intel_dpll_mgr.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2006-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_drv.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/**
 * DOC: Display PLLs
 *
 * Display PLLs used for driving outputs vary by platform. While some have
 * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
 * from a pool. In the latter scenario, it is possible that multiple pipes
 * share a PLL if their configurations match.
 *
 * This file provides an abstraction over display PLLs. The function
 * intel_shared_dpll_init() initializes the PLLs for the given platform.  The
 * users of a PLL are tracked and that tracking is integrated with the atomic
 * modest interface. During an atomic operation, a PLL can be requested for a
 * given CRTC and encoder configuration by calling intel_get_shared_dpll() and
 * a previously used PLL can be released with intel_release_shared_dpll().
 * Changes to the users are first staged in the atomic state, and then made
 * effective by calling intel_shared_dpll_swap_state() during the atomic
 * commit phase.
 */

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static void
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll_state *shared_dpll)
{
	enum intel_dpll_id i;

	/* Copy shared dpll state */
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];

		shared_dpll[i] = pll->state;
	}
}

static struct intel_shared_dpll_state *
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
{
	struct intel_atomic_state *state = to_intel_atomic_state(s);

	WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));

	if (!state->dpll_set) {
		state->dpll_set = true;

		intel_atomic_duplicate_dpll_state(to_i915(s->dev),
						  state->shared_dpll);
	}

	return state->shared_dpll;
}

76 77 78 79 80 81 82 83
/**
 * intel_get_shared_dpll_by_id - get a DPLL given its id
 * @dev_priv: i915 device instance
 * @id: pll id
 *
 * Returns:
 * A pointer to the DPLL with @id
 */
84
struct intel_shared_dpll *
85 86
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
			    enum intel_dpll_id id)
87
{
88 89
	return &dev_priv->shared_dplls[id];
}
90

91 92 93 94 95 96 97 98
/**
 * intel_get_shared_dpll_id - get the id of a DPLL
 * @dev_priv: i915 device instance
 * @pll: the DPLL
 *
 * Returns:
 * The id of @pll
 */
99 100 101 102 103 104 105 106 107 108 109
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
			 struct intel_shared_dpll *pll)
{
	if (WARN_ON(pll < dev_priv->shared_dplls||
		    pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
		return -1;

	return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
}

110 111 112 113 114 115 116 117 118 119 120
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
			struct intel_shared_dpll *pll,
			bool state)
{
	bool cur_state;
	struct intel_dpll_hw_state hw_state;

	if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
		return;

121
	cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
122 123 124 125 126
	I915_STATE_WARN(cur_state != state,
	     "%s assertion failure (expected %s, current %s)\n",
			pll->name, onoff(state), onoff(cur_state));
}

127 128 129 130 131 132 133
/**
 * intel_prepare_shared_dpll - call a dpll's prepare hook
 * @crtc: CRTC which has a shared dpll
 *
 * This calls the PLL's prepare hook if it has one and if the PLL is not
 * already enabled. The prepare hook is platform specific.
 */
134 135 136
void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
137
	struct drm_i915_private *dev_priv = to_i915(dev);
138
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
139 140 141 142

	if (WARN_ON(pll == NULL))
		return;

143
	mutex_lock(&dev_priv->dpll_lock);
144
	WARN_ON(!pll->state.crtc_mask);
145
	if (!pll->active_mask) {
146 147 148 149
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
		WARN_ON(pll->on);
		assert_shared_dpll_disabled(dev_priv, pll);

150
		pll->funcs.prepare(dev_priv, pll);
151
	}
152
	mutex_unlock(&dev_priv->dpll_lock);
153 154 155
}

/**
156 157
 * intel_enable_shared_dpll - enable a CRTC's shared DPLL
 * @crtc: CRTC which has a shared DPLL
158
 *
159
 * Enable the shared DPLL used by @crtc.
160 161 162 163
 */
void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
164
	struct drm_i915_private *dev_priv = to_i915(dev);
165
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
166
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
167
	unsigned old_mask;
168 169 170 171

	if (WARN_ON(pll == NULL))
		return;

172 173 174
	mutex_lock(&dev_priv->dpll_lock);
	old_mask = pll->active_mask;

175
	if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
176
	    WARN_ON(pll->active_mask & crtc_mask))
177
		goto out;
178

179 180 181 182
	pll->active_mask |= crtc_mask;

	DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
183 184
		      crtc->base.base.id);

