evsel.c 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
 *
 * Parts came from builtin-{top,stat,record}.c, see those files for further
 * copyright notes.
 *
 * Released under the GPL v2. (and only v2, not any later version)
 */

10
#include <byteswap.h>
11
#include <linux/bitops.h>
12
#include <api/fs/debugfs.h>
13 14 15
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
16
#include <sys/resource.h>
17
#include "asm/bug.h"
18
#include "evsel.h"
19
#include "evlist.h"
20
#include "util.h"
21
#include "cpumap.h"
22
#include "thread_map.h"
23
#include "target.h"
24
#include "perf_regs.h"
A
Adrian Hunter 已提交
25
#include "debug.h"
26
#include "trace-event.h"
27

28 29 30
static struct {
	bool sample_id_all;
	bool exclude_guest;
31
	bool mmap2;
32
	bool cloexec;
33 34
} perf_missing_features;

35 36
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))

37
int __perf_evsel__sample_size(u64 sample_type)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
	u64 mask = sample_type & PERF_SAMPLE_MASK;
	int size = 0;
	int i;

	for (i = 0; i < 64; i++) {
		if (mask & (1ULL << i))
			size++;
	}

	size *= sizeof(u64);

	return size;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/**
 * __perf_evsel__calc_id_pos - calculate id_pos.
 * @sample_type: sample type
 *
 * This function returns the position of the event id (PERF_SAMPLE_ID or
 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 * sample_event.
 */
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
	int idx = 0;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 0;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_IP)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TID)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TIME)
		idx += 1;

	if (sample_type & PERF_SAMPLE_ADDR)
		idx += 1;

	return idx;
}

/**
 * __perf_evsel__calc_is_pos - calculate is_pos.
 * @sample_type: sample type
 *
 * This function returns the position (counting backwards) of the event id
 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 * sample_id_all is used there is an id sample appended to non-sample events.
 */
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
	int idx = 1;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 1;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_CPU)
		idx += 1;

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		idx += 1;

	return idx;
}

void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
{
	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}

119
void hists__init(struct hists *hists)
120 121 122 123 124 125 126 127 128
{
	memset(hists, 0, sizeof(*hists));
	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
	hists->entries_in = &hists->entries_in_array[0];
	hists->entries_collapsed = RB_ROOT;
	hists->entries = RB_ROOT;
	pthread_mutex_init(&hists->lock, NULL);
}

129 130 131 132 133 134
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
				  enum perf_event_sample_format bit)
{
	if (!(evsel->attr.sample_type & bit)) {
		evsel->attr.sample_type |= bit;
		evsel->sample_size += sizeof(u64);
135
		perf_evsel__calc_id_pos(evsel);
136 137 138 139 140 141 142 143 144
	}
}

void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
				    enum perf_event_sample_format bit)
{
	if (evsel->attr.sample_type & bit) {
		evsel->attr.sample_type &= ~bit;
		evsel->sample_size -= sizeof(u64);
145
		perf_evsel__calc_id_pos(evsel);
146 147 148
	}
}

149 150
void perf_evsel__set_sample_id(struct perf_evsel *evsel,
			       bool can_sample_identifier)
151
{
152 153 154 155 156 157
	if (can_sample_identifier) {
		perf_evsel__reset_sample_bit(evsel, ID);
		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
	} else {
		perf_evsel__set_sample_bit(evsel, ID);
	}
158 159 160
	evsel->attr.read_format |= PERF_FORMAT_ID;
}

161 162 163 164 165
void perf_evsel__init(struct perf_evsel *evsel,
		      struct perf_event_attr *attr, int idx)
{
	evsel->idx	   = idx;
	evsel->attr	   = *attr;
166
	evsel->leader	   = evsel;
167 168
	evsel->unit	   = "";
	evsel->scale	   = 1.0;
169
	INIT_LIST_HEAD(&evsel->node);
170
	hists__init(&evsel->hists);
171
	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
172
	perf_evsel__calc_id_pos(evsel);
173 174
}

175
struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
176 177 178
{
	struct perf_evsel *evsel = zalloc(sizeof(*evsel));

179 180
	if (evsel != NULL)
		perf_evsel__init(evsel, attr, idx);
181 182 183 184

	return evsel;
}

185
struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
186 187 188 189 190
{
	struct perf_evsel *evsel = zalloc(sizeof(*evsel));

	if (evsel != NULL) {
		struct perf_event_attr attr = {
191 192 193
			.type	       = PERF_TYPE_TRACEPOINT,
			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
194 195
		};

196 197 198
		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
			goto out_free;

199
		evsel->tp_format = trace_event__tp_format(sys, name);
200 201 202
		if (evsel->tp_format == NULL)
			goto out_free;

203
		event_attr_init(&attr);
204
		attr.config = evsel->tp_format->id;
205
		attr.sample_period = 1;
206 207 208 209 210 211
		perf_evsel__init(evsel, &attr, idx);
	}

	return evsel;

out_free:
212
	zfree(&evsel->name);
213 214 215 216
	free(evsel);
	return NULL;
}

217
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
218 219 220 221 222 223 224 225 226 227 228 229
	"cycles",
	"instructions",
	"cache-references",
	"cache-misses",
	"branches",
	"branch-misses",
	"bus-cycles",
	"stalled-cycles-frontend",
	"stalled-cycles-backend",
	"ref-cycles",
};

230
static const char *__perf_evsel__hw_name(u64 config)
231 232 233 234 235 236 237
{
	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
		return perf_evsel__hw_names[config];

	return "unknown-hardware";
}

238
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
239
{
240
	int colon = 0, r = 0;
241 242 243 244 245
	struct perf_event_attr *attr = &evsel->attr;
	bool exclude_guest_default = false;

#define MOD_PRINT(context, mod)	do {					\
		if (!attr->exclude_##context) {				\
246
			if (!colon) colon = ++r;			\
247 248 249 250 251 252 253 254 255 256 257 258
			r += scnprintf(bf + r, size - r, "%c", mod);	\
		} } while(0)

