spi.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * spi.c - SPI init/core code
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/autoconf.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
26
#include <linux/mutex.h>
27 28 29
#include <linux/spi/spi.h>


30 31 32
/* SPI bustype and spi_master class are registered after board init code
 * provides the SPI device tables, ensuring that both are present by the
 * time controller driver registration causes spi_devices to "enumerate".
33 34 35
 */
static void spidev_release(struct device *dev)
{
36
	struct spi_device	*spi = to_spi_device(dev);
37 38 39 40 41

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
42
	spi_master_put(spi->master);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	kfree(dev);
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);

	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
}

static int spi_uevent(struct device *dev, char **envp, int num_envp,
		char *buffer, int buffer_size)
{
	const struct spi_device		*spi = to_spi_device(dev);

	envp[0] = buffer;
	snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
	envp[1] = NULL;
	return 0;
}

#ifdef	CONFIG_PM

83
/*
84 85 86 87 88 89 90
 * NOTE:  the suspend() method for an spi_master controller driver
 * should verify that all its child devices are marked as suspended;
 * suspend requests delivered through sysfs power/state files don't
 * enforce such constraints.
 */
static int spi_suspend(struct device *dev, pm_message_t message)
{
91 92
	int			value;
	struct spi_driver	*drv = to_spi_driver(dev->driver);
93

94
	if (!drv || !drv->suspend)
95 96 97
		return 0;

	/* suspend will stop irqs and dma; no more i/o */
98
	value = drv->suspend(to_spi_device(dev), message);
99 100 101 102 103 104 105
	if (value == 0)
		dev->power.power_state = message;
	return value;
}

static int spi_resume(struct device *dev)
{
106 107
	int			value;
	struct spi_driver	*drv = to_spi_driver(dev->driver);
108

109
	if (!drv || !drv->resume)
110 111 112
		return 0;

	/* resume may restart the i/o queue */
113
	value = drv->resume(to_spi_device(dev));
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	if (value == 0)
		dev->power.power_state = PMSG_ON;
	return value;
}

#else
#define spi_suspend	NULL
#define spi_resume	NULL
#endif

struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
	.suspend	= spi_suspend,
	.resume		= spi_resume,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
156 157 158 159 160
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
161 162 163 164 165 166 167 168 169 170 171 172 173
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
	unsigned		n_board_info;
	struct spi_board_info	board_info[0];
};

static LIST_HEAD(board_list);
189
static DEFINE_MUTEX(board_lock);
190 191


D
David Brownell 已提交
192 193 194 195 196 197 198
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
199 200 201 202 203
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
 */
204 205
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
206 207
{
	struct spi_device	*proxy;
208
	struct device		*dev = master->cdev.dev;
209 210 211 212
	int			status;

	/* NOTE:  caller did any chip->bus_num checks necessary */

D
David Brownell 已提交
213
	if (!spi_master_get(master))
214 215 216 217 218 219 220 221 222 223 224
		return NULL;

	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
	if (!proxy) {
		dev_err(dev, "can't alloc dev for cs%d\n",
			chip->chip_select);
		goto fail;
	}
	proxy->master = master;
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
225
	proxy->mode = chip->mode;
226 227 228 229
	proxy->irq = chip->irq;
	proxy->modalias = chip->modalias;

	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
230
			"%s.%u", master->cdev.class_id,
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
			chip->chip_select);
	proxy->dev.parent = dev;
	proxy->dev.bus = &spi_bus_type;
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;
	proxy->dev.release = spidev_release;

	/* drivers may modify this default i/o setup */
	status = master->setup(proxy);
	if (status < 0) {
		dev_dbg(dev, "can't %s %s, status %d\n",
				"setup", proxy->dev.bus_id, status);
		goto fail;
	}

	/* driver core catches callers that misbehave by defining
	 * devices that already exist.
	 */
	status = device_register(&proxy->dev);
	if (status < 0) {
		dev_dbg(dev, "can't %s %s, status %d\n",
				"add", proxy->dev.bus_id, status);
254
		goto fail;
255 256 257
	}
	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
	return proxy;
258 259

fail:
D
David Brownell 已提交
260
	spi_master_put(master);
261 262
	kfree(proxy);
	return NULL;
263 264 265
}
EXPORT_SYMBOL_GPL(spi_new_device);

D
David Brownell 已提交
266 267 268 269 270 271
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
	struct boardinfo	*bi;

290
	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
291 292 293
	if (!bi)
		return -ENOMEM;
	bi->n_board_info = n;
294
	memcpy(bi->board_info, info, n * sizeof *info);
295

296
	mutex_lock(&board_lock);
297
	list_add_tail(&bi->list, &board_list);
298
	mutex_unlock(&board_lock);
299 300 301 302 303 304 305 306 307 308 309
	return 0;
}

/* FIXME someone should add support for a __setup("spi", ...) that
 * creates board info from kernel command lines
 */

static void __init_or_module
scan_boardinfo(struct spi_master *master)
{
	struct boardinfo	*bi;
310
	struct device		*dev = master->cdev.dev;
311

312
	mutex_lock(&board_lock);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	list_for_each_entry(bi, &board_list, list) {
		struct spi_board_info	*chip = bi->board_info;
		unsigned		n;

		for (n = bi->n_board_info; n > 0; n--, chip++) {
			if (chip->bus_num != master->bus_num)
				continue;
			/* some controllers only have one chip, so they
			 * might not use chipselects.  otherwise, the
			 * chipselects are numbered 0..max.
			 */
			if (chip->chip_select >= master->num_chipselect
					&& master->num_chipselect) {
				dev_dbg(dev, "cs%d > max %d\n",
					chip->chip_select,
					master->num_chipselect);
				continue;
			}
			(void) spi_new_device(master, chip);
		}
	}
334
	mutex_unlock(&board_lock);
335 336 337 338
}