185
	if (old_mask) {
186 187
		WARN_ON(!pll->on);
		assert_shared_dpll_enabled(dev_priv, pll);
188
		goto out;
189 190 191 192
	}
	WARN_ON(pll->on);

	DRM_DEBUG_KMS("enabling %s\n", pll->name);
193
	pll->funcs.enable(dev_priv, pll);
194
	pll->on = true;
195 196 197

out:
	mutex_unlock(&dev_priv->dpll_lock);
198 199
}

200 201 202 203 204 205
/**
 * intel_disable_shared_dpll - disable a CRTC's shared DPLL
 * @crtc: CRTC which has a shared DPLL
 *
 * Disable the shared DPLL used by @crtc.
 */
206 207
void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
208
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
209
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
210
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
211 212

	/* PCH only available on ILK+ */
213
	if (INTEL_GEN(dev_priv) < 5)
214 215 216 217 218
		return;

	if (pll == NULL)
		return;

219
	mutex_lock(&dev_priv->dpll_lock);
220
	if (WARN_ON(!(pll->active_mask & crtc_mask)))
221
		goto out;
222

223 224
	DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
225 226 227 228
		      crtc->base.base.id);

	assert_shared_dpll_enabled(dev_priv, pll);
	WARN_ON(!pll->on);
229 230 231

	pll->active_mask &= ~crtc_mask;
	if (pll->active_mask)
232
		goto out;
233 234

	DRM_DEBUG_KMS("disabling %s\n", pll->name);
235
	pll->funcs.disable(dev_priv, pll);
236
	pll->on = false;
237 238 239

out:
	mutex_unlock(&dev_priv->dpll_lock);
240 241
}

242
static struct intel_shared_dpll *
243
intel_find_shared_dpll(struct intel_crtc *crtc,
244 245 246
		       struct intel_crtc_state *crtc_state,
		       enum intel_dpll_id range_min,
		       enum intel_dpll_id range_max)
247
{
248
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
249
	struct intel_shared_dpll *pll;
250
	struct intel_shared_dpll_state *shared_dpll;
251
	enum intel_dpll_id i;
252

253 254
	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

255
	for (i = range_min; i <= range_max; i++) {
256 257 258 259 260 261 262 263 264
		pll = &dev_priv->shared_dplls[i];

		/* Only want to check enabled timings first */
		if (shared_dpll[i].crtc_mask == 0)
			continue;

		if (memcmp(&crtc_state->dpll_hw_state,
			   &shared_dpll[i].hw_state,
			   sizeof(crtc_state->dpll_hw_state)) == 0) {
265 266
			DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
				      crtc->base.base.id, crtc->base.name, pll->name,
267
				      shared_dpll[i].crtc_mask,
268
				      pll->active_mask);
269
			return pll;
270 271 272 273
		}
	}

	/* Ok no matching timings, maybe there's a free one? */
274
	for (i = range_min; i <= range_max; i++) {
275 276
		pll = &dev_priv->shared_dplls[i];
		if (shared_dpll[i].crtc_mask == 0) {
277 278
			DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
				      crtc->base.base.id, crtc->base.name, pll->name);
279
			return pll;
280 281 282
		}
	}

283
	return NULL;
284 285
}

286 287 288
static void
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
			    struct intel_crtc_state *crtc_state)
289
{
290
	struct intel_shared_dpll_state *shared_dpll;
291 292
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	enum intel_dpll_id i = pll->id;
293 294 295

	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

296 297 298 299
	if (shared_dpll[i].crtc_mask == 0)
		shared_dpll[i].hw_state =
			crtc_state->dpll_hw_state;

300
	crtc_state->shared_dpll = pll;
301 302 303
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
			 pipe_name(crtc->pipe));

304
	shared_dpll[pll->id].crtc_mask |= 1 << crtc->pipe;
305 306
}

307 308 309 310 311 312 313 314 315 316 317
/**
 * intel_shared_dpll_swap_state - make atomic DPLL configuration effective
 * @state: atomic state
 *
 * This is the dpll version of drm_atomic_helper_swap_state() since the
 * helper does not handle driver-specific global state.
 *
 * For consistency with atomic helpers this function does a complete swap,
 * i.e. it also puts the current state into @state, even though there is no
 * need for that at this moment.
 */
318
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
319 320
{
	struct drm_i915_private *dev_priv = to_i915(state->dev);
321
	struct intel_shared_dpll_state *shared_dpll;
322 323 324 325 326 327 328 329
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (!to_intel_atomic_state(state)->dpll_set)
		return;