	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
		MOD_PRINT(kernel, 'k');
		MOD_PRINT(user, 'u');
		MOD_PRINT(hv, 'h');
		exclude_guest_default = true;
	}

	if (attr->precise_ip) {
		if (!colon)
259
			colon = ++r;
260 261 262 263 264 265 266 267 268 269
		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
		exclude_guest_default = true;
	}

	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
		MOD_PRINT(host, 'H');
		MOD_PRINT(guest, 'G');
	}
#undef MOD_PRINT
	if (colon)
270
		bf[colon - 1] = ':';
271 272 273
	return r;
}

274 275 276 277 278 279
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

280
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
281 282 283 284
	"cpu-clock",
	"task-clock",
	"page-faults",
	"context-switches",
285
	"cpu-migrations",
286 287 288 289
	"minor-faults",
	"major-faults",
	"alignment-faults",
	"emulation-faults",
290
	"dummy",
291 292
};

293
static const char *__perf_evsel__sw_name(u64 config)
294 295 296 297 298 299 300 301 302 303 304 305
{
	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
		return perf_evsel__sw_names[config];
	return "unknown-software";
}

static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
	int r;

	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);

	if (type & HW_BREAKPOINT_R)
		r += scnprintf(bf + r, size - r, "r");

	if (type & HW_BREAKPOINT_W)
		r += scnprintf(bf + r, size - r, "w");

	if (type & HW_BREAKPOINT_X)
		r += scnprintf(bf + r, size - r, "x");

	return r;
}

static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	struct perf_event_attr *attr = &evsel->attr;
	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
				[PERF_EVSEL__MAX_ALIASES] = {
 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 { "LLC",	"L2",							},
 { "dTLB",	"d-tlb",	"Data-TLB",				},
 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 { "node",								},
};

const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
				   [PERF_EVSEL__MAX_ALIASES] = {
 { "load",	"loads",	"read",					},
 { "store",	"stores",	"write",				},
 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
};

const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
				       [PERF_EVSEL__MAX_ALIASES] = {
 { "refs",	"Reference",	"ops",		"access",		},
 { "misses",	"miss",							},
};

#define C(x)		PERF_COUNT_HW_CACHE_##x
#define CACHE_READ	(1 << C(OP_READ))
#define CACHE_WRITE	(1 << C(OP_WRITE))
#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
#define COP(x)		(1 << x)

/*
 * cache operartion stat
 * L1I : Read and prefetch only
 * ITLB and BPU : Read-only
 */
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(ITLB)]	= (CACHE_READ),
 [C(BPU)]	= (CACHE_READ),
 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};

bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
	if (perf_evsel__hw_cache_stat[type] & COP(op))
		return true;	/* valid */
	else
		return false;	/* invalid */
}

int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
					    char *bf, size_t size)
{
	if (result) {
		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
				 perf_evsel__hw_cache_op[op][0],
				 perf_evsel__hw_cache_result[result][0]);
	}

	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
			 perf_evsel__hw_cache_op[op][1]);
}

397
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	u8 op, result, type = (config >>  0) & 0xff;
	const char *err = "unknown-ext-hardware-cache-type";

	if (type > PERF_COUNT_HW_CACHE_MAX)
		goto out_err;

	op = (config >>  8) & 0xff;
	err = "unknown-ext-hardware-cache-op";
	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
		goto out_err;

	result = (config >> 16) & 0xff;
	err = "unknown-ext-hardware-cache-result";
	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
		goto out_err;

	err = "invalid-cache";
	if (!perf_evsel__is_cache_op_valid(type, op))
		goto out_err;

	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
	return scnprintf(bf, size, "%s", err);
}

static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

430 431 432 433 434 435
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

436
const char *perf_evsel__name(struct perf_evsel *evsel)
437
{
438
	char bf[128];
439

440 441
	if (evsel->name)
		return evsel->name;
442 443 444

	switch (evsel->attr.type) {
	case PERF_TYPE_RAW:
445
		perf_evsel__raw_name(evsel, bf, sizeof(bf));
446 447 448
		break;

	case PERF_TYPE_HARDWARE:
449
		perf_evsel__hw_name(evsel, bf, sizeof(bf));
450
		break;
451 452

	case PERF_TYPE_HW_CACHE:
453
		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
454 455
		break;

456
	case PERF_TYPE_SOFTWARE:
457
		perf_evsel__sw_name(evsel, bf, sizeof(bf));
458 459
		break;

460
	case PERF_TYPE_TRACEPOINT:
461
		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
462 463
		break;

464 465 466 467
	case PERF_TYPE_BREAKPOINT:
		perf_evsel__bp_name(evsel, bf, sizeof(bf));
		break;

468
	default:
469 470
		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
			  evsel->attr.type);
471
		break;
472 473
	}

474 475 476
	evsel->name = strdup(bf);

	return evsel->name ?: "unknown";
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
	return evsel->group_name ?: "anon group";
}

int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
	int ret;
	struct perf_evsel *pos;
	const char *group_name = perf_evsel__group_name(evsel);

	ret = scnprintf(buf, size, "%s", group_name);

	ret += scnprintf(buf + ret, size - ret, " { %s",
			 perf_evsel__name(evsel));

	for_each_group_member(pos, evsel)
		ret += scnprintf(buf + ret, size - ret, ", %s",
				 perf_evsel__name(pos));

	ret += scnprintf(buf + ret, size - ret, " }");

	return ret;
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static void
perf_evsel__config_callgraph(struct perf_evsel *evsel,
			     struct record_opts *opts)
{
	bool function = perf_evsel__is_function_event(evsel);
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__set_sample_bit(evsel, CALLCHAIN);

	if (opts->call_graph == CALLCHAIN_DWARF) {
		if (!function) {
			perf_evsel__set_sample_bit(evsel, REGS_USER);
			perf_evsel__set_sample_bit(evsel, STACK_USER);
			attr->sample_regs_user = PERF_REGS_MASK;
			attr->sample_stack_user = opts->stack_dump_size;
			attr->exclude_callchain_user = 1;
		} else {
			pr_info("Cannot use DWARF unwind for function trace event,"
				" falling back to framepointers.\n");
		}
	}