/*-------------------------------------------------------------------------*/

339
static void spi_master_release(struct class_device *cdev)
340 341 342
{
	struct spi_master *master;

343
	master = container_of(cdev, struct spi_master, cdev);
344 345 346 347 348 349
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
350
	.release	= spi_master_release,
351 352 353 354 355 356
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
357
 * @size: how much zeroed driver-private data to allocate; the pointer to this
D
dmitry pervushin 已提交
358
 *	memory is in the class_data field of the returned class_device,
D
David Brownell 已提交
359
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
360
 * Context: can sleep
361 362 363
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
364
 * an spi_master structure, prior to calling spi_register_master().
365 366 367 368 369
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
370
 * the master's methods before calling spi_register_master(); and (after errors
D
David Brownell 已提交
371
 * adding the device) calling spi_master_put() to prevent a memory leak.
372
 */
373
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
374 375 376
{
	struct spi_master	*master;

D
David Brownell 已提交
377 378 379
	if (!dev)
		return NULL;

380
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
381 382 383
	if (!master)
		return NULL;

384 385 386
	class_device_initialize(&master->cdev);
	master->cdev.class = &spi_master_class;
	master->cdev.dev = get_device(dev);
D
David Brownell 已提交
387
	spi_master_set_devdata(master, &master[1]);
388 389 390 391 392 393 394 395

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
396
 * Context: can sleep
397 398 399 400 401 402 403 404 405 406 407 408 409
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
410 411
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
412
 */
413
int spi_register_master(struct spi_master *master)
414
{
415
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
416
	struct device		*dev = master->cdev.dev;
417 418 419
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
420 421 422
	if (!dev)
		return -ENODEV;

423
	/* convention:  dynamically assigned bus IDs count down from the max */
424
	if (master->bus_num < 0) {
425
		master->bus_num = atomic_dec_return(&dyn_bus_id);
426
		dynamic = 1;
427 428 429 430 431
	}

	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
432
	snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
433
		"spi%u", master->bus_num);
434
	status = class_device_add(&master->cdev);
435
	if (status < 0)
436
		goto done;
437
	dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
438 439 440 441 442 443 444 445 446 447 448 449 450 451
			dynamic ? " (dynamic)" : "");

	/* populate children from any spi device tables */
	scan_boardinfo(master);
	status = 0;
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);


static int __unregister(struct device *dev, void *unused)
{
	/* note: before about 2.6.14-rc1 this would corrupt memory: */
D
David Brownell 已提交
452
	spi_unregister_device(to_spi_device(dev));
453 454 455 456 457 458
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
459
 * Context: can sleep
460 461 462 463 464 465 466 467
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
468 469
	int dummy;

470 471
	dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
	class_device_unregister(&master->cdev);
472 473 474 475 476 477
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
478
 * Context: can sleep
479 480 481 482 483 484 485 486
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
487 488 489 490 491 492
	struct class_device	*cdev;
	struct spi_master	*master = NULL;
	struct spi_master	*m;

	down(&spi_master_class.sem);
	list_for_each_entry(cdev, &spi_master_class.children, node) {
493
		m = container_of(cdev, struct spi_master, cdev);
494 495 496 497 498 499 500
		if (m->bus_num == bus_num) {
			master = spi_master_get(m);
			break;
		}
	}
	up(&spi_master_class.sem);
	return master;
501 502 503 504 505 506
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

507 508 509 510 511
static void spi_complete(void *arg)
{
	complete(arg);
}

512 513 514 515
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
516
 * Context: can sleep
517 518 519 520 521 522 523 524 525 526 527
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
528 529 530
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
531 532
 * The return value is a negative error code if the message could not be
 * submitted, else zero.  When the value is zero, then message->status is
D
David Brownell 已提交
533
 * also defined;  it's the completion code for the transfer, either zero
534 535 536 537
 * or a negative error code from the controller driver.
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
538
	DECLARE_COMPLETION_ONSTACK(done);
539 540
	int status;

541
	message->complete = spi_complete;
542 543 544 545 546 547 548 549 550
	message->context = &done;
	status = spi_async(spi, message);
	if (status == 0)
		wait_for_completion(&done);
	message->context = NULL;
	return status;
}
EXPORT_SYMBOL_GPL(spi_sync);

551 552
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
553 554 555 556 557 558 559 560 561 562

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
 * @rxbuf: buffer into which data will be read
 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
D
David Brownell 已提交
563
 * Context: can sleep
564 565 566 567
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
568
 * This call may only be used from a context that may sleep.
569
 *
D
David Brownell 已提交
570
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
571 572
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
573
 * spi_{async,sync}() calls with dma-safe buffers.
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 */
int spi_write_then_read(struct spi_device *spi,
		const u8 *txbuf, unsigned n_tx,
		u8 *rxbuf, unsigned n_rx)
{
	static DECLARE_MUTEX(lock);

	int			status;
	struct spi_message	message;
	struct spi_transfer	x[2];
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

593 594 595 596 597 598 599 600 601 602 603
	spi_message_init(&message);
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	/* ... unless someone else is using the pre-allocated buffer */
	if (down_trylock(&lock)) {
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;

	/* do the i/o */
	status = spi_sync(spi, &message);
	if (status == 0) {
		memcpy(rxbuf, x[1].rx_buf, n_rx);
		status = message.status;
	}

	if (x[0].tx_buf == buf)
		up(&lock);
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
636 637
	int	status;

638
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
639 640 641 642 643 644 645 646
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
647

648 649 650
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
651
	return 0;
652 653 654 655 656 657 658 659

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
660
}
661

662 663
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
664 665 666 667
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
668 669 670
 */
subsys_initcall(spi_init);