	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
330
		struct intel_shared_dpll_state tmp;
331

332
		pll = &dev_priv->shared_dplls[i];
333

334 335
		tmp = pll->state;
		pll->state = shared_dpll[i];
336
		shared_dpll[i] = tmp;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	}
}

static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(PCH_DPLL(pll->id));
	hw_state->dpll = val;
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & DPLL_VCO_ENABLE;
}

359 360
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
361
{
362 363
	I915_WRITE(PCH_FP0(pll->id), pll->state.hw_state.fp0);
	I915_WRITE(PCH_FP1(pll->id), pll->state.hw_state.fp1);
364 365 366 367 368 369 370
}

static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
	u32 val;
	bool enabled;

371
	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
372 373 374 375 376 377 378 379 380 381 382 383 384

	val = I915_READ(PCH_DREF_CONTROL);
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
			    DREF_SUPERSPREAD_SOURCE_MASK));
	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}

static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	/* PCH refclock must be enabled first */
	ibx_assert_pch_refclk_enabled(dev_priv);

385
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
386 387 388 389 390 391 392 393 394 395

	/* Wait for the clocks to stabilize. */
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(150);

	/* The pixel multiplier can only be updated once the
	 * DPLL is enabled and the clocks are stable.
	 *
	 * So write it again.
	 */
396
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
397 398 399 400 401 402 403
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
404
	struct drm_device *dev = &dev_priv->drm;
405 406 407 408
	struct intel_crtc *crtc;

	/* Make sure no transcoder isn't still depending on us. */
	for_each_intel_crtc(dev, crtc) {
409
		if (crtc->config->shared_dpll == pll)
410 411 412 413 414 415 416 417
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
	}

	I915_WRITE(PCH_DPLL(pll->id), 0);
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

418
static struct intel_shared_dpll *
419 420
ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
421 422 423 424 425 426 427 428 429 430
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (HAS_PCH_IBX(dev_priv)) {
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
		i = (enum intel_dpll_id) crtc->pipe;
		pll = &dev_priv->shared_dplls[i];

431 432
		DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
			      crtc->base.base.id, crtc->base.name, pll->name);
433 434 435 436 437 438
	} else {
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_PCH_PLL_A,
					     DPLL_ID_PCH_PLL_B);
	}

439 440 441
	if (!pll)
		return NULL;

442 443 444 445 446 447
	/* reference the pll */
	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

448 449 450 451 452 453 454 455 456 457 458
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
		      "fp0: 0x%x, fp1: 0x%x\n",
		      hw_state->dpll,
		      hw_state->dpll_md,
		      hw_state->fp0,
		      hw_state->fp1);
}

459
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
460
	.prepare = ibx_pch_dpll_prepare,
461 462 463
	.enable = ibx_pch_dpll_enable,
	.disable = ibx_pch_dpll_disable,
	.get_hw_state = ibx_pch_dpll_get_hw_state,
464 465
};

466 467 468
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
469
	I915_WRITE(WRPLL_CTL(pll->id), pll->state.hw_state.wrpll);
470 471 472 473 474 475 476
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
477
	I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & WRPLL_PLL_ENABLE;
}

static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & SPLL_PLL_ENABLE;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

struct hsw_wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}

	return budget;
}

static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;

	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}

	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = hsw_wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
		}
	}

	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
}

M
Manasi Navare 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
						       struct intel_crtc *crtc,
						       struct intel_crtc_state *crtc_state)
{
	struct intel_shared_dpll *pll;
	uint32_t val;
	unsigned int p, n2, r2;

	hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);

	val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
	      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
	      WRPLL_DIVIDER_POST(p);

	crtc_state->dpll_hw_state.wrpll = val;

	pll = intel_find_shared_dpll(crtc, crtc_state,
				     DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);

	if (!pll)
		return NULL;

	return pll;
}

776 777
static struct intel_shared_dpll *
hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock)
M
Manasi Navare 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id pll_id;

	switch (clock / 2) {
	case 81000:
		pll_id = DPLL_ID_LCPLL_810;
		break;
	case 135000:
		pll_id = DPLL_ID_LCPLL_1350;
		break;
	case 270000:
		pll_id = DPLL_ID_LCPLL_2700;
		break;
	default:
		DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
		return NULL;
	}

	pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);

	if (!pll)
		return NULL;

	return pll;
}

806
static struct intel_shared_dpll *
807 808
hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
809 810
{
	struct intel_shared_dpll *pll;
811
	int clock = crtc_state->port_clock;
812

