
3418 3419 3420
		if (ret != 0)
			break;
	}
3421
	mutex_unlock(&dev->struct_mutex);
3422

3423 3424 3425
	return ret;
}

3426
static int
J
Jesse Barnes 已提交
3427
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3441
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3442 3443
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3444
		return -ENOMEM;
J
Jesse Barnes 已提交
3445
	}
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3457
			drm_free_large(*relocs);
3458
			*relocs = NULL;
3459
			return -EFAULT;
3460 3461 3462 3463 3464
		}

		reloc_index += exec_list[i].relocation_count;
	}

3465
	return 0;
3466 3467 3468
}

static int
J
Jesse Barnes 已提交
3469
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3470 3471 3472 3473
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3474
	int ret = 0;
3475

3476 3477 3478
	if (relocs == NULL)
	    return 0;

3479 3480
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3481
		int unwritten;
3482 3483 3484

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3485 3486 3487 3488 3489 3490 3491 3492
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3493 3494 3495 3496 3497
		}

		reloc_count += exec_list[i].relocation_count;
	}

3498
err:
3499
	drm_free_large(relocs);
3500 3501 3502 3503

	return ret;
}

3504
static int
J
Jesse Barnes 已提交
3505
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3536
			obj_priv = to_intel_bo(object_list[i]);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3557

3558
int
J
Jesse Barnes 已提交
3559 3560 3561 3562
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3563 3564 3565 3566
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3567
	struct drm_i915_gem_object *obj_priv;
3568
	struct drm_clip_rect *cliprects = NULL;
3569
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3570
	int ret = 0, ret2, i, pinned = 0;
3571
	uint64_t exec_offset;
3572
	uint32_t seqno, flush_domains, reloc_index;
3573
	int pin_tries, flips;
3574

3575 3576
	struct intel_ring_buffer *ring = NULL;

3577 3578 3579 3580
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3591 3592 3593 3594
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3595
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3596 3597
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3598 3599 3600 3601 3602
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3603
	if (args->num_cliprects != 0) {
3604 3605
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3606 3607
		if (cliprects == NULL) {
			ret = -ENOMEM;
3608
			goto pre_mutex_err;
3609
		}
3610 3611 3612 3613 3614 3615 3616 3617

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3618
			ret = -EFAULT;
3619 3620 3621 3622
			goto pre_mutex_err;
		}
	}

3623 3624 3625 3626 3627
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3628 3629 3630 3631
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3632
	if (atomic_read(&dev_priv->mm.wedged)) {
3633
		mutex_unlock(&dev->struct_mutex);
3634 3635
		ret = -EIO;
		goto pre_mutex_err;
3636 3637 3638 3639
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3640 3641
		ret = -EBUSY;
		goto pre_mutex_err;
3642 3643
	}

3644
	/* Look up object handles */
3645
	flips = 0;
3646 3647 3648 3649 3650 3651
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3652 3653
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3654
			ret = -ENOENT;
3655 3656
			goto err;
		}
3657

3658
		obj_priv = to_intel_bo(object_list[i]);
3659 3660 3661
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3662 3663
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3664
			ret = -EINVAL;
3665 3666 3667
			goto err;
		}
		obj_priv->in_execbuffer = true;
3668 3669 3670 3671 3672 3673 3674 3675
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3676
	}
3677

3678 3679 3680
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3681 3682
		reloc_index = 0;

3683 3684 3685 3686 3687
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3688 3689
							       &exec_list[i],
							       &relocs[reloc_index]);
3690 3691 3692
			if (ret)
				break;
			pinned = i + 1;
3693
			reloc_index += exec_list[i].relocation_count;
3694 3695 3696 3697 3698 3699
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3700
		if (ret != -ENOSPC || pin_tries >= 1) {
3701 3702
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3703 3704
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3705
					obj_priv = to_intel_bo(object_list[i]);
3706

3707
					total_size += object_list[i]->size;
3708 3709 3710 3711 3712
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3713
					  pinned+1, args->buffer_count,
3714 3715
					  total_size, num_fences,
					  ret);
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3726 3727
			goto err;
		}
3728 3729 3730 3731

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3732
		pinned = 0;
3733 3734 3735

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3736
		if (ret && ret != -ENOSPC)
3737
			goto err;
3738 3739 3740 3741
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3742 3743 3744 3745 3746 3747
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3748

3749 3750 3751 3752 3753 3754 3755 3756
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3757 3758
	i915_verify_inactive(dev, __FILE__, __LINE__);

3759 3760 3761 3762 3763 3764
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3765
	dev_priv->flush_rings = 0;
3766

