bcmsysport.c 74.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Broadcom BCM7xxx System Port Ethernet MAC driver
 *
 * Copyright (C) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
25
#include <net/dsa.h>
26 27 28 29 30 31 32 33 34
#include <net/ip.h>
#include <net/ipv6.h>

#include "bcmsysport.h"

/* I/O accessors register helpers */
#define BCM_SYSPORT_IO_MACRO(name, offset) \
static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off)	\
{									\
35
	u32 reg = readl_relaxed(priv->base + offset + off);		\
36 37 38 39 40
	return reg;							\
}									\
static inline void name##_writel(struct bcm_sysport_priv *priv,		\
				  u32 val, u32 off)			\
{									\
41
	writel_relaxed(val, priv->base + offset + off);			\
42 43 44 45 46
}									\

BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
47
BCM_SYSPORT_IO_MACRO(gib, SYS_PORT_GIB_OFFSET);
48 49 50 51 52 53 54
BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);

55 56 57 58 59 60 61
/* On SYSTEMPORT Lite, any register after RDMA_STATUS has the exact
 * same layout, except it has been moved by 4 bytes up, *sigh*
 */
static inline u32 rdma_readl(struct bcm_sysport_priv *priv, u32 off)
{
	if (priv->is_lite && off >= RDMA_STATUS)
		off += 4;
62
	return readl_relaxed(priv->base + SYS_PORT_RDMA_OFFSET + off);
63 64 65 66 67 68
}

static inline void rdma_writel(struct bcm_sysport_priv *priv, u32 val, u32 off)
{
	if (priv->is_lite && off >= RDMA_STATUS)
		off += 4;
69
	writel_relaxed(val, priv->base + SYS_PORT_RDMA_OFFSET + off);
70 71 72 73 74 75 76 77 78 79 80 81 82 83
}

static inline u32 tdma_control_bit(struct bcm_sysport_priv *priv, u32 bit)
{
	if (!priv->is_lite) {
		return BIT(bit);
	} else {
		if (bit >= ACB_ALGO)
			return BIT(bit + 1);
		else
			return BIT(bit);
	}
}

84 85 86 87 88 89 90 91
/* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
 * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
  */
#define BCM_SYSPORT_INTR_L2(which)	\
static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
						u32 mask)		\
{									\
	priv->irq##which##_mask &= ~(mask);				\
92
	intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR);	\
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}									\
static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
						u32 mask)		\
{									\
	intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET);	\
	priv->irq##which##_mask |= (mask);				\
}									\

BCM_SYSPORT_INTR_L2(0)
BCM_SYSPORT_INTR_L2(1)

/* Register accesses to GISB/RBUS registers are expensive (few hundred
 * nanoseconds), so keep the check for 64-bits explicit here to save
 * one register write per-packet on 32-bits platforms.
 */
static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
				     void __iomem *d,
				     dma_addr_t addr)
{
#ifdef CONFIG_PHYS_ADDR_T_64BIT
113
	writel_relaxed(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
114
		     d + DESC_ADDR_HI_STATUS_LEN);
115
#endif
116
	writel_relaxed(lower_32_bits(addr), d + DESC_ADDR_LO);
117 118 119
}

static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
120 121
					     struct dma_desc *desc,
					     unsigned int port)
122 123 124 125 126 127 128
{
	/* Ports are latched, so write upper address first */
	tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
	tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
}

/* Ethtool operations */
129 130
static void bcm_sysport_set_rx_csum(struct net_device *dev,
				    netdev_features_t wanted)
131 132 133 134
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

135
	priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
136
	reg = rxchk_readl(priv, RXCHK_CONTROL);
137 138 139 140
	/* Clear L2 header checks, which would prevent BPDUs
	 * from being received.
	 */
	reg &= ~RXCHK_L2_HDR_DIS;
141
	if (priv->rx_chk_en)
142 143 144 145 146 147 148
		reg |= RXCHK_EN;
	else
		reg &= ~RXCHK_EN;

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	 */
149
	if (priv->rx_chk_en && priv->crc_fwd)
150 151 152 153
		reg |= RXCHK_SKIP_FCS;
	else
		reg &= ~RXCHK_SKIP_FCS;

154 155 156 157 158 159 160 161 162
	/* If Broadcom tags are enabled (e.g: using a switch), make
	 * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
	 * tag after the Ethernet MAC Source Address.
	 */
	if (netdev_uses_dsa(dev))
		reg |= RXCHK_BRCM_TAG_EN;
	else
		reg &= ~RXCHK_BRCM_TAG_EN;

163 164 165
	rxchk_writel(priv, reg, RXCHK_CONTROL);
}

166 167
static void bcm_sysport_set_tx_csum(struct net_device *dev,
				    netdev_features_t wanted)
168 169 170 171 172 173 174 175 176 177
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	/* Hardware transmit checksum requires us to enable the Transmit status
	 * block prepended to the packet contents
	 */
	priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
	reg = tdma_readl(priv, TDMA_CONTROL);
	if (priv->tsb_en)
178
		reg |= tdma_control_bit(priv, TSB_EN);
179
	else
180
		reg &= ~tdma_control_bit(priv, TSB_EN);
181 182 183 184
	tdma_writel(priv, reg, TDMA_CONTROL);
}

static int bcm_sysport_set_features(struct net_device *dev,
185
				    netdev_features_t features)
186
{
187
	struct bcm_sysport_priv *priv = netdev_priv(dev);
188

189 190 191 192 193 194
	/* Read CRC forward */
	if (!priv->is_lite)
		priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
	else
		priv->crc_fwd = !((gib_readl(priv, GIB_CONTROL) &
				  GIB_FCS_STRIP) >> GIB_FCS_STRIP_SHIFT);
195

196 197 198 199
	bcm_sysport_set_rx_csum(dev, features);
	bcm_sysport_set_tx_csum(dev, features);

	return 0;
200 201 202 203 204 205 206
}

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
	/* general stats */
207 208 209 210
	STAT_NETDEV64(rx_packets),
	STAT_NETDEV64(tx_packets),
	STAT_NETDEV64(rx_bytes),
	STAT_NETDEV64(tx_bytes),
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_MIB_RX("rx_control", mib.rx.cf),
	STAT_MIB_RX("rx_pause", mib.rx.pf),
	STAT_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_MIB_RX("rx_align", mib.rx.aln),
	STAT_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_MIB_RX("rx_code", mib.rx.cde),
	STAT_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_MIB_TX("tx_pause", mib.tx.pf),
	STAT_MIB_TX("tx_control", mib.tx.cf),
	STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_MIB_TX("tx_defer", mib.tx.drf),
	STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_MIB_TX("tx_frags", mib.tx.frg),
	STAT_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* RXCHK misc statistics */
	STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
	STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
284
		   RXCHK_OTHER_DISC_CNTR),
285 286 287
	/* RBUF misc statistics */
	STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
	STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
288 289 290
	STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed),
	STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed),
291 292
	STAT_MIB_SOFT("tx_realloc_tsb", mib.tx_realloc_tsb),
	STAT_MIB_SOFT("tx_realloc_tsb_failed", mib.tx_realloc_tsb_failed),
293
	/* Per TX-queue statistics are dynamically appended */
294 295 296 297 298
};

#define BCM_SYSPORT_STATS_LEN	ARRAY_SIZE(bcm_sysport_gstrings_stats)

static void bcm_sysport_get_drvinfo(struct net_device *dev,
299
				    struct ethtool_drvinfo *info)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->version, "0.1", sizeof(info->version));
	strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
}

static u32 bcm_sysport_get_msglvl(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	priv->msg_enable = enable;
}

320 321 322 323
static inline bool bcm_sysport_lite_stat_valid(enum bcm_sysport_stat_type type)
{
	switch (type) {
	case BCM_SYSPORT_STAT_NETDEV:
324
	case BCM_SYSPORT_STAT_NETDEV64:
325 326 327 328 329 330 331 332 333
	case BCM_SYSPORT_STAT_RXCHK:
	case BCM_SYSPORT_STAT_RBUF:
	case BCM_SYSPORT_STAT_SOFT:
		return true;
	default:
		return false;
	}
}

334 335
static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
{
336 337 338 339
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	const struct bcm_sysport_stats *s;
	unsigned int i, j;

340 341
	switch (string_set) {
	case ETH_SS_STATS:
342 343 344 345 346 347 348
		for (i = 0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
			s = &bcm_sysport_gstrings_stats[i];
			if (priv->is_lite &&
			    !bcm_sysport_lite_stat_valid(s->type))
				continue;
			j++;
		}
349 350
		/* Include per-queue statistics */
		return j + dev->num_tx_queues * NUM_SYSPORT_TXQ_STAT;
351 352 353 354 355 356
	default:
		return -EOPNOTSUPP;
	}
}

static void bcm_sysport_get_strings(struct net_device *dev,
357
				    u32 stringset, u8 *data)
358
{
359 360
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	const struct bcm_sysport_stats *s;
361
	char buf[128];
362
	int i, j;
363 364 365

	switch (stringset) {
	case ETH_SS_STATS:
366 367 368 369 370 371 372
		for (i = 0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
			s = &bcm_sysport_gstrings_stats[i];
			if (priv->is_lite &&
			    !bcm_sysport_lite_stat_valid(s->type))
				continue;

			memcpy(data + j * ETH_GSTRING_LEN, s->stat_string,
373
			       ETH_GSTRING_LEN);
374
			j++;
375
		}
376 377 378 379 380 381 382 383 384 385 386 387

		for (i = 0; i < dev->num_tx_queues; i++) {
			snprintf(buf, sizeof(buf), "txq%d_packets", i);
			memcpy(data + j * ETH_GSTRING_LEN, buf,
			       ETH_GSTRING_LEN);
			j++;

			snprintf(buf, sizeof(buf), "txq%d_bytes", i);
			memcpy(data + j * ETH_GSTRING_LEN, buf,
			       ETH_GSTRING_LEN);
			j++;
		}
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		break;
	default:
		break;
	}
}

static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
		const struct bcm_sysport_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcm_sysport_gstrings_stats[i];
		switch (s->type) {
		case BCM_SYSPORT_STAT_NETDEV:
407
		case BCM_SYSPORT_STAT_NETDEV64:
408
		case BCM_SYSPORT_STAT_SOFT:
409 410 411 412
			continue;
		case BCM_SYSPORT_STAT_MIB_RX:
		case BCM_SYSPORT_STAT_MIB_TX:
		case BCM_SYSPORT_STAT_RUNT:
413 414 415
			if (priv->is_lite)
				continue;