	if (function) {
		pr_info("Disabling user space callchains for function trace event.\n");
		attr->exclude_callchain_user = 1;
	}
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * The enable_on_exec/disabled value strategy:
 *
 *  1) For any type of traced program:
 *    - all independent events and group leaders are disabled
 *    - all group members are enabled
 *
 *     Group members are ruled by group leaders. They need to
 *     be enabled, because the group scheduling relies on that.
 *
 *  2) For traced programs executed by perf:
 *     - all independent events and group leaders have
 *       enable_on_exec set
 *     - we don't specifically enable or disable any event during
 *       the record command
 *
 *     Independent events and group leaders are initially disabled
 *     and get enabled by exec. Group members are ruled by group
 *     leaders as stated in 1).
 *
 *  3) For traced programs attached by perf (pid/tid):
 *     - we specifically enable or disable all events during
 *       the record command
 *
 *     When attaching events to already running traced we
 *     enable/disable events specifically, as there's no
 *     initial traced exec call.
 */
560
void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
561
{
562
	struct perf_evsel *leader = evsel->leader;
563 564
	struct perf_event_attr *attr = &evsel->attr;
	int track = !evsel->idx; /* only the first counter needs these */
565
	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
566

567
	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
568 569
	attr->inherit	    = !opts->no_inherit;

570 571
	perf_evsel__set_sample_bit(evsel, IP);
	perf_evsel__set_sample_bit(evsel, TID);
572

573 574 575 576 577 578 579
	if (evsel->sample_read) {
		perf_evsel__set_sample_bit(evsel, READ);

		/*
		 * We need ID even in case of single event, because
		 * PERF_SAMPLE_READ process ID specific data.
		 */
580
		perf_evsel__set_sample_id(evsel, false);
581 582 583 584 585 586 587 588 589 590 591

		/*
		 * Apply group format only if we belong to group
		 * with more than one members.
		 */
		if (leader->nr_members > 1) {
			attr->read_format |= PERF_FORMAT_GROUP;
			attr->inherit = 0;
		}
	}

592
	/*
593
	 * We default some events to have a default interval. But keep
594 595
	 * it a weak assumption overridable by the user.
	 */
596
	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
597 598
				     opts->user_interval != ULLONG_MAX)) {
		if (opts->freq) {
599
			perf_evsel__set_sample_bit(evsel, PERIOD);
600 601 602 603 604 605 606
			attr->freq		= 1;
			attr->sample_freq	= opts->freq;
		} else {
			attr->sample_period = opts->default_interval;
		}
	}

607 608 609 610 611 612 613 614 615
	/*
	 * Disable sampling for all group members other
	 * than leader in case leader 'leads' the sampling.
	 */
	if ((leader != evsel) && leader->sample_read) {
		attr->sample_freq   = 0;
		attr->sample_period = 0;
	}

616 617 618 619 620 621 622
	if (opts->no_samples)
		attr->sample_freq = 0;

	if (opts->inherit_stat)
		attr->inherit_stat = 1;

	if (opts->sample_address) {
623
		perf_evsel__set_sample_bit(evsel, ADDR);
624 625 626
		attr->mmap_data = track;
	}

627
	if (opts->call_graph_enabled && !evsel->no_aux_samples)
628
		perf_evsel__config_callgraph(evsel, opts);
629

630
	if (target__has_cpu(&opts->target))
631
		perf_evsel__set_sample_bit(evsel, CPU);
632

633
	if (opts->period)
634
		perf_evsel__set_sample_bit(evsel, PERIOD);
635

636 637 638 639 640 641
	/*
	 * When the user explicitely disabled time don't force it here.
	 */
	if (opts->sample_time &&
	    (!perf_missing_features.sample_id_all &&
	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
642
		perf_evsel__set_sample_bit(evsel, TIME);
643

644
	if (opts->raw_samples && !evsel->no_aux_samples) {
645 646 647
		perf_evsel__set_sample_bit(evsel, TIME);
		perf_evsel__set_sample_bit(evsel, RAW);
		perf_evsel__set_sample_bit(evsel, CPU);
648 649
	}

650
	if (opts->sample_address)
651
		perf_evsel__set_sample_bit(evsel, DATA_SRC);
652

653
	if (opts->no_buffering) {
654 655 656
		attr->watermark = 0;
		attr->wakeup_events = 1;
	}
657
	if (opts->branch_stack && !evsel->no_aux_samples) {
658
		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
659 660
		attr->branch_sample_type = opts->branch_stack;
	}
661

662
	if (opts->sample_weight)
663
		perf_evsel__set_sample_bit(evsel, WEIGHT);
664

665
	attr->mmap  = track;
666
	attr->mmap2 = track && !perf_missing_features.mmap2;
667
	attr->comm  = track;
668

669
	if (opts->sample_transaction)
670
		perf_evsel__set_sample_bit(evsel, TRANSACTION);
671

672 673 674 675 676 677
	/*
	 * XXX see the function comment above
	 *
	 * Disabling only independent events or group leaders,
	 * keeping group members enabled.
	 */
678
	if (perf_evsel__is_group_leader(evsel))
679 680 681 682 683 684
		attr->disabled = 1;

	/*
	 * Setting enable_on_exec for independent events and
	 * group leaders for traced executed by perf.
	 */
685 686
	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
		!opts->initial_delay)
687
		attr->enable_on_exec = 1;
688 689 690 691 692

	if (evsel->immediate) {
		attr->disabled = 0;
		attr->enable_on_exec = 0;
	}
693 694
}

695 696
int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
697
	int cpu, thread;
698
	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
699 700 701 702 703 704 705 706 707

	if (evsel->fd) {
		for (cpu = 0; cpu < ncpus; cpu++) {
			for (thread = 0; thread < nthreads; thread++) {
				FD(evsel, cpu, thread) = -1;
			}
		}
	}

