init.c 16.8 KB
Newer Older
S
Stanislaw Gruszka 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * (c) Copyright 2002-2010, Ralink Technology, Inc.
 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
 * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "mt76x0.h"
#include "eeprom.h"
#include "trace.h"
#include "mcu.h"
#include "usb.h"

#include "initvals.h"

static void
mt76x0_set_wlan_state(struct mt76x0_dev *dev, u32 val, bool enable)
{
	int i;

	/* Note: we don't turn off WLAN_CLK because that makes the device
	 *	 not respond properly on the probe path.
	 *	 In case anyone (PSM?) wants to use this function we can
	 *	 bring the clock stuff back and fixup the probe path.
	 */

	if (enable)
		val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
			MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
	else
		val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN);

	mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
	udelay(20);

	if (!enable)
		return;

	for (i = 200; i; i--) {
		val = mt76_rr(dev, MT_CMB_CTRL);

		if (val & MT_CMB_CTRL_XTAL_RDY && val & MT_CMB_CTRL_PLL_LD)
			break;

		udelay(20);
	}

	/* Note: vendor driver tries to disable/enable wlan here and retry
	 *       but the code which does it is so buggy it must have never
	 *       triggered, so don't bother.
	 */
	if (!i)
		dev_err(dev->mt76.dev, "Error: PLL and XTAL check failed!\n");
}

65
void mt76x0_chip_onoff(struct mt76x0_dev *dev, bool enable, bool reset)
S
Stanislaw Gruszka 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
{
	u32 val;

	mutex_lock(&dev->hw_atomic_mutex);

	val = mt76_rr(dev, MT_WLAN_FUN_CTRL);

	if (reset) {
		val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN;
		val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;

		if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
			val |= (MT_WLAN_FUN_CTRL_WLAN_RESET |
				MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
			mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
			udelay(20);

			val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET |
				 MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
		}
	}

	mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
	udelay(20);

	mt76x0_set_wlan_state(dev, val, enable);

	mutex_unlock(&dev->hw_atomic_mutex);
}

static void mt76x0_reset_csr_bbp(struct mt76x0_dev *dev)
{
	u32 val;

	val = mt76_rr(dev, MT_PBF_SYS_CTRL);
	val &= ~0x2000;
	mt76_wr(dev, MT_PBF_SYS_CTRL, val);

	mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR |
					 MT_MAC_SYS_CTRL_RESET_BBP);

	msleep(200);
}

static void mt76x0_init_usb_dma(struct mt76x0_dev *dev)
{
	u32 val;

	val = mt76_rr(dev, MT_USB_DMA_CFG);

	val |= FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, MT_USB_AGGR_TIMEOUT) |
	       FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_LMT, MT_USB_AGGR_SIZE_LIMIT) |
	       MT_USB_DMA_CFG_RX_BULK_EN |
	       MT_USB_DMA_CFG_TX_BULK_EN;
	if (dev->in_max_packet == 512)
		val |= MT_USB_DMA_CFG_RX_BULK_AGG_EN;
	mt76_wr(dev, MT_USB_DMA_CFG, val);

	val = mt76_rr(dev, MT_COM_REG0);
	if (val & 1)
		dev_dbg(dev->mt76.dev, "MCU not ready\n");

	val = mt76_rr(dev, MT_USB_DMA_CFG);

	val |= MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
	mt76_wr(dev, MT_USB_DMA_CFG, val);
	val &= ~MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
	mt76_wr(dev, MT_USB_DMA_CFG, val);
}

#define RANDOM_WRITE(dev, tab) \
	mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN, tab, ARRAY_SIZE(tab));

static int mt76x0_init_bbp(struct mt76x0_dev *dev)
{
	int ret, i;

	ret = mt76x0_wait_bbp_ready(dev);
	if (ret)
		return ret;

	RANDOM_WRITE(dev, mt76x0_bbp_init_tab);

	for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
		const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
		const struct mt76_reg_pair *pair = &item->reg_pair;

		if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20))
			mt76_wr(dev, pair->reg, pair->value);
	}

	RANDOM_WRITE(dev, mt76x0_dcoc_tab);

	return 0;
}

static void
mt76_init_beacon_offsets(struct mt76x0_dev *dev)
{
	u16 base = MT_BEACON_BASE;
	u32 regs[4] = {};
	int i;

	for (i = 0; i < 16; i++) {
		u16 addr = dev->beacon_offsets[i];

		regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4));
	}

	for (i = 0; i < 4; i++)
		mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
}

static void mt76x0_init_mac_registers(struct mt76x0_dev *dev)
{
	u32 reg;