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
			if (s->type != BCM_SYSPORT_STAT_MIB_RX)
				offset = UMAC_MIB_STAT_OFFSET;
			val = umac_readl(priv, UMAC_MIB_START + j + offset);
			break;
		case BCM_SYSPORT_STAT_RXCHK:
			val = rxchk_readl(priv, s->reg_offset);
			if (val == ~0)
				rxchk_writel(priv, 0, s->reg_offset);
			break;
		case BCM_SYSPORT_STAT_RBUF:
			val = rbuf_readl(priv, s->reg_offset);
			if (val == ~0)
				rbuf_writel(priv, 0, s->reg_offset);
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}

	netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static void bcm_sysport_update_tx_stats(struct bcm_sysport_priv *priv,
					u64 *tx_bytes, u64 *tx_packets)
{
	struct bcm_sysport_tx_ring *ring;
	u64 bytes = 0, packets = 0;
	unsigned int start;
	unsigned int q;

	for (q = 0; q < priv->netdev->num_tx_queues; q++) {
		ring = &priv->tx_rings[q];
		do {
			start = u64_stats_fetch_begin_irq(&priv->syncp);
			bytes = ring->bytes;
			packets = ring->packets;
		} while (u64_stats_fetch_retry_irq(&priv->syncp, start));

		*tx_bytes += bytes;
		*tx_packets += packets;
	}
}

461
static void bcm_sysport_get_stats(struct net_device *dev,
462
				  struct ethtool_stats *stats, u64 *data)
463 464
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
465 466
	struct bcm_sysport_stats64 *stats64 = &priv->stats64;
	struct u64_stats_sync *syncp = &priv->syncp;
467
	struct bcm_sysport_tx_ring *ring;
468
	u64 tx_bytes = 0, tx_packets = 0;
469
	unsigned int start;
470
	int i, j;
471

472
	if (netif_running(dev)) {
473
		bcm_sysport_update_mib_counters(priv);
474 475 476 477
		bcm_sysport_update_tx_stats(priv, &tx_bytes, &tx_packets);
		stats64->tx_bytes = tx_bytes;
		stats64->tx_packets = tx_packets;
	}
478

479
	for (i =  0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
480 481 482 483 484 485
		const struct bcm_sysport_stats *s;
		char *p;

		s = &bcm_sysport_gstrings_stats[i];
		if (s->type == BCM_SYSPORT_STAT_NETDEV)
			p = (char *)&dev->stats;
486 487
		else if (s->type == BCM_SYSPORT_STAT_NETDEV64)
			p = (char *)stats64;
488 489
		else
			p = (char *)priv;
490

491 492
		if (priv->is_lite && !bcm_sysport_lite_stat_valid(s->type))
			continue;
493
		p += s->stat_offset;
494

495 496
		if (s->stat_sizeof == sizeof(u64) &&
		    s->type == BCM_SYSPORT_STAT_NETDEV64) {
497 498 499 500
			do {
				start = u64_stats_fetch_begin_irq(syncp);
				data[i] = *(u64 *)p;
			} while (u64_stats_fetch_retry_irq(syncp, start));
501
		} else
502
			data[i] = *(u32 *)p;
503
		j++;
504
	}
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	/* For SYSTEMPORT Lite since we have holes in our statistics, j would
	 * be equal to BCM_SYSPORT_STATS_LEN at the end of the loop, but it
	 * needs to point to how many total statistics we have minus the
	 * number of per TX queue statistics
	 */
	j = bcm_sysport_get_sset_count(dev, ETH_SS_STATS) -
	    dev->num_tx_queues * NUM_SYSPORT_TXQ_STAT;

	for (i = 0; i < dev->num_tx_queues; i++) {
		ring = &priv->tx_rings[i];
		data[j] = ring->packets;
		j++;
		data[j] = ring->bytes;
		j++;
	}
521 522
}

523 524 525 526 527
static void bcm_sysport_get_wol(struct net_device *dev,
				struct ethtool_wolinfo *wol)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

528
	wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_FILTER;
529 530 531 532 533
	wol->wolopts = priv->wolopts;

	if (!(priv->wolopts & WAKE_MAGICSECURE))
		return;

534
	memcpy(wol->sopass, priv->sopass, sizeof(priv->sopass));
535 536 537
}

static int bcm_sysport_set_wol(struct net_device *dev,
538
			       struct ethtool_wolinfo *wol)
539 540 541
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
542
	u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_FILTER;
543 544 545 546 547 548 549

	if (!device_can_wakeup(kdev))
		return -ENOTSUPP;

	if (wol->wolopts & ~supported)
		return -EINVAL;

550 551
	if (wol->wolopts & WAKE_MAGICSECURE)
		memcpy(priv->sopass, wol->sopass, sizeof(priv->sopass));
552 553 554 555

	/* Flag the device and relevant IRQ as wakeup capable */
	if (wol->wolopts) {
		device_set_wakeup_enable(kdev, 1);
556 557
		if (priv->wol_irq_disabled)
			enable_irq_wake(priv->wol_irq);
558 559 560 561 562 563 564 565 566 567 568 569 570 571
		priv->wol_irq_disabled = 0;
	} else {
		device_set_wakeup_enable(kdev, 0);
		/* Avoid unbalanced disable_irq_wake calls */
		if (!priv->wol_irq_disabled)
			disable_irq_wake(priv->wol_irq);
		priv->wol_irq_disabled = 1;
	}

	priv->wolopts = wol->wolopts;

	return 0;
}

572 573
static void bcm_sysport_set_rx_coalesce(struct bcm_sysport_priv *priv,
					u32 usecs, u32 pkts)
574 575 576 577 578 579
{
	u32 reg;

	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
	reg &= ~(RDMA_INTR_THRESH_MASK |
		 RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT);
580 581
	reg |= pkts;
	reg |= DIV_ROUND_UP(usecs * 1000, 8192) << RDMA_TIMEOUT_SHIFT;
582 583 584
	rdma_writel(priv, reg, RDMA_MBDONE_INTR);
}

585 586
static void bcm_sysport_set_tx_coalesce(struct bcm_sysport_tx_ring *ring,
					struct ethtool_coalesce *ec)
587 588 589 590 591 592 593
{
	struct bcm_sysport_priv *priv = ring->priv;
	u32 reg;

	reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(ring->index));
	reg &= ~(RING_INTR_THRESH_MASK |
		 RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT);
594 595
	reg |= ec->tx_max_coalesced_frames;
	reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) <<
596 597 598 599
			    RING_TIMEOUT_SHIFT;
	tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(ring->index));
}

600 601 602 603 604 605 606 607 608 609 610
static int bcm_sysport_get_coalesce(struct net_device *dev,
				    struct ethtool_coalesce *ec)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0));

	ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000;
	ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK;

611 612 613 614
	reg = rdma_readl(priv, RDMA_MBDONE_INTR);

	ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000;
	ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK;
615
	ec->use_adaptive_rx_coalesce = priv->dim.use_dim;
616

617 618 619 620 621 622 623
	return 0;
}

static int bcm_sysport_set_coalesce(struct net_device *dev,
				    struct ethtool_coalesce *ec)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
624 625
	struct net_dim_cq_moder moder;
	u32 usecs, pkts;
626 627
	unsigned int i;

628 629 630
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yield roughly 8.192 us, our maximum value has
	 * to fit in the RING_TIMEOUT_MASK (16 bits).
631 632
	 */
	if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK ||
633 634 635
	    ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 ||
	    ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK ||
	    ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1)
636 637
		return -EINVAL;

638
	if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) ||
639 640
	    (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) ||
	    ec->use_adaptive_tx_coalesce)
641 642
		return -EINVAL;

643 644
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_set_tx_coalesce(&priv->tx_rings[i], ec);
645

646 647 648 649
	priv->rx_coalesce_usecs = ec->rx_coalesce_usecs;
	priv->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
	usecs = priv->rx_coalesce_usecs;
	pkts = priv->rx_max_coalesced_frames;
650

651
	if (ec->use_adaptive_rx_coalesce && !priv->dim.use_dim) {
652
		moder = net_dim_get_def_rx_moderation(priv->dim.dim.mode);
653 654
		usecs = moder.usec;
		pkts = moder.pkts;
655
	}
656

657
	priv->dim.use_dim = ec->use_adaptive_rx_coalesce;
658 659 660

	/* Apply desired coalescing parameters */
	bcm_sysport_set_rx_coalesce(priv, usecs, pkts);
661

662 663 664
	return 0;
}

665 666
static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
{
667
	dev_consume_skb_any(cb->skb);
668 669 670 671
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

672 673
static struct sk_buff *bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
					     struct bcm_sysport_cb *cb)
674 675 676
{
	struct device *kdev = &priv->pdev->dev;
	struct net_device *ndev = priv->netdev;
677
	struct sk_buff *skb, *rx_skb;
678 679
	dma_addr_t mapping;

680 681 682 683
	/* Allocate a new SKB for a new packet */
	skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
684
		netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
685
		return NULL;
686 687
	}

688
	mapping = dma_map_single(kdev, skb->data,
689
				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
690
	if (dma_mapping_error(kdev, mapping)) {
691
		priv->mib.rx_dma_failed++;
692
		dev_kfree_skb_any(skb);
693
		netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
694
		return NULL;
695 696
	}

697 698 699 700 701 702 703 704
	/* Grab the current SKB on the ring */
	rx_skb = cb->skb;
	if (likely(rx_skb))
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
				 RX_BUF_LENGTH, DMA_FROM_DEVICE);

	/* Put the new SKB on the ring */
	cb->skb = skb;
705
	dma_unmap_addr_set(cb, dma_addr, mapping);
706
	dma_desc_set_addr(priv, cb->bd_addr, mapping);
707 708 709

	netif_dbg(priv, rx_status, ndev, "RX refill\n");

710 711
	/* Return the current SKB to the caller */
	return rx_skb;
712 713 714 715 716
}

static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
{
	struct bcm_sysport_cb *cb;
717
	struct sk_buff *skb;
718 719 720
	unsigned int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
721
		cb = &priv->rx_cbs[i];
722 723 724 725 726
		skb = bcm_sysport_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb(skb);
		if (!cb->skb)
			return -ENOMEM;
727 728
	}