813 814 815
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

816
	if (encoder->type == INTEL_OUTPUT_HDMI) {
M
Manasi Navare 已提交
817
		pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
818

819
	} else if (encoder->type == INTEL_OUTPUT_DP ||
820 821
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
M
Manasi Navare 已提交
822
		pll = hsw_ddi_dp_get_dpll(encoder, clock);
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	} else if (encoder->type == INTEL_OUTPUT_ANALOG) {
		if (WARN_ON(crtc_state->port_clock / 2 != 135000))
			return NULL;

		crtc_state->dpll_hw_state.spll =
			SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;

		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SPLL, DPLL_ID_SPLL);
	} else {
		return NULL;
	}

	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
841 842 843 844

	return pll;
}

845 846 847 848 849 850 851
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
		      hw_state->wrpll, hw_state->spll);
}

852 853 854 855
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
	.enable = hsw_ddi_wrpll_enable,
	.disable = hsw_ddi_wrpll_disable,
	.get_hw_state = hsw_ddi_wrpll_get_hw_state,
856 857
};

858 859 860 861
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
	.enable = hsw_ddi_spll_enable,
	.disable = hsw_ddi_spll_disable,
	.get_hw_state = hsw_ddi_spll_get_hw_state,
862 863
};

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
}

static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	return true;
}

static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
	.enable = hsw_ddi_lcpll_enable,
	.disable = hsw_ddi_lcpll_disable,
	.get_hw_state = hsw_ddi_lcpll_get_hw_state,
};

887 888 889 890 891
struct skl_dpll_regs {
	i915_reg_t ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
892 893 894 895 896 897
static const struct skl_dpll_regs skl_dpll_regs[4] = {
	{
		/* DPLL 0 */
		.ctl = LCPLL1_CTL,
		/* DPLL 0 doesn't support HDMI mode */
	},
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL(0),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL(1),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
	},
};

918 919
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
				    struct intel_shared_dpll *pll)
920 921 922 923 924
{
	uint32_t val;

	val = I915_READ(DPLL_CTRL1);

925 926
	val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
		 DPLL_CTRL1_LINK_RATE_MASK(pll->id));
927
	val |= pll->state.hw_state.ctrl1 << (pll->id * 6);
928 929 930

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);
931 932 933 934 935 936 937 938
}

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	skl_ddi_pll_write_ctrl1(dev_priv, pll);
939

940 941
	I915_WRITE(regs[pll->id].cfgcr1, pll->state.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->state.hw_state.cfgcr2);
942 943 944 945 946 947 948
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

949 950 951 952 953
	if (intel_wait_for_register(dev_priv,
				    DPLL_STATUS,
				    DPLL_LOCK(pll->id),
				    DPLL_LOCK(pll->id),
				    5))
954 955 956 957 958 959 960
		DRM_ERROR("DPLL %d not locked\n", pll->id);
}

static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	skl_ddi_pll_write_ctrl1(dev_priv, pll);
961 962 963 964 965 966 967 968 969 970 971 972 973
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

974 975 976 977 978
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		goto out;

	val = I915_READ(DPLL_CTRL1);
997
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
998 999

	/* avoid reading back stale values if HDMI mode is not enabled */
1000
	if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}
	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	/* DPLL0 is always enabled since it drives CDCLK */
	val = I915_READ(regs[pll->id].ctl);
	if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
		goto out;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
	params->dco_fraction =
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}

static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
			}
		}

skip_remaining_dividers:
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
	}

	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
		return false;
	}

	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);

	return true;
}

J
Jim Bride 已提交
1287 1288 1289
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
				      struct intel_crtc_state *crtc_state,
				      int clock)
1290
{
1291
	uint32_t ctrl1, cfgcr1, cfgcr2;
J
Jim Bride 已提交
1292
	struct skl_wrpll_params wrpll_params = { 0, };
1293 1294 1295 1296 1297 1298 1299

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

J
Jim Bride 已提交
1300
	ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1301

J
Jim Bride 已提交
1302 1303
	if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
		return false;
1304

J
Jim Bride 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
		DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
		wrpll_params.dco_integer;

	cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
		DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
		DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
		DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
		wrpll_params.central_freq;