	RANDOM_WRITE(dev, common_mac_reg_table);

	mt76_init_beacon_offsets(dev);

	/* Enable PBF and MAC clock SYS_CTRL[11:10] = 0x3 */
	RANDOM_WRITE(dev, mt76x0_mac_reg_table);

	/* Release BBP and MAC reset MAC_SYS_CTRL[1:0] = 0x0 */
	reg = mt76_rr(dev, MT_MAC_SYS_CTRL);
	reg &= ~0x3;
	mt76_wr(dev, MT_MAC_SYS_CTRL, reg);

	if (is_mt7610e(dev)) {
		/* Disable COEX_EN */
		reg = mt76_rr(dev, MT_COEXCFG0);
		reg &= 0xFFFFFFFE;
		mt76_wr(dev, MT_COEXCFG0, reg);
	}

	/* Set 0x141C[15:12]=0xF */
	reg = mt76_rr(dev, MT_EXT_CCA_CFG);
	reg |= 0x0000F000;
	mt76_wr(dev, MT_EXT_CCA_CFG, reg);

	mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);

	/*
		TxRing 9 is for Mgmt frame.
		TxRing 8 is for In-band command frame.
		WMM_RG0_TXQMA: This register setting is for FCE to define the rule of TxRing 9.
		WMM_RG1_TXQMA: This register setting is for FCE to define the rule of TxRing 8.
	*/
	reg = mt76_rr(dev, MT_WMM_CTRL);
	reg &= ~0x000003FF;
	reg |= 0x00000201;
	mt76_wr(dev, MT_WMM_CTRL, reg);

	/* TODO: Probably not needed */
	mt76_wr(dev, 0x7028, 0);
	mt76_wr(dev, 0x7010, 0);
	mt76_wr(dev, 0x7024, 0);
	msleep(10);
}

static int mt76x0_init_wcid_mem(struct mt76x0_dev *dev)
{
	u32 *vals;
	int i, ret;

	vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
	if (!vals)
		return -ENOMEM;

	for (i = 0; i < N_WCIDS; i++)  {
		vals[i * 2] = 0xffffffff;
		vals[i * 2 + 1] = 0x00ffffff;
	}

	ret = mt76x0_burst_write_regs(dev, MT_WCID_ADDR_BASE,
				      vals, N_WCIDS * 2);
	kfree(vals);

	return ret;
}

static int mt76x0_init_key_mem(struct mt76x0_dev *dev)
{
	u32 vals[4] = {};

	return mt76x0_burst_write_regs(dev, MT_SKEY_MODE_BASE_0,
					vals, ARRAY_SIZE(vals));
}

static int mt76x0_init_wcid_attr_mem(struct mt76x0_dev *dev)
{
	u32 *vals;
	int i, ret;

	vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
	if (!vals)
		return -ENOMEM;

	for (i = 0; i < N_WCIDS * 2; i++)
		vals[i] = 1;

	ret = mt76x0_burst_write_regs(dev, MT_WCID_ATTR_BASE,
				      vals, N_WCIDS * 2);
	kfree(vals);

	return ret;
}

static void mt76x0_reset_counters(struct mt76x0_dev *dev)
{
	mt76_rr(dev, MT_RX_STA_CNT0);
	mt76_rr(dev, MT_RX_STA_CNT1);
	mt76_rr(dev, MT_RX_STA_CNT2);
	mt76_rr(dev, MT_TX_STA_CNT0);
	mt76_rr(dev, MT_TX_STA_CNT1);
	mt76_rr(dev, MT_TX_STA_CNT2);
}

int mt76x0_mac_start(struct mt76x0_dev *dev)
{
	mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);

	if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
		       MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 200000))
		return -ETIMEDOUT;

	dev->rxfilter = MT_RX_FILTR_CFG_CRC_ERR |
		MT_RX_FILTR_CFG_PHY_ERR | MT_RX_FILTR_CFG_PROMISC |
		MT_RX_FILTR_CFG_VER_ERR | MT_RX_FILTR_CFG_DUP |
		MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_CFEND |
		MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS |
		MT_RX_FILTR_CFG_RTS | MT_RX_FILTR_CFG_PSPOLL |
		MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV;
	mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);

	mt76_wr(dev, MT_MAC_SYS_CTRL,
		   MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX);

	if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
		       MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 50))
		return -ETIMEDOUT;

	return 0;
}

static void mt76x0_mac_stop_hw(struct mt76x0_dev *dev)
{
	int i, ok;

	if (test_bit(MT76_REMOVED, &dev->mt76.state))
		return;

	mt76_clear(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_TIMER_EN |
		   MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN |
		   MT_BEACON_TIME_CFG_BEACON_TX);

	if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: TX DMA did not stop!\n");