729
	return 0;
730 731 732 733 734 735
}

/* Poll the hardware for up to budget packets to process */
static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
					unsigned int budget)
{
736
	struct bcm_sysport_stats64 *stats64 = &priv->stats64;
737 738
	struct net_device *ndev = priv->netdev;
	unsigned int processed = 0, to_process;
739
	unsigned int processed_bytes = 0;
740 741 742 743
	struct bcm_sysport_cb *cb;
	struct sk_buff *skb;
	unsigned int p_index;
	u16 len, status;
744
	struct bcm_rsb *rsb;
745

746 747 748
	/* Clear status before servicing to reduce spurious interrupts */
	intrl2_0_writel(priv, INTRL2_0_RDMA_MBDONE, INTRL2_CPU_CLEAR);

749 750 751 752 753 754 755 756
	/* Determine how much we should process since last call, SYSTEMPORT Lite
	 * groups the producer and consumer indexes into the same 32-bit
	 * which we access using RDMA_CONS_INDEX
	 */
	if (!priv->is_lite)
		p_index = rdma_readl(priv, RDMA_PROD_INDEX);
	else
		p_index = rdma_readl(priv, RDMA_CONS_INDEX);
757 758
	p_index &= RDMA_PROD_INDEX_MASK;

759
	to_process = (p_index - priv->rx_c_index) & RDMA_CONS_INDEX_MASK;
760 761

	netif_dbg(priv, rx_status, ndev,
762 763
		  "p_index=%d rx_c_index=%d to_process=%d\n",
		  p_index, priv->rx_c_index, to_process);
764

765
	while ((processed < to_process) && (processed < budget)) {
766
		cb = &priv->rx_cbs[priv->rx_read_ptr];
767
		skb = bcm_sysport_rx_refill(priv, cb);
768 769 770 771 772 773 774 775 776 777 778


		/* We do not have a backing SKB, so we do not a corresponding
		 * DMA mapping for this incoming packet since
		 * bcm_sysport_rx_refill always either has both skb and mapping
		 * or none.
		 */
		if (unlikely(!skb)) {
			netif_err(priv, rx_err, ndev, "out of memory!\n");
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
779
			goto next;
780 781
		}

782
		/* Extract the Receive Status Block prepended */
783
		rsb = (struct bcm_rsb *)skb->data;
784 785
		len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
		status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
786
			  DESC_STATUS_MASK;
787 788

		netif_dbg(priv, rx_status, ndev,
789 790 791
			  "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
			  p_index, priv->rx_c_index, priv->rx_read_ptr,
			  len, status);
792

793 794 795 796 797 798 799 800
		if (unlikely(len > RX_BUF_LENGTH)) {
			netif_err(priv, rx_status, ndev, "oversized packet\n");
			ndev->stats.rx_length_errors++;
			ndev->stats.rx_errors++;
			dev_kfree_skb_any(skb);
			goto next;
		}

801 802 803 804
		if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
			netif_err(priv, rx_status, ndev, "fragmented packet!\n");
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
805 806
			dev_kfree_skb_any(skb);
			goto next;
807 808 809 810
		}

		if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
			netif_err(priv, rx_err, ndev, "error packet\n");
811
			if (status & RX_STATUS_OVFLOW)
812 813 814
				ndev->stats.rx_over_errors++;
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
815 816
			dev_kfree_skb_any(skb);
			goto next;
817 818 819 820 821 822 823 824
		}

		skb_put(skb, len);

		/* Hardware validated our checksum */
		if (likely(status & DESC_L4_CSUM))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

825 826 827
		/* Hardware pre-pends packets with 2bytes before Ethernet
		 * header plus we have the Receive Status Block, strip off all
		 * of this from the SKB.
828 829 830
		 */
		skb_pull(skb, sizeof(*rsb) + 2);
		len -= (sizeof(*rsb) + 2);
831
		processed_bytes += len;
832 833 834 835 836 837 838 839 840 841

		/* UniMAC may forward CRC */
		if (priv->crc_fwd) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		skb->protocol = eth_type_trans(skb, ndev);
		ndev->stats.rx_packets++;
		ndev->stats.rx_bytes += len;
842 843 844 845
		u64_stats_update_begin(&priv->syncp);
		stats64->rx_packets++;
		stats64->rx_bytes += len;
		u64_stats_update_end(&priv->syncp);
846 847

		napi_gro_receive(&priv->napi, skb);
848 849 850 851 852 853
next:
		processed++;
		priv->rx_read_ptr++;

		if (priv->rx_read_ptr == priv->num_rx_bds)
			priv->rx_read_ptr = 0;
854 855
	}

856 857 858
	priv->dim.packets = processed;
	priv->dim.bytes = processed_bytes;

859 860 861
	return processed;
}

862
static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_tx_ring *ring,
863 864 865
				       struct bcm_sysport_cb *cb,
				       unsigned int *bytes_compl,
				       unsigned int *pkts_compl)
866
{
867
	struct bcm_sysport_priv *priv = ring->priv;
868 869 870 871 872
	struct device *kdev = &priv->pdev->dev;

	if (cb->skb) {
		*bytes_compl += cb->skb->len;
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
873 874
				 dma_unmap_len(cb, dma_len),
				 DMA_TO_DEVICE);
875 876 877 878
		(*pkts_compl)++;
		bcm_sysport_free_cb(cb);
	/* SKB fragment */
	} else if (dma_unmap_addr(cb, dma_addr)) {
879
		*bytes_compl += dma_unmap_len(cb, dma_len);
880
		dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
881
			       dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
882 883 884 885 886 887 888 889 890
		dma_unmap_addr_set(cb, dma_addr, 0);
	}
}

/* Reclaim queued SKBs for transmission completion, lockless version */
static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
					     struct bcm_sysport_tx_ring *ring)
{
	unsigned int pkts_compl = 0, bytes_compl = 0;
891
	struct net_device *ndev = priv->netdev;
892
	unsigned int txbds_processed = 0;
893
	struct bcm_sysport_cb *cb;
894 895
	unsigned int txbds_ready;
	unsigned int c_index;
896 897
	u32 hw_ind;

898 899 900 901 902 903 904
	/* Clear status before servicing to reduce spurious interrupts */
	if (!ring->priv->is_lite)
		intrl2_1_writel(ring->priv, BIT(ring->index), INTRL2_CPU_CLEAR);
	else
		intrl2_0_writel(ring->priv, BIT(ring->index +
				INTRL2_0_TDMA_MBDONE_SHIFT), INTRL2_CPU_CLEAR);

905 906 907
	/* Compute how many descriptors have been processed since last call */
	hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
	c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
908
	txbds_ready = (c_index - ring->c_index) & RING_CONS_INDEX_MASK;
909 910

	netif_dbg(priv, tx_done, ndev,
911 912
		  "ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  ring->index, ring->c_index, c_index, txbds_ready);
913

914 915
	while (txbds_processed < txbds_ready) {
		cb = &ring->cbs[ring->clean_index];
916
		bcm_sysport_tx_reclaim_one(ring, cb, &bytes_compl, &pkts_compl);
917 918

		ring->desc_count++;
919 920 921 922 923 924
		txbds_processed++;

		if (likely(ring->clean_index < ring->size - 1))
			ring->clean_index++;
		else
			ring->clean_index = 0;
925 926
	}

927 928 929 930 931
	u64_stats_update_begin(&priv->syncp);
	ring->packets += pkts_compl;
	ring->bytes += bytes_compl;
	u64_stats_update_end(&priv->syncp);

932 933 934
	ring->c_index = c_index;

	netif_dbg(priv, tx_done, ndev,
935 936
		  "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
		  ring->index, ring->c_index, pkts_compl, bytes_compl);
937 938 939 940 941 942 943 944

	return pkts_compl;
}

/* Locked version of the per-ring TX reclaim routine */
static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
					   struct bcm_sysport_tx_ring *ring)
{
945
	struct netdev_queue *txq;
946
	unsigned int released;
947
	unsigned long flags;
948

949 950
	txq = netdev_get_tx_queue(priv->netdev, ring->index);

951
	spin_lock_irqsave(&ring->lock, flags);
952
	released = __bcm_sysport_tx_reclaim(priv, ring);
953 954 955
	if (released)
		netif_tx_wake_queue(txq);

956
	spin_unlock_irqrestore(&ring->lock, flags);
957 958 959 960

	return released;
}

961 962 963 964 965 966 967 968 969 970 971
/* Locked version of the per-ring TX reclaim, but does not wake the queue */
static void bcm_sysport_tx_clean(struct bcm_sysport_priv *priv,
				 struct bcm_sysport_tx_ring *ring)
{
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
	__bcm_sysport_tx_reclaim(priv, ring);
	spin_unlock_irqrestore(&ring->lock, flags);
}

972 973 974 975 976 977 978 979
static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcm_sysport_tx_ring *ring =
		container_of(napi, struct bcm_sysport_tx_ring, napi);
	unsigned int work_done = 0;

	work_done = bcm_sysport_tx_reclaim(ring->priv, ring);

980
	if (work_done == 0) {
981 982
		napi_complete(napi);
		/* re-enable TX interrupt */
983 984 985 986 987
		if (!ring->priv->is_lite)
			intrl2_1_mask_clear(ring->priv, BIT(ring->index));
		else
			intrl2_0_mask_clear(ring->priv, BIT(ring->index +
					    INTRL2_0_TDMA_MBDONE_SHIFT));
988 989

		return 0;
990 991
	}

992
	return budget;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
{
	unsigned int q;

	for (q = 0; q < priv->netdev->num_tx_queues; q++)
		bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
}

static int bcm_sysport_poll(struct napi_struct *napi, int budget)
{
	struct bcm_sysport_priv *priv =
		container_of(napi, struct bcm_sysport_priv, napi);
1007
	struct net_dim_sample dim_sample;
1008 1009 1010 1011 1012 1013
	unsigned int work_done = 0;

	work_done = bcm_sysport_desc_rx(priv, budget);

	priv->rx_c_index += work_done;
	priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
1014 1015 1016 1017 1018 1019 1020 1021 1022

	/* SYSTEMPORT Lite groups the producer/consumer index, producer is
	 * maintained by HW, but writes to it will be ignore while RDMA
	 * is active
	 */
	if (!priv->is_lite)
		rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
	else
		rdma_writel(priv, priv->rx_c_index << 16, RDMA_CONS_INDEX);
1023 1024

	if (work_done < budget) {
1025
		napi_complete_done(napi, work_done);
1026 1027 1028 1029
		/* re-enable RX interrupts */
		intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
	}

1030 1031 1032 1033 1034 1035
	if (priv->dim.use_dim) {
		net_dim_sample(priv->dim.event_ctr, priv->dim.packets,
			       priv->dim.bytes, &dim_sample);
		net_dim(&priv->dim.dim, dim_sample);
	}