708 709 710
	return evsel->fd != NULL ? 0 : -ENOMEM;
}

711 712
static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
			  int ioc,  void *arg)
713 714 715 716 717 718
{
	int cpu, thread;

	for (cpu = 0; cpu < ncpus; cpu++) {
		for (thread = 0; thread < nthreads; thread++) {
			int fd = FD(evsel, cpu, thread),
719
			    err = ioctl(fd, ioc, arg);
720 721 722 723 724 725 726 727 728

			if (err)
				return err;
		}
	}

	return 0;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
			   const char *filter)
{
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_SET_FILTER,
				     (void *)filter);
}

int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_ENABLE,
				     0);
}

744 745
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
746 747 748 749 750 751 752 753 754 755 756 757
	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
	if (evsel->sample_id == NULL)
		return -ENOMEM;

	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
	if (evsel->id == NULL) {
		xyarray__delete(evsel->sample_id);
		evsel->sample_id = NULL;
		return -ENOMEM;
	}

	return 0;
758 759
}

760 761 762 763 764 765
void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
{
	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
				 (ncpus * sizeof(struct perf_counts_values))));
}

766 767 768 769 770 771 772
int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
{
	evsel->counts = zalloc((sizeof(*evsel->counts) +
				(ncpus * sizeof(struct perf_counts_values))));
	return evsel->counts != NULL ? 0 : -ENOMEM;
}

773 774 775 776 777 778
void perf_evsel__free_fd(struct perf_evsel *evsel)
{
	xyarray__delete(evsel->fd);
	evsel->fd = NULL;
}

779 780
void perf_evsel__free_id(struct perf_evsel *evsel)
{
781 782
	xyarray__delete(evsel->sample_id);
	evsel->sample_id = NULL;
783
	zfree(&evsel->id);
784 785
}

786 787 788 789 790 791 792 793 794 795 796
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	int cpu, thread;

	for (cpu = 0; cpu < ncpus; cpu++)
		for (thread = 0; thread < nthreads; ++thread) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
}

797 798
void perf_evsel__free_counts(struct perf_evsel *evsel)
{
799
	zfree(&evsel->counts);
800 801
}

802
void perf_evsel__exit(struct perf_evsel *evsel)
803 804
{
	assert(list_empty(&evsel->node));
805 806
	perf_evsel__free_fd(evsel);
	perf_evsel__free_id(evsel);
807 808 809 810 811
}

void perf_evsel__delete(struct perf_evsel *evsel)
{
	perf_evsel__exit(evsel);
S
Stephane Eranian 已提交
812
	close_cgroup(evsel->cgrp);
813
	zfree(&evsel->group_name);
814
	if (evsel->tp_format)
815
		pevent_free_format(evsel->tp_format);
816
	zfree(&evsel->name);
817 818
	free(evsel);
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static inline void compute_deltas(struct perf_evsel *evsel,
				  int cpu,
				  struct perf_counts_values *count)
{
	struct perf_counts_values tmp;

	if (!evsel->prev_raw_counts)
		return;

	if (cpu == -1) {
		tmp = evsel->prev_raw_counts->aggr;
		evsel->prev_raw_counts->aggr = *count;
	} else {
		tmp = evsel->prev_raw_counts->cpu[cpu];
		evsel->prev_raw_counts->cpu[cpu] = *count;
	}

	count->val = count->val - tmp.val;
	count->ena = count->ena - tmp.ena;
	count->run = count->run - tmp.run;
}

842 843 844 845 846 847 848 849 850
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
			      int cpu, int thread, bool scale)
{
	struct perf_counts_values count;
	size_t nv = scale ? 3 : 1;

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

851 852 853
	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
		return -ENOMEM;

854 855 856
	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
		return -errno;

857 858
	compute_deltas(evsel, cpu, &count);

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (scale) {
		if (count.run == 0)
			count.val = 0;
		else if (count.run < count.ena)
			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
	} else
		count.ena = count.run = 0;

	evsel->counts->cpu[cpu] = count;
	return 0;
}

int __perf_evsel__read(struct perf_evsel *evsel,
		       int ncpus, int nthreads, bool scale)
{
	size_t nv = scale ? 3 : 1;
	int cpu, thread;
	struct perf_counts_values *aggr = &evsel->counts->aggr, count;

878
	aggr->val = aggr->ena = aggr->run = 0;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	for (cpu = 0; cpu < ncpus; cpu++) {
		for (thread = 0; thread < nthreads; thread++) {
			if (FD(evsel, cpu, thread) < 0)
				continue;

			if (readn(FD(evsel, cpu, thread),
				  &count, nv * sizeof(u64)) < 0)
				return -errno;

			aggr->val += count.val;
			if (scale) {
				aggr->ena += count.ena;
				aggr->run += count.run;
			}
		}
	}

897 898
	compute_deltas(evsel, -1, aggr);

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	evsel->counts->scaled = 0;
	if (scale) {
		if (aggr->run == 0) {
			evsel->counts->scaled = -1;
			aggr->val = 0;
			return 0;
		}

		if (aggr->run < aggr->ena) {
			evsel->counts->scaled = 1;
			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
		}
	} else
		aggr->ena = aggr->run = 0;

	return 0;
}
916

917 918 919 920 921
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
	struct perf_evsel *leader = evsel->leader;
	int fd;

922
	if (perf_evsel__is_group_leader(evsel))
923 924 925 926 927 928 929 930 931 932 933 934 935 936
		return -1;

	/*
	 * Leader must be already processed/open,
	 * if not it's a bug.
	 */
	BUG_ON(!leader->fd);

	fd = FD(leader, cpu, thread);
	BUG_ON(fd == -1);

	return fd;
}

A
Adrian Hunter 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
#define __PRINT_ATTR(fmt, cast, field)  \
	fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)

#define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
#define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
#define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
#define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)

#define PRINT_ATTR2N(name1, field1, name2, field2)	\
	fprintf(fp, "  %-19s %u    %-19s %u\n",		\
	name1, attr->field1, name2, attr->field2)