	/* Page count on TxQ */
	i = 200;
	while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) ||
		       (mt76_rr(dev, 0x0a30) & 0x000000ff) ||
		       (mt76_rr(dev, 0x0a34) & 0x00ff00ff)))
		msleep(10);

	if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: MAC TX did not stop!\n");

	mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX |
					 MT_MAC_SYS_CTRL_ENABLE_TX);

	/* Page count on RxQ */
	ok = 0;
	i = 200;
	while (i--) {
		if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) &&
		    !mt76_rr(dev, 0x0a30) &&
		    !mt76_rr(dev, 0x0a34)) {
			if (ok++ > 5)
				break;
			continue;
		}
		msleep(1);
	}

	if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: MAC RX did not stop!\n");

	if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000))
		dev_warn(dev->mt76.dev, "Warning: RX DMA did not stop!\n");
}

void mt76x0_mac_stop(struct mt76x0_dev *dev)
{
	mt76x0_mac_stop_hw(dev);
	flush_delayed_work(&dev->stat_work);
	cancel_delayed_work_sync(&dev->stat_work);
}

static void mt76x0_stop_hardware(struct mt76x0_dev *dev)
{
	mt76x0_chip_onoff(dev, false, false);
}

int mt76x0_init_hardware(struct mt76x0_dev *dev)
{
	static const u16 beacon_offsets[16] = {
		/* 512 byte per beacon */
		0xc000,	0xc200,	0xc400,	0xc600,
		0xc800,	0xca00,	0xcc00,	0xce00,
		0xd000,	0xd200,	0xd400,	0xd600,
		0xd800,	0xda00,	0xdc00,	0xde00
	};
	int ret;

	dev->beacon_offsets = beacon_offsets;

	mt76x0_chip_onoff(dev, true, true);

S
Stanislaw Gruszka 已提交
387 388
	if (!mt76x02_wait_for_mac(&dev->mt76)) {
		ret = -ETIMEDOUT;
S
Stanislaw Gruszka 已提交
389
		goto err;
S
Stanislaw Gruszka 已提交
390 391
	}

S
Stanislaw Gruszka 已提交
392 393 394 395 396 397 398 399 400 401 402 403
	ret = mt76x0_mcu_init(dev);
	if (ret)
		goto err;

	if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG,
			    MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
			    MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) {
		ret = -EIO;
		goto err;
	}

	/* Wait for ASIC ready after FW load. */
S
Stanislaw Gruszka 已提交
404 405
	if (!mt76x02_wait_for_mac(&dev->mt76)) {
		ret = -ETIMEDOUT;
S
Stanislaw Gruszka 已提交
406
		goto err;
S
Stanislaw Gruszka 已提交
407
	}
S
Stanislaw Gruszka 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

	mt76x0_reset_csr_bbp(dev);
	mt76x0_init_usb_dma(dev);

	mt76_wr(dev, MT_HEADER_TRANS_CTRL_REG, 0x0);
	mt76_wr(dev, MT_TSO_CTRL, 0x0);

	ret = mt76x0_mcu_cmd_init(dev);
	if (ret)
		goto err;
	ret = mt76x0_dma_init(dev);
	if (ret)
		goto err_mcu;

	mt76x0_init_mac_registers(dev);

	if (!mt76_poll_msec(dev, MT_MAC_STATUS,
			    MT_MAC_STATUS_TX | MT_MAC_STATUS_RX, 0, 1000)) {
		ret = -EIO;
		goto err_rx;
	}

	ret = mt76x0_init_bbp(dev);
	if (ret)
		goto err_rx;

	ret = mt76x0_init_wcid_mem(dev);
	if (ret)
		goto err_rx;
	ret = mt76x0_init_key_mem(dev);
	if (ret)
		goto err_rx;
	ret = mt76x0_init_wcid_attr_mem(dev);
	if (ret)
		goto err_rx;

	mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN |
					     MT_BEACON_TIME_CFG_SYNC_MODE |
					     MT_BEACON_TIME_CFG_TBTT_EN |
					     MT_BEACON_TIME_CFG_BEACON_TX));