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
	return true;
}


1325 1326 1327
static bool
skl_ddi_dp_set_dpll_hw_state(int clock,
			     struct intel_dpll_hw_state *dpll_hw_state)
J
Jim Bride 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
{
	uint32_t ctrl1;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
	switch (clock / 2) {
	case 81000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
		break;
	case 135000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
		break;
	case 270000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
		break;
		/* eDP 1.4 rates */
	case 162000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
		break;
	case 108000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
		break;
	case 216000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
		break;
	}
1357

J
Jim Bride 已提交
1358 1359 1360
	dpll_hw_state->ctrl1 = ctrl1;
	return true;
}
1361

J
Jim Bride 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static struct intel_shared_dpll *
skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
{
	struct intel_shared_dpll *pll;
	int clock = crtc_state->port_clock;
	bool bret;
	struct intel_dpll_hw_state dpll_hw_state;

	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));

	if (encoder->type == INTEL_OUTPUT_HDMI) {
		bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
		if (!bret) {
			DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
			return NULL;
		}
1379
	} else if (encoder->type == INTEL_OUTPUT_DP ||
1380 1381
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
J
Jim Bride 已提交
1382 1383 1384 1385
		bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
		if (!bret) {
			DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
			return NULL;
1386
		}
J
Jim Bride 已提交
1387
		crtc_state->dpll_hw_state = dpll_hw_state;
1388 1389 1390 1391
	} else {
		return NULL;
	}

1392 1393 1394 1395 1396 1397 1398 1399
	if (encoder->type == INTEL_OUTPUT_EDP)
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL0,
					     DPLL_ID_SKL_DPLL0);
	else
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL1,
					     DPLL_ID_SKL_DPLL3);
1400 1401 1402 1403
	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
1404 1405 1406 1407

	return pll;
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: "
		      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
		      hw_state->ctrl1,
		      hw_state->cfgcr1,
		      hw_state->cfgcr2);
}

1418 1419 1420 1421
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
	.enable = skl_ddi_pll_enable,
	.disable = skl_ddi_pll_disable,
	.get_hw_state = skl_ddi_pll_get_hw_state,
1422 1423
};

1424 1425 1426 1427 1428 1429
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
	.enable = skl_ddi_dpll0_enable,
	.disable = skl_ddi_dpll0_disable,
	.get_hw_state = skl_ddi_dpll0_get_hw_state,
};

1430 1431 1432 1433 1434
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
1435 1436 1437
	enum dpio_phy phy;
	enum dpio_channel ch;

1438
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1439 1440

	/* Non-SSC reference */
1441 1442
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_REF_SEL;
1443 1444
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp |= PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				 PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not set for PLL:%d\n", port);
	}

1455
	/* Disable 10 bit clock */
1456
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1457
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1458
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1459 1460

	/* Write P1 & P2 */
1461
	temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1462
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
1463
	temp |= pll->state.hw_state.ebb0;
1464
	I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
1465 1466

	/* Write M2 integer */
1467
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1468
	temp &= ~PORT_PLL_M2_MASK;
1469
	temp |= pll->state.hw_state.pll0;
1470
	I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
1471 1472

	/* Write N */
1473
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1474
	temp &= ~PORT_PLL_N_MASK;
1475
	temp |= pll->state.hw_state.pll1;
1476
	I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
1477 1478

	/* Write M2 fraction */
1479
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1480
	temp &= ~PORT_PLL_M2_FRAC_MASK;
1481
	temp |= pll->state.hw_state.pll2;
1482
	I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
1483 1484

	/* Write M2 fraction enable */
1485
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1486
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
1487
	temp |= pll->state.hw_state.pll3;
1488
	I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
1489 1490

	/* Write coeff */
1491
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1492 1493 1494
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
1495
	temp |= pll->state.hw_state.pll6;
1496
	I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
1497 1498

	/* Write calibration val */
1499
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1500
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
1501
	temp |= pll->state.hw_state.pll8;
1502
	I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
1503

1504
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1505
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
1506
	temp |= pll->state.hw_state.pll9;
1507
	I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
1508

1509
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1510 1511
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
1512
	temp |= pll->state.hw_state.pll10;
1513
	I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
1514 1515

	/* Recalibrate with new settings */
1516
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1517
	temp |= PORT_PLL_RECALIBRATE;
1518
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1519
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1520
	temp |= pll->state.hw_state.ebb4;
1521
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1522 1523 1524 1525 1526 1527 1528