#define PRINT_ATTR2(field1, field2) \
	PRINT_ATTR2N(#field1, field1, #field2, field2)

static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
{
	size_t ret = 0;

	ret += fprintf(fp, "%.60s\n", graph_dotted_line);
	ret += fprintf(fp, "perf_event_attr:\n");

	ret += PRINT_ATTR_U32(type);
	ret += PRINT_ATTR_U32(size);
	ret += PRINT_ATTR_X64(config);
	ret += PRINT_ATTR_U64(sample_period);
	ret += PRINT_ATTR_U64(sample_freq);
	ret += PRINT_ATTR_X64(sample_type);
	ret += PRINT_ATTR_X64(read_format);

	ret += PRINT_ATTR2(disabled, inherit);
	ret += PRINT_ATTR2(pinned, exclusive);
	ret += PRINT_ATTR2(exclude_user, exclude_kernel);
	ret += PRINT_ATTR2(exclude_hv, exclude_idle);
	ret += PRINT_ATTR2(mmap, comm);
972
	ret += PRINT_ATTR2(mmap2, comm_exec);
A
Adrian Hunter 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	ret += PRINT_ATTR2(freq, inherit_stat);
	ret += PRINT_ATTR2(enable_on_exec, task);
	ret += PRINT_ATTR2(watermark, precise_ip);
	ret += PRINT_ATTR2(mmap_data, sample_id_all);
	ret += PRINT_ATTR2(exclude_host, exclude_guest);
	ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
			    "excl.callchain_user", exclude_callchain_user);

	ret += PRINT_ATTR_U32(wakeup_events);
	ret += PRINT_ATTR_U32(wakeup_watermark);
	ret += PRINT_ATTR_X32(bp_type);
	ret += PRINT_ATTR_X64(bp_addr);
	ret += PRINT_ATTR_X64(config1);
	ret += PRINT_ATTR_U64(bp_len);
	ret += PRINT_ATTR_X64(config2);
	ret += PRINT_ATTR_X64(branch_sample_type);
	ret += PRINT_ATTR_X64(sample_regs_user);
	ret += PRINT_ATTR_U32(sample_stack_user);

	ret += fprintf(fp, "%.60s\n", graph_dotted_line);

	return ret;
}

997
static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
998
			      struct thread_map *threads)
999
{
1000
	int cpu, thread;
1001
	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1002
	int pid = -1, err;
1003
	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1004

1005 1006
	if (evsel->fd == NULL &&
	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1007
		return -ENOMEM;
1008

S
Stephane Eranian 已提交
1009
	if (evsel->cgrp) {
1010
		flags |= PERF_FLAG_PID_CGROUP;
S
Stephane Eranian 已提交
1011 1012 1013
		pid = evsel->cgrp->fd;
	}

1014
fallback_missing_features:
1015 1016
	if (perf_missing_features.cloexec)
		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1017 1018
	if (perf_missing_features.mmap2)
		evsel->attr.mmap2 = 0;
1019 1020 1021 1022 1023 1024
	if (perf_missing_features.exclude_guest)
		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
retry_sample_id:
	if (perf_missing_features.sample_id_all)
		evsel->attr.sample_id_all = 0;

A
Adrian Hunter 已提交
1025 1026 1027
	if (verbose >= 2)
		perf_event_attr__fprintf(&evsel->attr, stderr);

1028
	for (cpu = 0; cpu < cpus->nr; cpu++) {
1029

1030
		for (thread = 0; thread < threads->nr; thread++) {
1031
			int group_fd;
S
Stephane Eranian 已提交
1032 1033 1034 1035

			if (!evsel->cgrp)
				pid = threads->map[thread];

1036
			group_fd = get_group_fd(evsel, cpu, thread);
1037
retry_open:
1038
			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
A
Adrian Hunter 已提交
1039 1040
				  pid, cpus->map[cpu], group_fd, flags);

1041
			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
S
Stephane Eranian 已提交
1042
								     pid,
1043
								     cpus->map[cpu],
S
Stephane Eranian 已提交
1044
								     group_fd, flags);
1045 1046
			if (FD(evsel, cpu, thread) < 0) {
				err = -errno;
1047
				pr_debug2("sys_perf_event_open failed, error %d\n",
1048
					  err);
1049
				goto try_fallback;
1050
			}
1051
			set_rlimit = NO_CHANGE;
1052
		}
1053 1054 1055 1056
	}

	return 0;

1057
try_fallback:
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * perf stat needs between 5 and 22 fds per CPU. When we run out
	 * of them try to increase the limits.
	 */
	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
		struct rlimit l;
		int old_errno = errno;

		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
			if (set_rlimit == NO_CHANGE)
				l.rlim_cur = l.rlim_max;
			else {
				l.rlim_cur = l.rlim_max + 1000;
				l.rlim_max = l.rlim_cur;
			}
			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
				set_rlimit++;
				errno = old_errno;
				goto retry_open;
			}
		}
		errno = old_errno;
	}

1082 1083 1084
	if (err != -EINVAL || cpu > 0 || thread > 0)
		goto out_close;

1085 1086 1087 1088
	if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
		perf_missing_features.cloexec = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1089 1090 1091 1092
		perf_missing_features.mmap2 = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.exclude_guest &&
		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1093 1094 1095 1096 1097 1098 1099
		perf_missing_features.exclude_guest = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.sample_id_all) {
		perf_missing_features.sample_id_all = true;
		goto retry_sample_id;
	}

1100
out_close:
1101 1102 1103 1104 1105 1106 1107
	do {
		while (--thread >= 0) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
		thread = threads->nr;
	} while (--cpu >= 0);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	return err;
}

void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	if (evsel->fd == NULL)
		return;

	perf_evsel__close_fd(evsel, ncpus, nthreads);
	perf_evsel__free_fd(evsel);
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static struct {
	struct cpu_map map;
	int cpus[1];
} empty_cpu_map = {
	.map.nr	= 1,
	.cpus	= { -1, },
};

static struct {
	struct thread_map map;
	int threads[1];
} empty_thread_map = {
	.map.nr	 = 1,
	.threads = { -1, },
};

1136
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1137
		     struct thread_map *threads)
1138
{
1139 1140 1141
	if (cpus == NULL) {
		/* Work around old compiler warnings about strict aliasing */
		cpus = &empty_cpu_map.map;
1142 1143
	}

1144 1145
	if (threads == NULL)
		threads = &empty_thread_map.map;
1146

1147
	return __perf_evsel__open(evsel, cpus, threads);
1148 1149
}

1150
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1151
			     struct cpu_map *cpus)
1152
{
1153
	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1154
}
1155