1036 1037 1038
	return work_done;
}

1039
static void mpd_enable_set(struct bcm_sysport_priv *priv, bool enable)
1040
{
1041
	u32 reg, bit;
1042

1043 1044 1045 1046 1047 1048
	reg = umac_readl(priv, UMAC_MPD_CTRL);
	if (enable)
		reg |= MPD_EN;
	else
		reg &= ~MPD_EN;
	umac_writel(priv, reg, UMAC_MPD_CTRL);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	if (priv->is_lite)
		bit = RBUF_ACPI_EN_LITE;
	else
		bit = RBUF_ACPI_EN;

	reg = rbuf_readl(priv, RBUF_CONTROL);
	if (enable)
		reg |= bit;
	else
		reg &= ~bit;
	rbuf_writel(priv, reg, RBUF_CONTROL);
1061 1062 1063 1064
}

static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
{
1065
	unsigned int index;
1066 1067 1068 1069 1070 1071 1072
	u32 reg;

	/* Disable RXCHK, active filters and Broadcom tag matching */
	reg = rxchk_readl(priv, RXCHK_CONTROL);
	reg &= ~(RXCHK_BRCM_TAG_MATCH_MASK <<
		 RXCHK_BRCM_TAG_MATCH_SHIFT | RXCHK_EN | RXCHK_BRCM_TAG_EN);
	rxchk_writel(priv, reg, RXCHK_CONTROL);
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082
	/* Make sure we restore correct CID index in case HW lost
	 * its context during deep idle state
	 */
	for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
		rxchk_writel(priv, priv->filters_loc[index] <<
			     RXCHK_BRCM_TAG_CID_SHIFT, RXCHK_BRCM_TAG(index));
		rxchk_writel(priv, 0xff00ffff, RXCHK_BRCM_TAG_MASK(index));
	}

1083
	/* Clear the MagicPacket detection logic */
1084
	mpd_enable_set(priv, false);
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	reg = intrl2_0_readl(priv, INTRL2_CPU_STATUS);
	if (reg & INTRL2_0_MPD)
		netdev_info(priv->netdev, "Wake-on-LAN (MPD) interrupt!\n");

	if (reg & INTRL2_0_BRCM_MATCH_TAG) {
		reg = rxchk_readl(priv, RXCHK_BRCM_TAG_MATCH_STATUS) &
				  RXCHK_BRCM_TAG_MATCH_MASK;
		netdev_info(priv->netdev,
			    "Wake-on-LAN (filters 0x%02x) interrupt!\n", reg);
	}

1097 1098
	netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
}
1099

1100 1101 1102 1103 1104 1105 1106 1107
static void bcm_sysport_dim_work(struct work_struct *work)
{
	struct net_dim *dim = container_of(work, struct net_dim, work);
	struct bcm_sysport_net_dim *ndim =
			container_of(dim, struct bcm_sysport_net_dim, dim);
	struct bcm_sysport_priv *priv =
			container_of(ndim, struct bcm_sysport_priv, dim);
	struct net_dim_cq_moder cur_profile =
1108
			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1109

1110
	bcm_sysport_set_rx_coalesce(priv, cur_profile.usec, cur_profile.pkts);
1111 1112 1113
	dim->state = NET_DIM_START_MEASURE;
}

1114 1115 1116 1117 1118
/* RX and misc interrupt routine */
static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct bcm_sysport_priv *priv = netdev_priv(dev);
1119 1120
	struct bcm_sysport_tx_ring *txr;
	unsigned int ring, ring_bit;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
			  ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	if (unlikely(priv->irq0_stat == 0)) {
		netdev_warn(priv->netdev, "spurious RX interrupt\n");
		return IRQ_NONE;
	}

	if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
1132
		priv->dim.event_ctr++;
1133 1134 1135
		if (likely(napi_schedule_prep(&priv->napi))) {
			/* disable RX interrupts */
			intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
1136
			__napi_schedule_irqoff(&priv->napi);
1137 1138 1139 1140 1141 1142 1143 1144 1145
		}
	}

	/* TX ring is full, perform a full reclaim since we do not know
	 * which one would trigger this interrupt
	 */
	if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
		bcm_sysport_tx_reclaim_all(priv);

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (!priv->is_lite)
		goto out;

	for (ring = 0; ring < dev->num_tx_queues; ring++) {
		ring_bit = BIT(ring + INTRL2_0_TDMA_MBDONE_SHIFT);
		if (!(priv->irq0_stat & ring_bit))
			continue;

		txr = &priv->tx_rings[ring];

		if (likely(napi_schedule_prep(&txr->napi))) {
			intrl2_0_mask_set(priv, ring_bit);
			__napi_schedule(&txr->napi);
		}
	}
out:
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	return IRQ_HANDLED;
}

/* TX interrupt service routine */
static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct bcm_sysport_tx_ring *txr;
	unsigned int ring;

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);

	if (unlikely(priv->irq1_stat == 0)) {
		netdev_warn(priv->netdev, "spurious TX interrupt\n");
		return IRQ_NONE;
	}

	for (ring = 0; ring < dev->num_tx_queues; ring++) {
		if (!(priv->irq1_stat & BIT(ring)))
			continue;

		txr = &priv->tx_rings[ring];

		if (likely(napi_schedule_prep(&txr->napi))) {
			intrl2_1_mask_set(priv, BIT(ring));
1190
			__napi_schedule_irqoff(&txr->napi);
1191 1192 1193 1194 1195 1196
		}
	}

	return IRQ_HANDLED;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205
static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
{
	struct bcm_sysport_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcm_sysport_poll_controller(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	disable_irq(priv->irq0);
	bcm_sysport_rx_isr(priv->irq0, priv);
	enable_irq(priv->irq0);

1215 1216 1217 1218 1219
	if (!priv->is_lite) {
		disable_irq(priv->irq1);
		bcm_sysport_tx_isr(priv->irq1, priv);
		enable_irq(priv->irq1);
	}
1220 1221 1222
}
#endif

1223 1224
static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
					      struct net_device *dev)
1225
{
1226
	struct bcm_sysport_priv *priv = netdev_priv(dev);
1227
	struct sk_buff *nskb;
1228
	struct bcm_tsb *tsb;
1229 1230 1231
	u32 csum_info;
	u8 ip_proto;
	u16 csum_start;
1232
	__be16 ip_ver;
1233 1234 1235 1236 1237

	/* Re-allocate SKB if needed */
	if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
		nskb = skb_realloc_headroom(skb, sizeof(*tsb));
		if (!nskb) {
1238
			dev_kfree_skb_any(skb);
1239
			priv->mib.tx_realloc_tsb_failed++;
1240 1241
			dev->stats.tx_errors++;
			dev->stats.tx_dropped++;
1242
			return NULL;
1243
		}
1244
		dev_consume_skb_any(skb);
1245
		skb = nskb;
1246
		priv->mib.tx_realloc_tsb++;
1247 1248
	}

1249
	tsb = skb_push(skb, sizeof(*tsb));
1250 1251 1252 1253
	/* Zero-out TSB by default */
	memset(tsb, 0, sizeof(*tsb));

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1254
		ip_ver = skb->protocol;
1255
		switch (ip_ver) {
1256
		case htons(ETH_P_IP):
1257 1258
			ip_proto = ip_hdr(skb)->protocol;
			break;
1259
		case htons(ETH_P_IPV6):
1260 1261 1262
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1263
			return skb;
1264 1265 1266 1267 1268 1269 1270 1271 1272
		}

		/* Get the checksum offset and the L4 (transport) offset */
		csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
		csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
		csum_info |= (csum_start << L4_PTR_SHIFT);

		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			csum_info |= L4_LENGTH_VALID;
1273 1274
			if (ip_proto == IPPROTO_UDP &&
			    ip_ver == htons(ETH_P_IP))
1275
				csum_info |= L4_UDP;
1276
		} else {
1277
			csum_info = 0;
1278
		}
1279 1280 1281 1282

		tsb->l4_ptr_dest_map = csum_info;
	}

1283
	return skb;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct bcm_sysport_tx_ring *ring;
	struct bcm_sysport_cb *cb;
	struct netdev_queue *txq;
	struct dma_desc *desc;
1295
	unsigned int skb_len;
1296
	unsigned long flags;
1297 1298 1299 1300 1301 1302 1303 1304 1305
	dma_addr_t mapping;
	u32 len_status;
	u16 queue;
	int ret;

	queue = skb_get_queue_mapping(skb);
	txq = netdev_get_tx_queue(dev, queue);
	ring = &priv->tx_rings[queue];

1306 1307
	/* lock against tx reclaim in BH context and TX ring full interrupt */
	spin_lock_irqsave(&ring->lock, flags);
1308 1309 1310 1311 1312 1313 1314
	if (unlikely(ring->desc_count == 0)) {
		netif_tx_stop_queue(txq);
		netdev_err(dev, "queue %d awake and ring full!\n", queue);
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1315 1316 1317 1318 1319 1320 1321 1322 1323
	/* Insert TSB and checksum infos */
	if (priv->tsb_en) {
		skb = bcm_sysport_insert_tsb(skb, dev);
		if (!skb) {
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1324
	skb_len = skb->len;
1325 1326

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1327
	if (dma_mapping_error(kdev, mapping)) {
1328
		priv->mib.tx_dma_failed++;
1329
		netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
1330
			  skb->data, skb_len);
1331 1332 1333 1334 1335 1336 1337 1338
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* Remember the SKB for future freeing */
	cb = &ring->cbs[ring->curr_desc];
	cb->skb = skb;
	dma_unmap_addr_set(cb, dma_addr, mapping);
1339
	dma_unmap_len_set(cb, dma_len, skb_len);
1340 1341 1342 1343 1344 1345

	/* Fetch a descriptor entry from our pool */
	desc = ring->desc_cpu;

	desc->addr_lo = lower_32_bits(mapping);
	len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
1346
	len_status |= (skb_len << DESC_LEN_SHIFT);
1347
	len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
1348
		       DESC_STATUS_SHIFT;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);

	ring->curr_desc++;
	if (ring->curr_desc == ring->size)
		ring->curr_desc = 0;
	ring->desc_count--;

	/* Ensure write completion of the descriptor status/length
	 * in DRAM before the System Port WRITE_PORT register latches
	 * the value
	 */
	wmb();
	desc->addr_status_len = len_status;
	wmb();

	/* Write this descriptor address to the RING write port */
	tdma_port_write_desc_addr(priv, desc, ring->index);