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

1529 1530
	if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
			200))
1531 1532
		DRM_ERROR("PLL %d not locked\n", port);

1533 1534 1535 1536 1537 1538
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
		temp |= DCC_DELAY_RANGE_2;
		I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
	}

1539 1540 1541 1542
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
1543
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
1544 1545
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
1546
	temp |= pll->state.hw_state.pcsdw12;
1547
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp &= ~PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not reset for PLL:%d\n", port);
	}
1570 1571 1572 1573 1574 1575 1576 1577 1578
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;
	bool ret;
1579 1580 1581
	enum dpio_phy phy;
	enum dpio_channel ch;

1582
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		goto out;

1593
	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1594 1595
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

1596
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1597 1598
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

1599
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1600 1601
	hw_state->pll0 &= PORT_PLL_M2_MASK;

1602
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1603 1604
	hw_state->pll1 &= PORT_PLL_N_MASK;

1605
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1606 1607
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

1608
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1609 1610
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

1611
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1612 1613 1614 1615
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

1616
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1617 1618
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

1619
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1620 1621
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

1622
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1623 1624 1625 1626 1627 1628 1629 1630
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
1631 1632
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
1633 1634
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
1635
				 I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654
/* bxt clock parameters */
struct bxt_clk_div {
	int clock;
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
1655 1656

	int vco;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
};

/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
};

1670 1671 1672 1673
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state, int clock,
			  struct bxt_clk_div *clk_div)
1674
{
1675
	struct dpll best_clock;
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/* Calculate HDMI div */
	/*
	 * FIXME: tie the following calculation into
	 * i9xx_crtc_compute_clock
	 */
	if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
		DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
				 clock, pipe_name(intel_crtc->pipe));
		return false;
	}
1687

1688 1689 1690 1691 1692 1693 1694
	clk_div->p1 = best_clock.p1;
	clk_div->p2 = best_clock.p2;
	WARN_ON(best_clock.m1 != 2);
	clk_div->n = best_clock.n;
	clk_div->m2_int = best_clock.m2 >> 22;
	clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
	clk_div->m2_frac_en = clk_div->m2_frac != 0;
1695

1696
	clk_div->vco = best_clock.vco;
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	return true;
}

static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
{
	int i;

	*clk_div = bxt_dp_clk_val[0];
	for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
		if (bxt_dp_clk_val[i].clock == clock) {
			*clk_div = bxt_dp_clk_val[i];
			break;
1710 1711 1712
		}
	}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}

static bool bxt_ddi_set_dpll_hw_state(int clock,
			  struct bxt_clk_div *clk_div,
			  struct intel_dpll_hw_state *dpll_hw_state)
{
	int vco = clk_div->vco;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
	uint32_t lanestagger;

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	if (vco >= 6200000 && vco <= 6700000) {
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
1742
		return false;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	}

	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1756 1757 1758 1759
	dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
	dpll_hw_state->pll0 = clk_div->m2_int;
	dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
	dpll_hw_state->pll2 = clk_div->m2_frac;
1760

1761 1762
	if (clk_div->m2_frac_en)
		dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
1763

1764 1765
	dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
	dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
1766

1767
	dpll_hw_state->pll8 = targ_cnt;
1768

1769
	dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1770

1771
	dpll_hw_state->pll10 =
1772 1773 1774
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;

1775 1776 1777 1778 1779 1780 1781
	dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

	dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;

	return true;
}

1782 1783 1784
static bool
bxt_ddi_dp_set_dpll_hw_state(int clock,
			     struct intel_dpll_hw_state *dpll_hw_state)
1785 1786 1787 1788 1789 1790 1791 1792
{
	struct bxt_clk_div clk_div = {0};

	bxt_ddi_dp_pll_dividers(clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
			       struct intel_crtc_state *crtc_state, int clock,
			       struct intel_dpll_hw_state *dpll_hw_state)
{
	struct bxt_clk_div clk_div = { };

	bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1805 1806 1807 1808 1809
static struct intel_shared_dpll *
bxt_get_dpll(struct intel_crtc *crtc,
		struct intel_crtc_state *crtc_state,
		struct intel_encoder *encoder)
{
1810
	struct intel_dpll_hw_state dpll_hw_state = { };
1811 1812 1813 1814 1815
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_digital_port *intel_dig_port;
	struct intel_shared_dpll *pll;
	int i, clock = crtc_state->port_clock;