1156
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1157
				struct thread_map *threads)
1158
{
1159
	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1160
}
1161

1162 1163 1164
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
				       const union perf_event *event,
				       struct perf_sample *sample)
1165
{
1166
	u64 type = evsel->attr.sample_type;
1167
	const u64 *array = event->sample.array;
1168
	bool swapped = evsel->needs_swap;
1169
	union u64_swap u;
1170 1171 1172 1173

	array += ((event->header.size -
		   sizeof(event->header)) / sizeof(u64)) - 1;

1174 1175 1176 1177 1178
	if (type & PERF_SAMPLE_IDENTIFIER) {
		sample->id = *array;
		array--;
	}

1179
	if (type & PERF_SAMPLE_CPU) {
1180 1181 1182 1183 1184 1185 1186 1187
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		sample->cpu = u.val32[0];
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		array--;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		sample->stream_id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_ID) {
		sample->id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TIME) {
		sample->time = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TID) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		sample->pid = u.val32[0];
		sample->tid = u.val32[1];
1217
		array--;
1218 1219 1220 1221 1222
	}

	return 0;
}

1223 1224
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
			    u64 size)
1225
{
1226 1227
	return size > max_size || offset + size > endp;
}
1228

1229 1230 1231 1232 1233
#define OVERFLOW_CHECK(offset, size, max_size)				\
	do {								\
		if (overflow(endp, (max_size), (offset), (size)))	\
			return -EFAULT;					\
	} while (0)
1234

1235 1236
#define OVERFLOW_CHECK_u64(offset) \
	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1237

1238
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1239
			     struct perf_sample *data)
1240
{
1241
	u64 type = evsel->attr.sample_type;
1242
	bool swapped = evsel->needs_swap;
1243
	const u64 *array;
1244 1245 1246
	u16 max_size = event->header.size;
	const void *endp = (void *)event + max_size;
	u64 sz;
1247

1248 1249 1250 1251
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
1252
	union u64_swap u;
1253

1254
	memset(data, 0, sizeof(*data));
1255 1256
	data->cpu = data->pid = data->tid = -1;
	data->stream_id = data->id = data->time = -1ULL;
1257
	data->period = evsel->attr.sample_period;
1258
	data->weight = 0;
1259 1260

	if (event->header.type != PERF_RECORD_SAMPLE) {
1261
		if (!evsel->attr.sample_id_all)
1262
			return 0;
1263
		return perf_evsel__parse_id_sample(evsel, event, data);
1264 1265 1266 1267
	}

	array = event->sample.array;

1268 1269 1270 1271 1272
	/*
	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
	 * check the format does not go past the end of the event.
	 */
1273
	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1274 1275
		return -EFAULT;

1276 1277 1278 1279 1280 1281
	data->id = -1ULL;
	if (type & PERF_SAMPLE_IDENTIFIER) {
		data->id = *array;
		array++;
	}

1282
	if (type & PERF_SAMPLE_IP) {
1283
		data->ip = *array;
1284 1285 1286 1287
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		data->pid = u.val32[0];
		data->tid = u.val32[1];
1298 1299 1300 1301 1302 1303 1304 1305
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		data->time = *array;
		array++;
	}

1306
	data->addr = 0;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (type & PERF_SAMPLE_ADDR) {
		data->addr = *array;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		data->id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		data->stream_id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
1323 1324 1325 1326 1327 1328 1329 1330 1331

		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		data->cpu = u.val32[0];
1332 1333 1334 1335 1336 1337 1338 1339 1340
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		data->period = *array;
		array++;
	}

	if (type & PERF_SAMPLE_READ) {
1341 1342
		u64 read_format = evsel->attr.read_format;

1343
		OVERFLOW_CHECK_u64(array);
1344 1345 1346 1347 1348 1349 1350 1351
		if (read_format & PERF_FORMAT_GROUP)
			data->read.group.nr = *array;
		else
			data->read.one.value = *array;

		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1352
			OVERFLOW_CHECK_u64(array);
1353 1354 1355 1356 1357
			data->read.time_enabled = *array;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1358
			OVERFLOW_CHECK_u64(array);
1359 1360 1361 1362 1363 1364
			data->read.time_running = *array;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
			const u64 max_group_nr = UINT64_MAX /
					sizeof(struct sample_read_value);

			if (data->read.group.nr > max_group_nr)
				return -EFAULT;
			sz = data->read.group.nr *
			     sizeof(struct sample_read_value);
			OVERFLOW_CHECK(array, sz, max_size);
			data->read.group.values =
					(struct sample_read_value *)array;
			array = (void *)array + sz;
1376
		} else {
1377
			OVERFLOW_CHECK_u64(array);
1378 1379 1380
			data->read.one.id = *array;
			array++;
		}
1381 1382 1383
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
1384
		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1385

1386 1387 1388
		OVERFLOW_CHECK_u64(array);
		data->callchain = (struct ip_callchain *)array++;
		if (data->callchain->nr > max_callchain_nr)
1389
			return -EFAULT;
1390 1391 1392
		sz = data->callchain->nr * sizeof(u64);
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1393 1394 1395
	}

	if (type & PERF_SAMPLE_RAW) {
1396
		OVERFLOW_CHECK_u64(array);
1397 1398 1399 1400 1401 1402 1403 1404 1405
		u.val64 = *array;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}
		data->raw_size = u.val32[0];
1406
		array = (void *)array + sizeof(u32);
1407

1408 1409 1410
		OVERFLOW_CHECK(array, data->raw_size, max_size);
		data->raw_data = (void *)array;
		array = (void *)array + data->raw_size;
1411 1412
	}

1413
	if (type & PERF_SAMPLE_BRANCH_STACK) {
1414 1415
		const u64 max_branch_nr = UINT64_MAX /
					  sizeof(struct branch_entry);
1416

1417 1418
		OVERFLOW_CHECK_u64(array);
		data->branch_stack = (struct branch_stack *)array++;
1419

1420 1421
		if (data->branch_stack->nr > max_branch_nr)
			return -EFAULT;
1422
		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1423 1424
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1425
	}
1426 1427

	if (type & PERF_SAMPLE_REGS_USER) {
1428
		OVERFLOW_CHECK_u64(array);
1429 1430
		data->user_regs.abi = *array;
		array++;
1431