	/* Check ring space and update SW control flow */
	if (ring->desc_count == 0)
		netif_tx_stop_queue(txq);

	netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
1373
		  ring->index, ring->desc_count, ring->curr_desc);
1374 1375 1376

	ret = NETDEV_TX_OK;
out:
1377
	spin_unlock_irqrestore(&ring->lock, flags);
1378 1379 1380 1381 1382 1383 1384
	return ret;
}

static void bcm_sysport_tx_timeout(struct net_device *dev)
{
	netdev_warn(dev, "transmit timeout!\n");

1385
	netif_trans_update(dev);
1386 1387 1388 1389 1390 1391 1392 1393 1394
	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

/* phylib adjust link callback */
static void bcm_sysport_adj_link(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
1395
	struct phy_device *phydev = dev->phydev;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	unsigned int changed = 0;
	u32 cmd_bits = 0, reg;

	if (priv->old_link != phydev->link) {
		changed = 1;
		priv->old_link = phydev->link;
	}

	if (priv->old_duplex != phydev->duplex) {
		changed = 1;
		priv->old_duplex = phydev->duplex;
	}

1409 1410 1411
	if (priv->is_lite)
		goto out;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	switch (phydev->speed) {
	case SPEED_2500:
		cmd_bits = CMD_SPEED_2500;
		break;
	case SPEED_1000:
		cmd_bits = CMD_SPEED_1000;
		break;
	case SPEED_100:
		cmd_bits = CMD_SPEED_100;
		break;
	case SPEED_10:
		cmd_bits = CMD_SPEED_10;
		break;
	default:
		break;
	}
	cmd_bits <<= CMD_SPEED_SHIFT;

	if (phydev->duplex == DUPLEX_HALF)
		cmd_bits |= CMD_HD_EN;

	if (priv->old_pause != phydev->pause) {
		changed = 1;
		priv->old_pause = phydev->pause;
	}

	if (!phydev->pause)
		cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;

1441 1442 1443 1444
	if (!changed)
		return;

	if (phydev->link) {
1445 1446
		reg = umac_readl(priv, UMAC_CMD);
		reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
1447 1448
			CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
			CMD_TX_PAUSE_IGNORE);
1449 1450 1451
		reg |= cmd_bits;
		umac_writel(priv, reg, UMAC_CMD);
	}
1452 1453 1454
out:
	if (changed)
		phy_print_status(phydev);
1455 1456
}

1457
static void bcm_sysport_init_dim(struct bcm_sysport_priv *priv,
1458 1459
				 void (*cb)(struct work_struct *work))
{
1460 1461
	struct bcm_sysport_net_dim *dim = &priv->dim;

1462 1463 1464 1465 1466 1467 1468
	INIT_WORK(&dim->dim.work, cb);
	dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
	dim->event_ctr = 0;
	dim->packets = 0;
	dim->bytes = 0;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void bcm_sysport_init_rx_coalesce(struct bcm_sysport_priv *priv)
{
	struct bcm_sysport_net_dim *dim = &priv->dim;
	struct net_dim_cq_moder moder;
	u32 usecs, pkts;

	usecs = priv->rx_coalesce_usecs;
	pkts = priv->rx_max_coalesced_frames;

	/* If DIM was enabled, re-apply default parameters */
	if (dim->use_dim) {
1480
		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
1481 1482 1483 1484 1485 1486 1487
		usecs = moder.usec;
		pkts = moder.pkts;
	}

	bcm_sysport_set_rx_coalesce(priv, usecs, pkts);
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
				    unsigned int index)
{
	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
	struct device *kdev = &priv->pdev->dev;
	size_t size;
	void *p;
	u32 reg;

	/* Simple descriptors partitioning for now */
	size = 256;

	/* We just need one DMA descriptor which is DMA-able, since writing to
	 * the port will allocate a new descriptor in its internal linked-list
	 */
1503 1504
	p = dma_alloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma,
			       GFP_KERNEL);
1505 1506 1507 1508 1509
	if (!p) {
		netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
		return -ENOMEM;
	}

1510
	ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
1511
	if (!ring->cbs) {
1512 1513
		dma_free_coherent(kdev, sizeof(struct dma_desc),
				  ring->desc_cpu, ring->desc_dma);
1514 1515 1516 1517 1518 1519 1520
		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
		return -ENOMEM;
	}

	/* Initialize SW view of the ring */
	spin_lock_init(&ring->lock);
	ring->priv = priv;
E
Eric Dumazet 已提交
1521
	netif_tx_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
1522 1523
	ring->index = index;
	ring->size = size;
1524
	ring->clean_index = 0;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	ring->alloc_size = ring->size;
	ring->desc_cpu = p;
	ring->desc_count = ring->size;
	ring->curr_desc = 0;

	/* Initialize HW ring */
	tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
	tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
	tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
	tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
1535 1536 1537 1538

	/* Configure QID and port mapping */
	reg = tdma_readl(priv, TDMA_DESC_RING_MAPPING(index));
	reg &= ~(RING_QID_MASK | RING_PORT_ID_MASK << RING_PORT_ID_SHIFT);
1539 1540 1541 1542 1543 1544
	if (ring->inspect) {
		reg |= ring->switch_queue & RING_QID_MASK;
		reg |= ring->switch_port << RING_PORT_ID_SHIFT;
	} else {
		reg |= RING_IGNORE_STATUS;
	}
1545
	tdma_writel(priv, reg, TDMA_DESC_RING_MAPPING(index));
1546 1547
	tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));

1548 1549 1550 1551 1552
	/* Enable ACB algorithm 2 */
	reg = tdma_readl(priv, TDMA_CONTROL);
	reg |= tdma_control_bit(priv, ACB_ALGO);
	tdma_writel(priv, reg, TDMA_CONTROL);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/* Do not use tdma_control_bit() here because TSB_SWAP1 collides
	 * with the original definition of ACB_ALGO
	 */
	reg = tdma_readl(priv, TDMA_CONTROL);
	if (priv->is_lite)
		reg &= ~BIT(TSB_SWAP1);
	/* Set a correct TSB format based on host endian */
	if (!IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
		reg |= tdma_control_bit(priv, TSB_SWAP0);
	else
		reg &= ~tdma_control_bit(priv, TSB_SWAP0);
	tdma_writel(priv, reg, TDMA_CONTROL);

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	/* Program the number of descriptors as MAX_THRESHOLD and half of
	 * its size for the hysteresis trigger
	 */
	tdma_writel(priv, ring->size |
			1 << RING_HYST_THRESH_SHIFT,
			TDMA_DESC_RING_MAX_HYST(index));

	/* Enable the ring queue in the arbiter */
	reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
	reg |= (1 << index);
	tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);

	napi_enable(&ring->napi);

	netif_dbg(priv, hw, priv->netdev,
1581 1582 1583
		  "TDMA cfg, size=%d, desc_cpu=%p switch q=%d,port=%d\n",
		  ring->size, ring->desc_cpu, ring->switch_queue,
		  ring->switch_port);
1584 1585 1586 1587 1588

	return 0;
}

static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
1589
				     unsigned int index)
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
{
	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
	struct device *kdev = &priv->pdev->dev;
	u32 reg;

	/* Caller should stop the TDMA engine */
	reg = tdma_readl(priv, TDMA_STATUS);
	if (!(reg & TDMA_DISABLED))
		netdev_warn(priv->netdev, "TDMA not stopped!\n");

1600 1601 1602 1603 1604 1605 1606
	/* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
	 * fail, so by checking this pointer we know whether the TX ring was
	 * fully initialized or not.
	 */
	if (!ring->cbs)
		return;

1607 1608 1609
	napi_disable(&ring->napi);
	netif_napi_del(&ring->napi);

1610
	bcm_sysport_tx_clean(priv, ring);
1611 1612 1613 1614 1615

	kfree(ring->cbs);
	ring->cbs = NULL;

	if (ring->desc_dma) {
1616 1617
		dma_free_coherent(kdev, sizeof(struct dma_desc),
				  ring->desc_cpu, ring->desc_dma);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		ring->desc_dma = 0;
	}
	ring->size = 0;
	ring->alloc_size = 0;

	netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
}

/* RDMA helper */
static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
1628
				  unsigned int enable)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = rdma_readl(priv, RDMA_CONTROL);
	if (enable)
		reg |= RDMA_EN;
	else
		reg &= ~RDMA_EN;
	rdma_writel(priv, reg, RDMA_CONTROL);

	/* Poll for RMDA disabling completion */
	do {
		reg = rdma_readl(priv, RDMA_STATUS);
		if (!!(reg & RDMA_DISABLED) == !enable)
			return 0;
		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");

	return -ETIMEDOUT;
}

/* TDMA helper */
static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
1655
				  unsigned int enable)
1656 1657 1658 1659 1660 1661
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = tdma_readl(priv, TDMA_CONTROL);
	if (enable)
1662
		reg |= tdma_control_bit(priv, TDMA_EN);
1663
	else
1664
		reg &= ~tdma_control_bit(priv, TDMA_EN);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	tdma_writel(priv, reg, TDMA_CONTROL);

	/* Poll for TMDA disabling completion */
	do {
		reg = tdma_readl(priv, TDMA_STATUS);
		if (!!(reg & TDMA_DISABLED) == !enable)
			return 0;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");

	return -ETIMEDOUT;
}

static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
{
1683
	struct bcm_sysport_cb *cb;
1684 1685
	u32 reg;
	int ret;
1686
	int i;
1687 1688

	/* Initialize SW view of the RX ring */
1689
	priv->num_rx_bds = priv->num_rx_desc_words / WORDS_PER_DESC;
1690 1691 1692
	priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
	priv->rx_c_index = 0;
	priv->rx_read_ptr = 0;
1693 1694
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
				GFP_KERNEL);
1695 1696 1697 1698 1699
	if (!priv->rx_cbs) {
		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
		return -ENOMEM;
	}

1700 1701 1702 1703 1704
	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DESC_SIZE;
	}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	ret = bcm_sysport_alloc_rx_bufs(priv);
	if (ret) {
		netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
		return ret;
	}