1816 1817 1818
	if (encoder->type == INTEL_OUTPUT_HDMI &&
	    !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
					    &dpll_hw_state))
1819
		return NULL;
1820 1821

	if ((encoder->type == INTEL_OUTPUT_DP ||
1822 1823
	     encoder->type == INTEL_OUTPUT_EDP ||
	     encoder->type == INTEL_OUTPUT_DP_MST) &&
1824
	    !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
1825
		return NULL;
1826 1827 1828

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));
1829

1830
	crtc_state->dpll_hw_state = dpll_hw_state;
1831

1832 1833 1834 1835 1836 1837
	if (encoder->type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);

		intel_dig_port = intel_mst->primary;
	} else
		intel_dig_port = enc_to_dig_port(&encoder->base);
1838

1839
	/* 1:1 mapping between ports and PLLs */
1840 1841 1842
	i = (enum intel_dpll_id) intel_dig_port->port;
	pll = intel_get_shared_dpll_by_id(dev_priv, i);

1843 1844
	DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
		      crtc->base.base.id, crtc->base.name, pll->name);
1845 1846 1847 1848 1849 1850

	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
		      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
		      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
		      hw_state->ebb0,
		      hw_state->ebb4,
		      hw_state->pll0,
		      hw_state->pll1,
		      hw_state->pll2,
		      hw_state->pll3,
		      hw_state->pll6,
		      hw_state->pll8,
		      hw_state->pll9,
		      hw_state->pll10,
		      hw_state->pcsdw12);
}

1870 1871 1872 1873 1874
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
	.enable = bxt_ddi_pll_enable,
	.disable = bxt_ddi_pll_disable,
	.get_hw_state = bxt_ddi_pll_get_hw_state,
};
1875 1876 1877

static void intel_ddi_pll_init(struct drm_device *dev)
{
1878
	struct drm_i915_private *dev_priv = to_i915(dev);
1879

1880 1881
	if (INTEL_GEN(dev_priv) < 9) {
		uint32_t val = I915_READ(LCPLL_CTL);
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");

		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
}

1897 1898 1899 1900
struct dpll_info {
	const char *name;
	const int id;
	const struct intel_shared_dpll_funcs *funcs;
1901
	uint32_t flags;
1902 1903
};

1904 1905 1906 1907
struct intel_dpll_mgr {
	const struct dpll_info *dpll_info;

	struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
1908 1909
					      struct intel_crtc_state *crtc_state,
					      struct intel_encoder *encoder);
1910 1911 1912

	void (*dump_hw_state)(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state);
1913 1914
};

1915
static const struct dpll_info pch_plls[] = {
1916 1917 1918
	{ "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
	{ "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
	{ NULL, -1, NULL, 0 },
1919 1920
};

1921 1922 1923
static const struct intel_dpll_mgr pch_pll_mgr = {
	.dpll_info = pch_plls,
	.get_dpll = ibx_get_dpll,
1924
	.dump_hw_state = ibx_dump_hw_state,
1925 1926
};

1927
static const struct dpll_info hsw_plls[] = {
1928 1929 1930 1931 1932 1933
	{ "WRPLL 1",    DPLL_ID_WRPLL1,     &hsw_ddi_wrpll_funcs, 0 },
	{ "WRPLL 2",    DPLL_ID_WRPLL2,     &hsw_ddi_wrpll_funcs, 0 },
	{ "SPLL",       DPLL_ID_SPLL,       &hsw_ddi_spll_funcs,  0 },
	{ "LCPLL 810",  DPLL_ID_LCPLL_810,  &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
1934 1935 1936
	{ NULL, -1, NULL, },
};

1937 1938 1939
static const struct intel_dpll_mgr hsw_pll_mgr = {
	.dpll_info = hsw_plls,
	.get_dpll = hsw_get_dpll,
1940
	.dump_hw_state = hsw_dump_hw_state,
1941 1942
};

1943
static const struct dpll_info skl_plls[] = {
1944
	{ "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
1945 1946 1947
	{ "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs,   0 },
1948 1949 1950
	{ NULL, -1, NULL, },
};

1951 1952 1953
static const struct intel_dpll_mgr skl_pll_mgr = {
	.dpll_info = skl_plls,
	.get_dpll = skl_get_dpll,
1954
	.dump_hw_state = skl_dump_hw_state,
1955 1956
};