1432
		if (data->user_regs.abi) {
1433
			u64 mask = evsel->attr.sample_regs_user;
1434

1435
			sz = hweight_long(mask) * sizeof(u64);
1436
			OVERFLOW_CHECK(array, sz, max_size);
1437
			data->user_regs.mask = mask;
1438
			data->user_regs.regs = (u64 *)array;
1439
			array = (void *)array + sz;
1440 1441 1442 1443
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
1444 1445
		OVERFLOW_CHECK_u64(array);
		sz = *array++;
1446 1447 1448 1449

		data->user_stack.offset = ((char *)(array - 1)
					  - (char *) event);

1450
		if (!sz) {
1451 1452
			data->user_stack.size = 0;
		} else {
1453
			OVERFLOW_CHECK(array, sz, max_size);
1454
			data->user_stack.data = (char *)array;
1455 1456
			array = (void *)array + sz;
			OVERFLOW_CHECK_u64(array);
1457
			data->user_stack.size = *array++;
1458 1459 1460
			if (WARN_ONCE(data->user_stack.size > sz,
				      "user stack dump failure\n"))
				return -EFAULT;
1461 1462 1463
		}
	}

1464 1465
	data->weight = 0;
	if (type & PERF_SAMPLE_WEIGHT) {
1466
		OVERFLOW_CHECK_u64(array);
1467 1468 1469 1470
		data->weight = *array;
		array++;
	}

1471 1472
	data->data_src = PERF_MEM_DATA_SRC_NONE;
	if (type & PERF_SAMPLE_DATA_SRC) {
1473
		OVERFLOW_CHECK_u64(array);
1474 1475 1476 1477
		data->data_src = *array;
		array++;
	}

1478 1479
	data->transaction = 0;
	if (type & PERF_SAMPLE_TRANSACTION) {
1480
		OVERFLOW_CHECK_u64(array);
1481 1482 1483 1484
		data->transaction = *array;
		array++;
	}

1485 1486
	return 0;
}
1487

1488
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1489
				     u64 read_format)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
{
	size_t sz, result = sizeof(struct sample_event);

	if (type & PERF_SAMPLE_IDENTIFIER)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_IP)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TIME)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ADDR)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_STREAM_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_CPU)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_PERIOD)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_READ) {
		result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
			result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
			result += sizeof(u64);
		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		result += sizeof(u32);
		result += sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			result += sizeof(u64);
1555
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		result += sizeof(u64);
		if (sz) {
			result += sz;
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_WEIGHT)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_DATA_SRC)
		result += sizeof(u64);

1577 1578 1579
	if (type & PERF_SAMPLE_TRANSACTION)
		result += sizeof(u64);

1580 1581 1582
	return result;
}

1583
int perf_event__synthesize_sample(union perf_event *event, u64 type,
1584
				  u64 read_format,
1585 1586 1587 1588
				  const struct perf_sample *sample,
				  bool swapped)
{
	u64 *array;
1589
	size_t sz;
1590 1591 1592 1593
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
1594
	union u64_swap u;
1595 1596 1597

	array = event->sample.array;

1598 1599 1600 1601 1602
	if (type & PERF_SAMPLE_IDENTIFIER) {
		*array = sample->id;
		array++;
	}

1603
	if (type & PERF_SAMPLE_IP) {
1604
		*array = sample->ip;
1605 1606 1607 1608 1609 1610 1611 1612
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
		u.val32[0] = sample->pid;
		u.val32[1] = sample->tid;
		if (swapped) {
			/*
1613
			 * Inverse of what is done in perf_evsel__parse_sample
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}

		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		*array = sample->time;
		array++;
	}

	if (type & PERF_SAMPLE_ADDR) {
		*array = sample->addr;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		*array = sample->id;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		*array = sample->stream_id;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
		u.val32[0] = sample->cpu;
		if (swapped) {
			/*
1648
			 * Inverse of what is done in perf_evsel__parse_sample
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		*array = sample->period;
		array++;
	}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	if (type & PERF_SAMPLE_READ) {
		if (read_format & PERF_FORMAT_GROUP)
			*array = sample->read.group.nr;
		else
			*array = sample->read.one.value;
		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
			*array = sample->read.time_enabled;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
			*array = sample->read.time_running;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			memcpy(array, sample->read.group.values, sz);
			array = (void *)array + sz;
		} else {
			*array = sample->read.one.id;
			array++;
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		memcpy(array, sample->callchain, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		u.val32[0] = sample->raw_size;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/*
			 * Inverse of what is done in perf_evsel__parse_sample
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array = (void *)array + sizeof(u32);

		memcpy(array, sample->raw_data, sample->raw_size);
		array = (void *)array + sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		memcpy(array, sample->branch_stack, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			*array++ = sample->user_regs.abi;
1725
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
			memcpy(array, sample->user_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		*array++ = sz;
		if (sz) {
			memcpy(array, sample->user_stack.data, sz);
			array = (void *)array + sz;
			*array++ = sz;
		}
	}

	if (type & PERF_SAMPLE_WEIGHT) {
		*array = sample->weight;
		array++;
	}

	if (type & PERF_SAMPLE_DATA_SRC) {
		*array = sample->data_src;
		array++;
	}

1753 1754 1755 1756 1757
	if (type & PERF_SAMPLE_TRANSACTION) {
		*array = sample->transaction;
		array++;
	}

1758 1759
	return 0;
}
1760

1761 1762 1763 1764 1765
struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
{
	return pevent_find_field(evsel->tp_format, name);
}

1766
void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1767 1768
			 const char *name)
{
1769
	struct format_field *field = perf_evsel__field(evsel, name);
1770 1771
	int offset;

1772 1773
	if (!field)
		return NULL;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	offset = field->offset;

	if (field->flags & FIELD_IS_DYNAMIC) {
		offset = *(int *)(sample->raw_data + field->offset);
		offset &= 0xffff;
	}

	return sample->raw_data + offset;
}

u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
		       const char *name)
{
1788
	struct format_field *field = perf_evsel__field(evsel, name);
1789 1790
	void *ptr;
	u64 value;
1791