	/* Initialize HW, ensure RDMA is disabled */
	reg = rdma_readl(priv, RDMA_STATUS);
	if (!(reg & RDMA_DISABLED))
		rdma_enable_set(priv, 0);

	rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
	rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
	rdma_writel(priv, 0, RDMA_PROD_INDEX);
	rdma_writel(priv, 0, RDMA_CONS_INDEX);
	rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
			  RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
	/* Operate the queue in ring mode */
	rdma_writel(priv, 0, RDMA_START_ADDR_HI);
	rdma_writel(priv, 0, RDMA_START_ADDR_LO);
	rdma_writel(priv, 0, RDMA_END_ADDR_HI);
1726
	rdma_writel(priv, priv->num_rx_desc_words - 1, RDMA_END_ADDR_LO);
1727 1728

	netif_dbg(priv, hw, priv->netdev,
1729 1730
		  "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
		  priv->num_rx_bds, priv->rx_bds);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

	return 0;
}

static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
{
	struct bcm_sysport_cb *cb;
	unsigned int i;
	u32 reg;

	/* Caller should ensure RDMA is disabled */
	reg = rdma_readl(priv, RDMA_STATUS);
	if (!(reg & RDMA_DISABLED))
		netdev_warn(priv->netdev, "RDMA not stopped!\n");

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];
		if (dma_unmap_addr(cb, dma_addr))
			dma_unmap_single(&priv->pdev->dev,
1750 1751
					 dma_unmap_addr(cb, dma_addr),
					 RX_BUF_LENGTH, DMA_FROM_DEVICE);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		bcm_sysport_free_cb(cb);
	}

	kfree(priv->rx_cbs);
	priv->rx_cbs = NULL;

	netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
}

static void bcm_sysport_set_rx_mode(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

1766 1767 1768
	if (priv->is_lite)
		return;

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	reg = umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC)
		reg |= CMD_PROMISC;
	else
		reg &= ~CMD_PROMISC;
	umac_writel(priv, reg, UMAC_CMD);

	/* No support for ALLMULTI */
	if (dev->flags & IFF_ALLMULTI)
		return;
}

static inline void umac_enable_set(struct bcm_sysport_priv *priv,
1782
				   u32 mask, unsigned int enable)
1783 1784 1785
{
	u32 reg;

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (!priv->is_lite) {
		reg = umac_readl(priv, UMAC_CMD);
		if (enable)
			reg |= mask;
		else
			reg &= ~mask;
		umac_writel(priv, reg, UMAC_CMD);
	} else {
		reg = gib_readl(priv, GIB_CONTROL);
		if (enable)
			reg |= mask;
		else
			reg &= ~mask;
		gib_writel(priv, reg, GIB_CONTROL);
	}
1801 1802 1803 1804 1805 1806

	/* UniMAC stops on a packet boundary, wait for a full-sized packet
	 * to be processed (1 msec).
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
1807 1808
}

1809
static inline void umac_reset(struct bcm_sysport_priv *priv)
1810 1811 1812
{
	u32 reg;

1813 1814 1815
	if (priv->is_lite)
		return;

1816 1817 1818 1819 1820 1821 1822
	reg = umac_readl(priv, UMAC_CMD);
	reg |= CMD_SW_RESET;
	umac_writel(priv, reg, UMAC_CMD);
	udelay(10);
	reg = umac_readl(priv, UMAC_CMD);
	reg &= ~CMD_SW_RESET;
	umac_writel(priv, reg, UMAC_CMD);
1823 1824 1825
}

static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
1826
			     unsigned char *addr)
1827
{
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
		    addr[3];
	u32 mac1 = (addr[4] << 8) | addr[5];

	if (!priv->is_lite) {
		umac_writel(priv, mac0, UMAC_MAC0);
		umac_writel(priv, mac1, UMAC_MAC1);
	} else {
		gib_writel(priv, mac0, GIB_MAC0);
		gib_writel(priv, mac1, GIB_MAC1);
	}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

static void topctrl_flush(struct bcm_sysport_priv *priv)
{
	topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
	mdelay(1);
	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static int bcm_sysport_change_mac(struct net_device *dev, void *p)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EINVAL;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

	/* interface is disabled, changes to MAC will be reflected on next
	 * open call
	 */
	if (!netif_running(dev))
		return 0;

	umac_set_hw_addr(priv, dev->dev_addr);

	return 0;
}

1871 1872
static void bcm_sysport_get_stats64(struct net_device *dev,
				    struct rtnl_link_stats64 *stats)
1873 1874
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
1875 1876
	struct bcm_sysport_stats64 *stats64 = &priv->stats64;
	unsigned int start;
1877

1878 1879
	netdev_stats_to_stats64(stats, &dev->stats);

1880 1881
	bcm_sysport_update_tx_stats(priv, &stats->tx_bytes,
				    &stats->tx_packets);
1882 1883 1884 1885 1886 1887

	do {
		start = u64_stats_fetch_begin_irq(&priv->syncp);
		stats->rx_packets = stats64->rx_packets;
		stats->rx_bytes = stats64->rx_bytes;
	} while (u64_stats_fetch_retry_irq(&priv->syncp, start));
1888 1889
}

1890 1891 1892 1893 1894
static void bcm_sysport_netif_start(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	/* Enable NAPI */
1895 1896
	bcm_sysport_init_dim(priv, bcm_sysport_dim_work);
	bcm_sysport_init_rx_coalesce(priv);
1897 1898
	napi_enable(&priv->napi);

1899 1900 1901
	/* Enable RX interrupt and TX ring full interrupt */
	intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);

1902
	phy_start(dev->phydev);
1903

1904 1905 1906 1907 1908
	/* Enable TX interrupts for the TXQs */
	if (!priv->is_lite)
		intrl2_1_mask_clear(priv, 0xffffffff);
	else
		intrl2_0_mask_clear(priv, INTRL2_0_TDMA_MBDONE_MASK);
1909 1910
}

1911 1912 1913 1914 1915 1916
static void rbuf_init(struct bcm_sysport_priv *priv)
{
	u32 reg;

	reg = rbuf_readl(priv, RBUF_CONTROL);
	reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
1917
	/* Set a correct RSB format on SYSTEMPORT Lite */
1918
	if (priv->is_lite)
1919
		reg &= ~RBUF_RSB_SWAP1;
1920 1921 1922

	/* Set a correct RSB format based on host endian */
	if (!IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1923
		reg |= RBUF_RSB_SWAP0;
1924 1925
	else
		reg &= ~RBUF_RSB_SWAP0;
1926 1927 1928
	rbuf_writel(priv, reg, RBUF_CONTROL);
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static inline void bcm_sysport_mask_all_intrs(struct bcm_sysport_priv *priv)
{
	intrl2_0_mask_set(priv, 0xffffffff);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	if (!priv->is_lite) {
		intrl2_1_mask_set(priv, 0xffffffff);
		intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	}
}

static inline void gib_set_pad_extension(struct bcm_sysport_priv *priv)
{
1941
	u32 reg;
1942

1943 1944
	reg = gib_readl(priv, GIB_CONTROL);
	/* Include Broadcom tag in pad extension and fix up IPG_LENGTH */
1945 1946 1947 1948
	if (netdev_uses_dsa(priv->netdev)) {
		reg &= ~(GIB_PAD_EXTENSION_MASK << GIB_PAD_EXTENSION_SHIFT);
		reg |= ENET_BRCM_TAG_LEN << GIB_PAD_EXTENSION_SHIFT;
	}
1949 1950 1951
	reg &= ~(GIB_IPG_LEN_MASK << GIB_IPG_LEN_SHIFT);
	reg |= 12 << GIB_IPG_LEN_SHIFT;
	gib_writel(priv, reg, GIB_CONTROL);
1952 1953
}

1954 1955 1956
static int bcm_sysport_open(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
1957
	struct phy_device *phydev;
1958 1959 1960 1961
	unsigned int i;
	int ret;

	/* Reset UniMAC */
1962
	umac_reset(priv);
1963 1964 1965 1966 1967

	/* Flush TX and RX FIFOs at TOPCTRL level */
	topctrl_flush(priv);

	/* Disable the UniMAC RX/TX */
1968
	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
1969 1970

	/* Enable RBUF 2bytes alignment and Receive Status Block */
1971
	rbuf_init(priv);
1972 1973

	/* Set maximum frame length */
1974 1975 1976 1977
	if (!priv->is_lite)
		umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
	else
		gib_set_pad_extension(priv);
1978

1979 1980 1981 1982 1983
	/* Apply features again in case we changed them while interface was
	 * down
	 */
	bcm_sysport_set_features(dev, dev->features);

1984 1985 1986
	/* Set MAC address */
	umac_set_hw_addr(priv, dev->dev_addr);

1987 1988 1989
	phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
				0, priv->phy_interface);
	if (!phydev) {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		netdev_err(dev, "could not attach to PHY\n");
		return -ENODEV;
	}

	/* Reset house keeping link status */
	priv->old_duplex = -1;
	priv->old_link = -1;
	priv->old_pause = -1;

	/* mask all interrupts and request them */
2000
	bcm_sysport_mask_all_intrs(priv);
2001 2002 2003 2004 2005 2006 2007

	ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
	if (ret) {
		netdev_err(dev, "failed to request RX interrupt\n");
		goto out_phy_disconnect;
	}

2008 2009 2010 2011 2012 2013 2014
	if (!priv->is_lite) {
		ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0,
				  dev->name, dev);
		if (ret) {
			netdev_err(dev, "failed to request TX interrupt\n");
			goto out_free_irq0;
		}
2015 2016 2017 2018 2019 2020 2021
	}

	/* Initialize both hardware and software ring */
	for (i = 0; i < dev->num_tx_queues; i++) {
		ret = bcm_sysport_init_tx_ring(priv, i);
		if (ret) {
			netdev_err(dev, "failed to initialize TX ring %d\n",
2022
				   i);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
			goto out_free_tx_ring;
		}
	}

	/* Initialize linked-list */
	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);

	/* Initialize RX ring */
	ret = bcm_sysport_init_rx_ring(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize RX ring\n");
		goto out_free_rx_ring;
	}

	/* Turn on RDMA */
	ret = rdma_enable_set(priv, 1);
	if (ret)
		goto out_free_rx_ring;

	/* Turn on TDMA */
	ret = tdma_enable_set(priv, 1);
	if (ret)
		goto out_clear_rx_int;

	/* Turn on UniMAC TX/RX */
2048
	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
2049

2050
	bcm_sysport_netif_start(dev);
2051

2052 2053
	netif_tx_start_all_queues(dev);

2054 2055 2056 2057 2058 2059 2060 2061 2062
	return 0;

out_clear_rx_int:
	intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
out_free_rx_ring:
	bcm_sysport_fini_rx_ring(priv);
out_free_tx_ring:
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
2063 2064
	if (!priv->is_lite)
		free_irq(priv->irq1, dev);
2065 2066 2067
out_free_irq0:
	free_irq(priv->irq0, dev);
out_phy_disconnect:
2068
	phy_disconnect(phydev);
2069 2070 2071
	return ret;
}