3767 3768 3769
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3770
		/* Compute new gpu domains and update invalidate/flush */
3771
		i915_gem_object_set_to_gpu_domain(obj);
3772 3773 3774 3775
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3786
		if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3787
			(void)i915_add_request(dev, file_priv, 0,
3788 3789
					       &dev_priv->render_ring);
		if (dev_priv->flush_rings & FLUSH_BSD_RING)
3790
			(void)i915_add_request(dev, file_priv, 0,
3791
					       &dev_priv->bsd_ring);
3792
	}
3793

3794 3795
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3796
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3797
		uint32_t old_write_domain = obj->write_domain;
3798 3799

		obj->write_domain = obj->pending_write_domain;
3800 3801 3802 3803 3804 3805
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3806 3807 3808
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3809 3810
	}

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3821
	i915_gem_dump_object(batch_obj,
3822 3823 3824 3825 3826 3827
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3828 3829
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3830 3831 3832 3833 3834 3835 3836 3837 3838
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3839
	flush_domains = i915_retire_commands(dev, ring);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3850
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3851 3852 3853
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3854
		obj_priv = to_intel_bo(obj);
3855

3856
		i915_gem_object_move_to_active(obj, seqno, ring);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3868 3869 3870
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3871 3872
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3873
			obj_priv = to_intel_bo(object_list[i]);
3874 3875
			obj_priv->in_execbuffer = false;
		}
3876
		drm_gem_object_unreference(object_list[i]);
3877
	}
3878 3879 3880

	mutex_unlock(&dev->struct_mutex);

3881
pre_mutex_err:
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3896
	drm_free_large(object_list);
3897
	kfree(cliprects);
3898 3899 3900 3901

	return ret;
}

J
Jesse Barnes 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3968
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4047 4048 4049 4050
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4051
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4052 4053
	int ret;

4054 4055
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4056
	i915_verify_inactive(dev, __FILE__, __LINE__);
4057 4058 4059 4060 4061

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4062 4063 4064 4065
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4066 4067 4068 4069 4070 4071
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4072 4073
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4074
		if (ret)
4075
			return ret;
4076
	}
J
Jesse Barnes 已提交
4077

4078 4079 4080 4081 4082 4083 4084 4085 4086
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4087
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4100
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4113
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4138
		return -ENOENT;
4139
	}
4140
	obj_priv = to_intel_bo(obj);
4141

C
Chris Wilson 已提交
4142 4143
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4144 4145 4146 4147 4148
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4149 4150 4151
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4152
		drm_gem_object_unreference(obj);
4153
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4166 4167 4168 4169 4170
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4171
	i915_gem_object_flush_cpu_write_domain(obj);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4185
	struct drm_i915_gem_object *obj_priv;
4186 4187 4188 4189 4190 4191 4192 4193

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4194
		return -ENOENT;
4195 4196
	}

4197
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4228
		return -ENOENT;
4229 4230
	}

4231
	mutex_lock(&dev->struct_mutex);
4232

4233 4234 4235 4236
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4237
	 */
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
		if (obj->write_domain) {
			i915_gem_flush(dev, 0, obj->write_domain);
			(void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
		}

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4293
		return -ENOENT;
4294 4295 4296
	}

	mutex_lock(&dev->struct_mutex);
4297
	obj_priv = to_intel_bo(obj);
4298 4299 4300 4301 4302 4303 4304 4305 4306

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4307 4308
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4309

4310 4311 4312 4313 4314
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4315 4316
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4317 4318 4319 4320 4321 4322
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4323 4324 4325
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4326
	struct drm_i915_gem_object *obj;
4327

4328 4329 4330
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4331

4332 4333 4334 4335
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4336

4337 4338
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4339

4340
	obj->agp_type = AGP_USER_MEMORY;
4341
	obj->base.driver_private = NULL;
4342 4343 4344 4345
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4346

4347 4348 4349 4350 4351 4352 4353 4354
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4355

4356 4357 4358
	return 0;
}

4359
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4360
{
4361
	struct drm_device *dev = obj->dev;
4362
	drm_i915_private_t *dev_priv = dev->dev_private;
4363
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4364
	int ret;
4365

4366 4367 4368 4369 4370 4371
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4372

4373 4374
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4375

4376 4377
	drm_gem_object_release(obj);

4378
	kfree(obj_priv->page_cpu_valid);
4379
	kfree(obj_priv->bit_17);
4380
	kfree(obj_priv);
4381 4382
}

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4399 4400 4401 4402 4403
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4404

4405
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4406

4407
	if (dev_priv->mm.suspended ||
4408 4409 4410
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4411 4412
		mutex_unlock(&dev->struct_mutex);
		return 0;
4413 4414
	}

4415
	ret = i915_gpu_idle(dev);
4416 4417
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4418
		return ret;
4419
	}
4420