	mt76x0_reset_counters(dev);

	mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e);

	mt76_wr(dev, MT_TXOP_CTRL_CFG,
		   FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) |
		   FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58));

	ret = mt76x0_eeprom_init(dev);
	if (ret)
		goto err_rx;

	mt76x0_phy_init(dev);
	return 0;

err_rx:
	mt76x0_dma_cleanup(dev);
err_mcu:
	mt76x0_mcu_cmd_deinit(dev);
err:
	mt76x0_chip_onoff(dev, false, false);
	return ret;
}

void mt76x0_cleanup(struct mt76x0_dev *dev)
{
	if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mt76.state))
		return;

	mt76x0_stop_hardware(dev);
	mt76x0_dma_cleanup(dev);
	mt76x0_mcu_cmd_deinit(dev);
}

struct mt76x0_dev *mt76x0_alloc_device(struct device *pdev)
{
	struct ieee80211_hw *hw;
	struct mt76x0_dev *dev;

	hw = ieee80211_alloc_hw(sizeof(*dev), &mt76x0_ops);
	if (!hw)
		return NULL;

	dev = hw->priv;
	dev->mt76.dev = pdev;
	dev->mt76.hw = hw;
	mutex_init(&dev->usb_ctrl_mtx);
	mutex_init(&dev->reg_atomic_mutex);
	mutex_init(&dev->hw_atomic_mutex);
	mutex_init(&dev->mutex);
	spin_lock_init(&dev->tx_lock);
	spin_lock_init(&dev->rx_lock);
	spin_lock_init(&dev->mt76.lock);
	spin_lock_init(&dev->mac_lock);
	spin_lock_init(&dev->con_mon_lock);
	atomic_set(&dev->avg_ampdu_len, 1);
	skb_queue_head_init(&dev->tx_skb_done);

	dev->stat_wq = alloc_workqueue("mt76x0", WQ_UNBOUND, 0);
	if (!dev->stat_wq) {
		ieee80211_free_hw(hw);
		return NULL;
	}

	return dev;
}

#define CHAN2G(_idx, _freq) {			\
	.band = NL80211_BAND_2GHZ,		\
	.center_freq = (_freq),			\
	.hw_value = (_idx),			\
	.max_power = 30,			\
}

static const struct ieee80211_channel mt76_channels_2ghz[] = {
	CHAN2G(1, 2412),
	CHAN2G(2, 2417),
	CHAN2G(3, 2422),
	CHAN2G(4, 2427),
	CHAN2G(5, 2432),
	CHAN2G(6, 2437),
	CHAN2G(7, 2442),
	CHAN2G(8, 2447),
	CHAN2G(9, 2452),
	CHAN2G(10, 2457),
	CHAN2G(11, 2462),
	CHAN2G(12, 2467),
	CHAN2G(13, 2472),
	CHAN2G(14, 2484),
};

#define CHAN5G(_idx, _freq) {			\
	.band = NL80211_BAND_5GHZ,		\
	.center_freq = (_freq),			\
	.hw_value = (_idx),			\
	.max_power = 30,			\
}

static const struct ieee80211_channel mt76_channels_5ghz[] = {
	CHAN5G(36, 5180),
	CHAN5G(40, 5200),
	CHAN5G(44, 5220),
	CHAN5G(46, 5230),
	CHAN5G(48, 5240),
	CHAN5G(52, 5260),
	CHAN5G(56, 5280),
	CHAN5G(60, 5300),
	CHAN5G(64, 5320),

	CHAN5G(100, 5500),
	CHAN5G(104, 5520),
	CHAN5G(108, 5540),
	CHAN5G(112, 5560),
	CHAN5G(116, 5580),
	CHAN5G(120, 5600),
	CHAN5G(124, 5620),
	CHAN5G(128, 5640),
	CHAN5G(132, 5660),
	CHAN5G(136, 5680),
	CHAN5G(140, 5700),
};

#define CCK_RATE(_idx, _rate) {					\
	.bitrate = _rate,					\
	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
	.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx,		\
	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx),	\
}