2072
static void bcm_sysport_netif_stop(struct net_device *dev)
2073 2074 2075 2076
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	/* stop all software from updating hardware */
2077
	netif_tx_disable(dev);
2078
	napi_disable(&priv->napi);
2079
	cancel_work_sync(&priv->dim.dim.work);
2080
	phy_stop(dev->phydev);
2081 2082

	/* mask all interrupts */
2083
	bcm_sysport_mask_all_intrs(priv);
2084 2085 2086 2087 2088 2089 2090 2091 2092
}

static int bcm_sysport_stop(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	int ret;

	bcm_sysport_netif_stop(dev);
2093 2094

	/* Disable UniMAC RX */
2095
	umac_enable_set(priv, CMD_RX_EN, 0);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	ret = tdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "timeout disabling RDMA\n");
		return ret;
	}

	/* Wait for a maximum packet size to be drained */
	usleep_range(2000, 3000);

	ret = rdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "timeout disabling TDMA\n");
		return ret;
	}

	/* Disable UniMAC TX */
2113
	umac_enable_set(priv, CMD_TX_EN, 0);
2114 2115 2116 2117 2118 2119 2120

	/* Free RX/TX rings SW structures */
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	bcm_sysport_fini_rx_ring(priv);

	free_irq(priv->irq0, dev);
2121 2122
	if (!priv->is_lite)
		free_irq(priv->irq1, dev);
2123 2124

	/* Disconnect from PHY */
2125
	phy_disconnect(dev->phydev);
2126 2127 2128 2129

	return 0;
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
static int bcm_sysport_rule_find(struct bcm_sysport_priv *priv,
				 u64 location)
{
	unsigned int index;
	u32 reg;

	for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
		reg = rxchk_readl(priv, RXCHK_BRCM_TAG(index));
		reg >>= RXCHK_BRCM_TAG_CID_SHIFT;
		reg &= RXCHK_BRCM_TAG_CID_MASK;
		if (reg == location)
			return index;
	}

	return -EINVAL;
}

static int bcm_sysport_rule_get(struct bcm_sysport_priv *priv,
				struct ethtool_rxnfc *nfc)
{
	int index;

	/* This is not a rule that we know about */
	index = bcm_sysport_rule_find(priv, nfc->fs.location);
	if (index < 0)
		return -EOPNOTSUPP;

	nfc->fs.ring_cookie = RX_CLS_FLOW_WAKE;

	return 0;
}

static int bcm_sysport_rule_set(struct bcm_sysport_priv *priv,
				struct ethtool_rxnfc *nfc)
{
	unsigned int index;
	u32 reg;

	/* We cannot match locations greater than what the classification ID
	 * permits (256 entries)
	 */
	if (nfc->fs.location > RXCHK_BRCM_TAG_CID_MASK)
		return -E2BIG;

	/* We cannot support flows that are not destined for a wake-up */
	if (nfc->fs.ring_cookie != RX_CLS_FLOW_WAKE)
		return -EOPNOTSUPP;

	/* All filters are already in use, we cannot match more rules */
	if (bitmap_weight(priv->filters, RXCHK_BRCM_TAG_MAX) ==
	    RXCHK_BRCM_TAG_MAX)
		return -ENOSPC;

	index = find_first_zero_bit(priv->filters, RXCHK_BRCM_TAG_MAX);
	if (index > RXCHK_BRCM_TAG_MAX)
		return -ENOSPC;

	/* Location is the classification ID, and index is the position
	 * within one of our 8 possible filters to be programmed
	 */
	reg = rxchk_readl(priv, RXCHK_BRCM_TAG(index));
	reg &= ~(RXCHK_BRCM_TAG_CID_MASK << RXCHK_BRCM_TAG_CID_SHIFT);
	reg |= nfc->fs.location << RXCHK_BRCM_TAG_CID_SHIFT;
	rxchk_writel(priv, reg, RXCHK_BRCM_TAG(index));
	rxchk_writel(priv, 0xff00ffff, RXCHK_BRCM_TAG_MASK(index));

2196
	priv->filters_loc[index] = nfc->fs.location;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	set_bit(index, priv->filters);

	return 0;
}

static int bcm_sysport_rule_del(struct bcm_sysport_priv *priv,
				u64 location)
{
	int index;

	/* This is not a rule that we know about */
	index = bcm_sysport_rule_find(priv, location);
	if (index < 0)
		return -EOPNOTSUPP;

	/* No need to disable this filter if it was enabled, this will
	 * be taken care of during suspend time by bcm_sysport_suspend_to_wol
	 */
	clear_bit(index, priv->filters);
2216
	priv->filters_loc[index] = 0;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

	return 0;
}

static int bcm_sysport_get_rxnfc(struct net_device *dev,
				 struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	int ret = -EOPNOTSUPP;

	switch (nfc->cmd) {
	case ETHTOOL_GRXCLSRULE:
		ret = bcm_sysport_rule_get(priv, nfc);
		break;
	default:
		break;
	}

	return ret;
}

static int bcm_sysport_set_rxnfc(struct net_device *dev,
				 struct ethtool_rxnfc *nfc)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	int ret = -EOPNOTSUPP;

	switch (nfc->cmd) {
	case ETHTOOL_SRXCLSRLINS:
		ret = bcm_sysport_rule_set(priv, nfc);
		break;
	case ETHTOOL_SRXCLSRLDEL:
		ret = bcm_sysport_rule_del(priv, nfc->fs.location);
		break;
	default:
		break;
	}

	return ret;
}

2258
static const struct ethtool_ops bcm_sysport_ethtool_ops = {
2259 2260 2261 2262 2263 2264 2265
	.get_drvinfo		= bcm_sysport_get_drvinfo,
	.get_msglevel		= bcm_sysport_get_msglvl,
	.set_msglevel		= bcm_sysport_set_msglvl,
	.get_link		= ethtool_op_get_link,
	.get_strings		= bcm_sysport_get_strings,
	.get_ethtool_stats	= bcm_sysport_get_stats,
	.get_sset_count		= bcm_sysport_get_sset_count,
2266 2267
	.get_wol		= bcm_sysport_get_wol,
	.set_wol		= bcm_sysport_set_wol,
2268 2269
	.get_coalesce		= bcm_sysport_get_coalesce,
	.set_coalesce		= bcm_sysport_set_coalesce,
2270 2271
	.get_link_ksettings     = phy_ethtool_get_link_ksettings,
	.set_link_ksettings     = phy_ethtool_set_link_ksettings,
2272 2273
	.get_rxnfc		= bcm_sysport_get_rxnfc,
	.set_rxnfc		= bcm_sysport_set_rxnfc,
2274 2275
};

2276
static u16 bcm_sysport_select_queue(struct net_device *dev, struct sk_buff *skb,
2277
				    struct net_device *sb_dev)
2278 2279 2280 2281 2282 2283 2284
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u16 queue = skb_get_queue_mapping(skb);
	struct bcm_sysport_tx_ring *tx_ring;
	unsigned int q, port;

	if (!netdev_uses_dsa(dev))
2285
		return netdev_pick_tx(dev, skb, NULL);
2286 2287 2288 2289 2290 2291

	/* DSA tagging layer will have configured the correct queue */
	q = BRCM_TAG_GET_QUEUE(queue);
	port = BRCM_TAG_GET_PORT(queue);
	tx_ring = priv->ring_map[q + port * priv->per_port_num_tx_queues];

2292
	if (unlikely(!tx_ring))
2293
		return netdev_pick_tx(dev, skb, NULL);
2294

2295 2296 2297
	return tx_ring->index;
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static const struct net_device_ops bcm_sysport_netdev_ops = {
	.ndo_start_xmit		= bcm_sysport_xmit,
	.ndo_tx_timeout		= bcm_sysport_tx_timeout,
	.ndo_open		= bcm_sysport_open,
	.ndo_stop		= bcm_sysport_stop,
	.ndo_set_features	= bcm_sysport_set_features,
	.ndo_set_rx_mode	= bcm_sysport_set_rx_mode,
	.ndo_set_mac_address	= bcm_sysport_change_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcm_sysport_poll_controller,
#endif
	.ndo_get_stats64	= bcm_sysport_get_stats64,
	.ndo_select_queue	= bcm_sysport_select_queue,
};

2313
static int bcm_sysport_map_queues(struct notifier_block *nb,
2314 2315 2316
				  struct dsa_notifier_register_info *info)
{
	struct bcm_sysport_tx_ring *ring;
2317
	struct bcm_sysport_priv *priv;
2318 2319
	struct net_device *slave_dev;
	unsigned int num_tx_queues;
2320
	unsigned int q, qp, port;
2321 2322 2323 2324 2325 2326 2327
	struct net_device *dev;

	priv = container_of(nb, struct bcm_sysport_priv, dsa_notifier);
	if (priv->netdev != info->master)
		return 0;

	dev = info->master;
2328 2329 2330 2331 2332 2333 2334

	/* We can't be setting up queue inspection for non directly attached
	 * switches
	 */
	if (info->switch_number)
		return 0;

2335 2336 2337
	if (dev->netdev_ops != &bcm_sysport_netdev_ops)
		return 0;

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	port = info->port_number;
	slave_dev = info->info.dev;

	/* On SYSTEMPORT Lite we have twice as less queues, so we cannot do a
	 * 1:1 mapping, we can only do a 2:1 mapping. By reducing the number of
	 * per-port (slave_dev) network devices queue, we achieve just that.
	 * This need to happen now before any slave network device is used such
	 * it accurately reflects the number of real TX queues.
	 */
	if (priv->is_lite)
		netif_set_real_num_tx_queues(slave_dev,
					     slave_dev->num_tx_queues / 2);
2350

2351 2352 2353 2354
	num_tx_queues = slave_dev->real_num_tx_queues;

	if (priv->per_port_num_tx_queues &&
	    priv->per_port_num_tx_queues != num_tx_queues)
2355
		netdev_warn(slave_dev, "asymmetric number of per-port queues\n");
2356 2357 2358

	priv->per_port_num_tx_queues = num_tx_queues;