1792 1793
	if (!field)
		return 0;
1794

1795
	ptr = sample->raw_data + field->offset;
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	switch (field->size) {
	case 1:
		return *(u8 *)ptr;
	case 2:
		value = *(u16 *)ptr;
		break;
	case 4:
		value = *(u32 *)ptr;
		break;
	case 8:
		value = *(u64 *)ptr;
		break;
	default:
		return 0;
	}

	if (!evsel->needs_swap)
		return value;

	switch (field->size) {
	case 2:
		return bswap_16(value);
	case 4:
		return bswap_32(value);
	case 8:
		return bswap_64(value);
	default:
		return 0;
	}

	return 0;
1828
}
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
{
	va_list args;
	int ret = 0;

	if (!*first) {
		ret += fprintf(fp, ",");
	} else {
		ret += fprintf(fp, ":");
		*first = false;
	}

	va_start(args, fmt);
	ret += vfprintf(fp, fmt, args);
	va_end(args);
	return ret;
}

static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
{
	if (value == 0)
		return 0;

	return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
}

#define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
struct bit_names {
	int bit;
	const char *name;
};

static int bits__fprintf(FILE *fp, const char *field, u64 value,
			 struct bit_names *bits, bool *first)
{
	int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
	bool first_bit = true;

	do {
		if (value & bits[i].bit) {
			printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
			first_bit = false;
		}
	} while (bits[++i].name != NULL);

	return printed;
}

static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
	struct bit_names bits[] = {
		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1887
		bit_name(IDENTIFIER),
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		{ .name = NULL, }
	};
#undef bit_name
	return bits__fprintf(fp, "sample_type", value, bits, first);
}

static int read_format__fprintf(FILE *fp, bool *first, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
	struct bit_names bits[] = {
		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
		bit_name(ID), bit_name(GROUP),
		{ .name = NULL, }
	};
#undef bit_name
	return bits__fprintf(fp, "read_format", value, bits, first);
}

1906 1907 1908 1909
int perf_evsel__fprintf(struct perf_evsel *evsel,
			struct perf_attr_details *details, FILE *fp)
{
	bool first = true;
N
Namhyung Kim 已提交
1910 1911
	int printed = 0;

1912
	if (details->event_group) {
N
Namhyung Kim 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		struct perf_evsel *pos;

		if (!perf_evsel__is_group_leader(evsel))
			return 0;

		if (evsel->nr_members > 1)
			printed += fprintf(fp, "%s{", evsel->group_name ?: "");

		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
		for_each_group_member(pos, evsel)
			printed += fprintf(fp, ",%s", perf_evsel__name(pos));

		if (evsel->nr_members > 1)
			printed += fprintf(fp, "}");
		goto out;
	}

	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	if (details->verbose || details->freq) {
		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
					 (u64)evsel->attr.sample_freq);
	}

	if (details->verbose) {
		if_print(type);
		if_print(config);
		if_print(config1);
		if_print(config2);
		if_print(size);
1943 1944 1945
		printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
		if (evsel->attr.read_format)
			printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1946 1947 1948 1949 1950 1951 1952 1953 1954
		if_print(disabled);
		if_print(inherit);
		if_print(pinned);
		if_print(exclusive);
		if_print(exclude_user);
		if_print(exclude_kernel);
		if_print(exclude_hv);
		if_print(exclude_idle);
		if_print(mmap);
1955
		if_print(mmap2);
1956
		if_print(comm);
1957
		if_print(comm_exec);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		if_print(freq);
		if_print(inherit_stat);
		if_print(enable_on_exec);
		if_print(task);
		if_print(watermark);
		if_print(precise_ip);
		if_print(mmap_data);
		if_print(sample_id_all);
		if_print(exclude_host);
		if_print(exclude_guest);
		if_print(__reserved_1);
		if_print(wakeup_events);
		if_print(bp_type);
		if_print(branch_sample_type);
	}
N
Namhyung Kim 已提交
1973
out:
1974 1975 1976
	fputc('\n', fp);
	return ++printed;
}
1977 1978 1979 1980

bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
			  char *msg, size_t msgsize)
{
1981
	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
		/*
		 * If it's cycles then fall back to hrtimer based
		 * cpu-clock-tick sw counter, which is always available even if
		 * no PMU support.
		 *
		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
		 * b0a873e).
		 */
		scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");

		evsel->attr.type   = PERF_TYPE_SOFTWARE;
		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;

1998
		zfree(&evsel->name);
1999 2000 2001 2002 2003
		return true;
	}

	return false;
}
2004

2005
int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2006 2007 2008 2009 2010
			      int err, char *msg, size_t size)
{
	switch (err) {
	case EPERM:
	case EACCES:
2011
		return scnprintf(msg, size,
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		 "You may not have permission to collect %sstats.\n"
		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
		 " -1 - Not paranoid at all\n"
		 "  0 - Disallow raw tracepoint access for unpriv\n"
		 "  1 - Disallow cpu events for unpriv\n"
		 "  2 - Disallow kernel profiling for unpriv",
				 target->system_wide ? "system-wide " : "");
	case ENOENT:
		return scnprintf(msg, size, "The %s event is not supported.",
				 perf_evsel__name(evsel));
	case EMFILE:
		return scnprintf(msg, size, "%s",
			 "Too many events are opened.\n"
			 "Try again after reducing the number of events.");
	case ENODEV:
		if (target->cpu_list)
			return scnprintf(msg, size, "%s",
	 "No such device - did you specify an out-of-range profile CPU?\n");
		break;
	case EOPNOTSUPP:
		if (evsel->attr.precise_ip)
			return scnprintf(msg, size, "%s",
	"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
		if (evsel->attr.type == PERF_TYPE_HARDWARE)
			return scnprintf(msg, size, "%s",
	"No hardware sampling interrupt available.\n"
	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
#endif
		break;
	default:
		break;
	}

	return scnprintf(msg, size,
	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
	"/bin/dmesg may provide additional information.\n"
	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
			 err, strerror(err), perf_evsel__name(evsel));
}