#define OFDM_RATE(_idx, _rate) {				\
	.bitrate = _rate,					\
	.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx,		\
	.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx,	\
}

static struct ieee80211_rate mt76_rates[] = {
	CCK_RATE(0, 10),
	CCK_RATE(1, 20),
	CCK_RATE(2, 55),
	CCK_RATE(3, 110),
	OFDM_RATE(0, 60),
	OFDM_RATE(1, 90),
	OFDM_RATE(2, 120),
	OFDM_RATE(3, 180),
	OFDM_RATE(4, 240),
	OFDM_RATE(5, 360),
	OFDM_RATE(6, 480),
	OFDM_RATE(7, 540),
};

static int
mt76_init_sband(struct mt76x0_dev *dev, struct ieee80211_supported_band *sband,
		const struct ieee80211_channel *chan, int n_chan,
		struct ieee80211_rate *rates, int n_rates)
{
	struct ieee80211_sta_ht_cap *ht_cap;
	void *chanlist;
	int size;

	size = n_chan * sizeof(*chan);
	chanlist = devm_kmemdup(dev->mt76.dev, chan, size, GFP_KERNEL);
	if (!chanlist)
		return -ENOMEM;

	sband->channels = chanlist;
	sband->n_channels = n_chan;
	sband->bitrates = rates;
	sband->n_bitrates = n_rates;

	ht_cap = &sband->ht_cap;
	ht_cap->ht_supported = true;
	ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
		      IEEE80211_HT_CAP_GRN_FLD |
		      IEEE80211_HT_CAP_SGI_20 |
		      IEEE80211_HT_CAP_SGI_40 |
		      (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);

	ht_cap->mcs.rx_mask[0] = 0xff;
	ht_cap->mcs.rx_mask[4] = 0x1;
	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;

	return 0;
}

static int
mt76_init_sband_2g(struct mt76x0_dev *dev)
{
	dev->mt76.hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->mt76.sband_2g.sband;

	WARN_ON(dev->ee->reg.start - 1 + dev->ee->reg.num >
		ARRAY_SIZE(mt76_channels_2ghz));


	return mt76_init_sband(dev, &dev->mt76.sband_2g.sband,
			       mt76_channels_2ghz, ARRAY_SIZE(mt76_channels_2ghz),
			       mt76_rates, ARRAY_SIZE(mt76_rates));
}

static int
mt76_init_sband_5g(struct mt76x0_dev *dev)
{
	dev->mt76.hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->mt76.sband_5g.sband;

	return mt76_init_sband(dev, &dev->mt76.sband_5g.sband,
			       mt76_channels_5ghz, ARRAY_SIZE(mt76_channels_5ghz),
			       mt76_rates + 4, ARRAY_SIZE(mt76_rates) - 4);
}


int mt76x0_register_device(struct mt76x0_dev *dev)
{
	struct ieee80211_hw *hw = dev->mt76.hw;
	struct wiphy *wiphy = hw->wiphy;
	int ret;

	/* Reserve WCID 0 for mcast - thanks to this APs WCID will go to
	 * entry no. 1 like it does in the vendor driver.
	 */
	dev->wcid_mask[0] |= 1;

	/* init fake wcid for monitor interfaces */
	dev->mon_wcid = devm_kmalloc(dev->mt76.dev, sizeof(*dev->mon_wcid),
				     GFP_KERNEL);
	if (!dev->mon_wcid)
		return -ENOMEM;
	dev->mon_wcid->idx = 0xff;
	dev->mon_wcid->hw_key_idx = -1;

	SET_IEEE80211_DEV(hw, dev->mt76.dev);

	hw->queues = 4;
	ieee80211_hw_set(hw, SIGNAL_DBM);
	ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
	hw->max_rates = 1;
	hw->max_report_rates = 7;
	hw->max_rate_tries = 1;

	hw->sta_data_size = sizeof(struct mt76_sta);
	hw->vif_data_size = sizeof(struct mt76_vif);

	SET_IEEE80211_PERM_ADDR(hw, dev->macaddr);

	wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
	wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);

	if (dev->ee->has_2ghz) {
		ret = mt76_init_sband_2g(dev);
		if (ret)
			return ret;
	}

	if (dev->ee->has_5ghz) {
		ret = mt76_init_sband_5g(dev);
		if (ret)
			return ret;
	}

	dev->mt76.chandef.chan = &dev->mt76.sband_2g.sband.channels[0];

	INIT_DELAYED_WORK(&dev->mac_work, mt76x0_mac_work);
	INIT_DELAYED_WORK(&dev->stat_work, mt76x0_tx_stat);

	ret = ieee80211_register_hw(hw);
	if (ret)
		return ret;

	mt76x0_init_debugfs(dev);

	return 0;
}