4421 4422
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4423
		ret = i915_gem_evict_inactive(dev);
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4435
	del_timer_sync(&dev_priv->hangcheck_timer);
4436 4437

	i915_kernel_lost_context(dev);
4438
	i915_gem_cleanup_ringbuffer(dev);
4439

4440 4441
	mutex_unlock(&dev->struct_mutex);

4442 4443 4444
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4445 4446 4447
	return 0;
}

4448 4449 4450 4451
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4452
static int
4453 4454 4455 4456 4457 4458 4459
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4460
	obj = i915_gem_alloc_object(dev, 4096);
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4491 4492

static void
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4507 4508
}

4509 4510 4511 4512 4513
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4514

4515
	dev_priv->render_ring = render_ring;
4516

4517 4518 4519 4520 4521 4522
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4523

4524 4525 4526 4527 4528
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4529

4530
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4531 4532 4533 4534
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4535 4536
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4537 4538
		if (ret)
			goto cleanup_render_ring;
4539
	}
4540

4541 4542
	dev_priv->next_seqno = 1;

4543 4544 4545 4546 4547 4548 4549
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4550 4551 4552 4553 4554 4555 4556 4557 4558
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4559 4560
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4561 4562 4563 4564
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4565 4566 4567 4568 4569 4570 4571
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4572 4573 4574
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4575
	if (atomic_read(&dev_priv->mm.wedged)) {
4576
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4577
		atomic_set(&dev_priv->mm.wedged, 0);
4578 4579 4580
	}

	mutex_lock(&dev->struct_mutex);
4581 4582 4583
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4584 4585
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4586
		return ret;
4587
	}
4588

4589
	spin_lock(&dev_priv->mm.active_list_lock);
4590
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4591
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4592 4593
	spin_unlock(&dev_priv->mm.active_list_lock);

4594 4595
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4596
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4597
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4598
	mutex_unlock(&dev->struct_mutex);
4599

4600 4601 4602
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4603

4604
	return 0;
4605 4606 4607 4608 4609 4610 4611 4612

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4613 4614 4615 4616 4617 4618
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4619 4620 4621
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4622
	drm_irq_uninstall(dev);
4623
	return i915_gem_idle(dev);
4624 4625 4626 4627 4628 4629 4630
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4631 4632 4633
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4634 4635 4636
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4637 4638 4639 4640 4641
}

void
i915_gem_load(struct drm_device *dev)
{
4642
	int i;
4643 4644
	drm_i915_private_t *dev_priv = dev->dev_private;

4645
	spin_lock_init(&dev_priv->mm.active_list_lock);
4646
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4647
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4648
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4649
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4650
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4651 4652
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4653 4654 4655 4656
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4657 4658
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4659 4660
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4661 4662 4663 4664
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4675
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4676 4677
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4678

4679
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4680 4681 4682 4683
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4695
	i915_gem_detect_bit_6_swizzle(dev);
4696
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4697
}
4698 4699 4700 4701 4702 4703

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
4704
			      int id, int size, int align)
4705 4706 4707 4708 4709 4710 4711 4712
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4713
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4714 4715 4716 4717 4718
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4719
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4732
	kfree(phys_obj);
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4761
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4773
	obj_priv = to_intel_bo(obj);
4774 4775 4776
	if (!obj_priv->phys_obj)
		return;

4777
	ret = i915_gem_object_get_pages(obj, 0);
4778 4779 4780 4781 4782 4783
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4784
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4785 4786 4787 4788 4789
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4790
	drm_clflush_pages(obj_priv->pages, page_count);
4791
	drm_agp_chipset_flush(dev);
4792 4793

	i915_gem_object_put_pages(obj);
4794 4795 4796 4797 4798 4799 4800
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4801 4802 4803
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4814
	obj_priv = to_intel_bo(obj);
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4825
						obj->size, align);
4826
		if (ret) {
4827
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4828 4829 4830 4831 4832 4833 4834 4835
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4836
	ret = i915_gem_object_get_pages(obj, 0);
4837 4838 4839 4840 4841 4842 4843 4844
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4845
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4846 4847 4848 4849 4850 4851
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4852 4853
	i915_gem_object_put_pages(obj);

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4864
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4865 4866 4867 4868 4869 4870 4871
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4872
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4873 4874 4875 4876 4877 4878 4879
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4894

4895 4896 4897 4898 4899 4900 4901 4902
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4903
		      list_empty(&dev_priv->render_ring.active_list);
4904 4905
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4906 4907 4908 4909 4910
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

4911
static int
4912
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4940
rescan:
4941 4942 4943 4944 4945 4946 4947 4948 4949
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4950
		i915_gem_retire_requests(dev);
4951 4952 4953 4954 4955

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4956
				i915_gem_object_unbind(&obj_priv->base);
4957 4958 4959 4960 4961 4962 4963 4964
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4965 4966
		would_deadlock = 0;

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4985
				i915_gem_object_unbind(&obj_priv->base);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}