1957
static const struct dpll_info bxt_plls[] = {
1958 1959 1960
	{ "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
1961 1962 1963
	{ NULL, -1, NULL, },
};

1964 1965 1966
static const struct intel_dpll_mgr bxt_pll_mgr = {
	.dpll_info = bxt_plls,
	.get_dpll = bxt_get_dpll,
1967
	.dump_hw_state = bxt_dump_hw_state,
1968 1969
};

1970 1971 1972 1973 1974 1975
/**
 * intel_shared_dpll_init - Initialize shared DPLLs
 * @dev: drm device
 *
 * Initialize shared DPLLs for @dev.
 */
1976 1977
void intel_shared_dpll_init(struct drm_device *dev)
{
1978
	struct drm_i915_private *dev_priv = to_i915(dev);
1979 1980
	const struct intel_dpll_mgr *dpll_mgr = NULL;
	const struct dpll_info *dpll_info;
1981
	int i;
1982

1983
	if (IS_GEN9_BC(dev_priv))
1984
		dpll_mgr = &skl_pll_mgr;
1985
	else if (IS_GEN9_LP(dev_priv))
1986
		dpll_mgr = &bxt_pll_mgr;
1987
	else if (HAS_DDI(dev_priv))
1988
		dpll_mgr = &hsw_pll_mgr;
1989
	else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
1990
		dpll_mgr = &pch_pll_mgr;
1991

1992
	if (!dpll_mgr) {
1993
		dev_priv->num_shared_dpll = 0;
1994 1995 1996
		return;
	}

1997 1998
	dpll_info = dpll_mgr->dpll_info;

1999 2000 2001 2002 2003 2004
	for (i = 0; dpll_info[i].id >= 0; i++) {
		WARN_ON(i != dpll_info[i].id);

		dev_priv->shared_dplls[i].id = dpll_info[i].id;
		dev_priv->shared_dplls[i].name = dpll_info[i].name;
		dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
2005
		dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
2006 2007
	}

2008
	dev_priv->dpll_mgr = dpll_mgr;
2009
	dev_priv->num_shared_dpll = i;
2010
	mutex_init(&dev_priv->dpll_lock);
2011 2012

	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
2013 2014

	/* FIXME: Move this to a more suitable place */
2015
	if (HAS_DDI(dev_priv))
2016
		intel_ddi_pll_init(dev);
2017
}
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/**
 * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
 * @crtc: CRTC
 * @crtc_state: atomic state for @crtc
 * @encoder: encoder
 *
 * Find an appropriate DPLL for the given CRTC and encoder combination. A
 * reference from the @crtc to the returned pll is registered in the atomic
 * state. That configuration is made effective by calling
 * intel_shared_dpll_swap_state(). The reference should be released by calling
 * intel_release_shared_dpll().
 *
 * Returns:
 * A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
 */
2034 2035
struct intel_shared_dpll *
intel_get_shared_dpll(struct intel_crtc *crtc,
2036 2037
		      struct intel_crtc_state *crtc_state,
		      struct intel_encoder *encoder)
2038 2039 2040 2041 2042 2043 2044
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;

	if (WARN_ON(!dpll_mgr))
		return NULL;

2045
	return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
2046
}
2047 2048 2049 2050 2051 2052 2053

/**
 * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
 * @dpll: dpll in use by @crtc
 * @crtc: crtc
 * @state: atomic state
 *
2054 2055 2056
 * This function releases the reference from @crtc to @dpll from the
 * atomic @state. The new configuration is made effective by calling
 * intel_shared_dpll_swap_state().
2057 2058 2059 2060 2061
 */
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
			       struct intel_crtc *crtc,
			       struct drm_atomic_state *state)
{
2062
	struct intel_shared_dpll_state *shared_dpll_state;
2063

2064 2065
	shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
	shared_dpll_state[dpll->id].crtc_mask &= ~(1 << crtc->pipe);
2066
}
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

/**
 * intel_shared_dpll_dump_hw_state - write hw_state to dmesg
 * @dev_priv: i915 drm device
 * @hw_state: hw state to be written to the log
 *
 * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
 */
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	if (dev_priv->dpll_mgr) {
		dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
	} else {
		/* fallback for platforms that don't use the shared dpll
		 * infrastructure
		 */
		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
			      "fp0: 0x%x, fp1: 0x%x\n",
			      hw_state->dpll,
			      hw_state->dpll_md,
			      hw_state->fp0,
			      hw_state->fp1);
	}
}