2359 2360 2361 2362 2363 2364
	for (q = 0, qp = 0; q < dev->num_tx_queues && qp < num_tx_queues;
	     q++) {
		ring = &priv->tx_rings[q];

		if (ring->inspect)
			continue;
2365 2366 2367 2368

		/* Just remember the mapping actual programming done
		 * during bcm_sysport_init_tx_ring
		 */
2369
		ring->switch_queue = qp;
2370
		ring->switch_port = port;
2371
		ring->inspect = true;
2372
		priv->ring_map[q + port * num_tx_queues] = ring;
2373
		qp++;
2374 2375 2376 2377 2378
	}

	return 0;
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static int bcm_sysport_unmap_queues(struct notifier_block *nb,
				    struct dsa_notifier_register_info *info)
{
	struct bcm_sysport_tx_ring *ring;
	struct bcm_sysport_priv *priv;
	struct net_device *slave_dev;
	unsigned int num_tx_queues;
	struct net_device *dev;
	unsigned int q, port;

	priv = container_of(nb, struct bcm_sysport_priv, dsa_notifier);
	if (priv->netdev != info->master)
		return 0;

	dev = info->master;

	if (dev->netdev_ops != &bcm_sysport_netdev_ops)
		return 0;

	port = info->port_number;
	slave_dev = info->info.dev;

	num_tx_queues = slave_dev->real_num_tx_queues;

	for (q = 0; q < dev->num_tx_queues; q++) {
		ring = &priv->tx_rings[q];

		if (ring->switch_port != port)
			continue;

		if (!ring->inspect)
			continue;

		ring->inspect = false;
		priv->ring_map[q + port * num_tx_queues] = NULL;
	}

	return 0;
}

2419
static int bcm_sysport_dsa_notifier(struct notifier_block *nb,
2420 2421
				    unsigned long event, void *ptr)
{
2422
	int ret = NOTIFY_DONE;
2423

2424 2425 2426 2427 2428 2429 2430 2431
	switch (event) {
	case DSA_PORT_REGISTER:
		ret = bcm_sysport_map_queues(nb, ptr);
		break;
	case DSA_PORT_UNREGISTER:
		ret = bcm_sysport_unmap_queues(nb, ptr);
		break;
	}
2432

2433
	return notifier_from_errno(ret);
2434 2435
}

2436 2437
#define REV_FMT	"v%2x.%02x"

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static const struct bcm_sysport_hw_params bcm_sysport_params[] = {
	[SYSTEMPORT] = {
		.is_lite = false,
		.num_rx_desc_words = SP_NUM_HW_RX_DESC_WORDS,
	},
	[SYSTEMPORT_LITE] = {
		.is_lite = true,
		.num_rx_desc_words = SP_LT_NUM_HW_RX_DESC_WORDS,
	},
};

static const struct of_device_id bcm_sysport_of_match[] = {
	{ .compatible = "brcm,systemportlite-v1.00",
	  .data = &bcm_sysport_params[SYSTEMPORT_LITE] },
	{ .compatible = "brcm,systemport-v1.00",
	  .data = &bcm_sysport_params[SYSTEMPORT] },
	{ .compatible = "brcm,systemport",
	  .data = &bcm_sysport_params[SYSTEMPORT] },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_sysport_of_match);

2460 2461
static int bcm_sysport_probe(struct platform_device *pdev)
{
2462 2463
	const struct bcm_sysport_hw_params *params;
	const struct of_device_id *of_id = NULL;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	struct bcm_sysport_priv *priv;
	struct device_node *dn;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	u32 txq, rxq;
	int ret;

	dn = pdev->dev.of_node;
	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2474 2475 2476 2477 2478 2479
	of_id = of_match_node(bcm_sysport_of_match, dn);
	if (!of_id || !of_id->data)
		return -EINVAL;

	/* Fairly quickly we need to know the type of adapter we have */
	params = of_id->data;
2480 2481 2482 2483 2484 2485 2486

	/* Read the Transmit/Receive Queue properties */
	if (of_property_read_u32(dn, "systemport,num-txq", &txq))
		txq = TDMA_NUM_RINGS;
	if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
		rxq = 1;

2487 2488 2489 2490
	/* Sanity check the number of transmit queues */
	if (!txq || txq > TDMA_NUM_RINGS)
		return -EINVAL;

2491 2492 2493 2494 2495 2496 2497
	dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
	if (!dev)
		return -ENOMEM;

	/* Initialize private members */
	priv = netdev_priv(dev);

2498 2499 2500 2501 2502 2503 2504
	/* Allocate number of TX rings */
	priv->tx_rings = devm_kcalloc(&pdev->dev, txq,
				      sizeof(struct bcm_sysport_tx_ring),
				      GFP_KERNEL);
	if (!priv->tx_rings)
		return -ENOMEM;

2505 2506 2507
	priv->is_lite = params->is_lite;
	priv->num_rx_desc_words = params->num_rx_desc_words;

2508
	priv->irq0 = platform_get_irq(pdev, 0);
2509
	if (!priv->is_lite) {
2510
		priv->irq1 = platform_get_irq(pdev, 1);
2511 2512 2513 2514
		priv->wol_irq = platform_get_irq(pdev, 2);
	} else {
		priv->wol_irq = platform_get_irq(pdev, 1);
	}
2515
	if (priv->irq0 <= 0 || (priv->irq1 <= 0 && !priv->is_lite)) {
2516 2517
		dev_err(&pdev->dev, "invalid interrupts\n");
		ret = -EINVAL;
2518
		goto err_free_netdev;
2519 2520
	}

2521 2522 2523
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		ret = PTR_ERR(priv->base);
2524
		goto err_free_netdev;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	}

	priv->netdev = dev;
	priv->pdev = pdev;

	priv->phy_interface = of_get_phy_mode(dn);
	/* Default to GMII interface mode */
	if (priv->phy_interface < 0)
		priv->phy_interface = PHY_INTERFACE_MODE_GMII;

2535 2536 2537 2538 2539 2540 2541
	/* In the case of a fixed PHY, the DT node associated
	 * to the PHY is the Ethernet MAC DT node.
	 */
	if (of_phy_is_fixed_link(dn)) {
		ret = of_phy_register_fixed_link(dn);
		if (ret) {
			dev_err(&pdev->dev, "failed to register fixed PHY\n");
2542
			goto err_free_netdev;
2543 2544 2545 2546 2547
		}

		priv->phy_dn = dn;
	}

2548 2549 2550 2551
	/* Initialize netdevice members */
	macaddr = of_get_mac_address(dn);
	if (!macaddr || !is_valid_ether_addr(macaddr)) {
		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
2552
		eth_hw_addr_random(dev);
2553 2554 2555 2556 2557 2558
	} else {
		ether_addr_copy(dev->dev_addr, macaddr);
	}

	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
2559
	dev->ethtool_ops = &bcm_sysport_ethtool_ops;
2560 2561 2562
	dev->netdev_ops = &bcm_sysport_netdev_ops;
	netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);

2563 2564 2565 2566
	dev->features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
			 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
2567

2568 2569 2570
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = 1;
	ret = devm_request_irq(&pdev->dev, priv->wol_irq,
2571
			       bcm_sysport_wol_isr, 0, dev->name, priv);
2572 2573 2574
	if (!ret)
		device_set_wakeup_capable(&pdev->dev, 1);

2575
	/* Set the needed headroom once and for all */
2576 2577
	BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
	dev->needed_headroom += sizeof(struct bcm_tsb);
2578

2579 2580 2581
	/* libphy will adjust the link state accordingly */
	netif_carrier_off(dev);

2582
	priv->rx_max_coalesced_frames = 1;
2583 2584
	u64_stats_init(&priv->syncp);

2585 2586 2587 2588 2589 2590 2591 2592
	priv->dsa_notifier.notifier_call = bcm_sysport_dsa_notifier;

	ret = register_dsa_notifier(&priv->dsa_notifier);
	if (ret) {
		dev_err(&pdev->dev, "failed to register DSA notifier\n");
		goto err_deregister_fixed_link;
	}

2593 2594 2595
	ret = register_netdev(dev);
	if (ret) {
		dev_err(&pdev->dev, "failed to register net_device\n");
2596
		goto err_deregister_notifier;
2597 2598 2599 2600
	}

	priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
	dev_info(&pdev->dev,
2601 2602
		 "Broadcom SYSTEMPORT%s " REV_FMT
		 " (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
2603
		 priv->is_lite ? " Lite" : "",
2604
		 (priv->rev >> 8) & 0xff, priv->rev & 0xff,
2605
		 priv->irq0, priv->irq1, txq, rxq);
2606 2607

	return 0;
2608

2609 2610
err_deregister_notifier:
	unregister_dsa_notifier(&priv->dsa_notifier);
2611 2612 2613 2614
err_deregister_fixed_link:
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
err_free_netdev:
2615 2616 2617 2618 2619 2620 2621
	free_netdev(dev);
	return ret;
}

static int bcm_sysport_remove(struct platform_device *pdev)
{
	struct net_device *dev = dev_get_drvdata(&pdev->dev);
2622
	struct bcm_sysport_priv *priv = netdev_priv(dev);
2623
	struct device_node *dn = pdev->dev.of_node;
2624 2625 2626 2627

	/* Not much to do, ndo_close has been called
	 * and we use managed allocations
	 */
2628
	unregister_dsa_notifier(&priv->dsa_notifier);
2629
	unregister_netdev(dev);
2630 2631
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
2632 2633 2634 2635 2636 2637
	free_netdev(dev);
	dev_set_drvdata(&pdev->dev, NULL);

	return 0;
}

2638 2639 2640 2641
static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
{
	struct net_device *ndev = priv->netdev;
	unsigned int timeout = 1000;
2642
	unsigned int index, i = 0;
2643 2644 2645
	u32 reg;

	reg = umac_readl(priv, UMAC_MPD_CTRL);
2646 2647
	if (priv->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
		reg |= MPD_EN;
2648
	reg &= ~PSW_EN;
2649 2650 2651 2652 2653 2654
	if (priv->wolopts & WAKE_MAGICSECURE) {
		/* Program the SecureOn password */
		umac_writel(priv, get_unaligned_be16(&priv->sopass[0]),
			    UMAC_PSW_MS);
		umac_writel(priv, get_unaligned_be32(&priv->sopass[2]),
			    UMAC_PSW_LS);
2655
		reg |= PSW_EN;
2656
	}
2657 2658
	umac_writel(priv, reg, UMAC_MPD_CTRL);

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	if (priv->wolopts & WAKE_FILTER) {
		/* Turn on ACPI matching to steal packets from RBUF */
		reg = rbuf_readl(priv, RBUF_CONTROL);
		if (priv->is_lite)
			reg |= RBUF_ACPI_EN_LITE;
		else
			reg |= RBUF_ACPI_EN;
		rbuf_writel(priv, reg, RBUF_CONTROL);

		/* Enable RXCHK, active filters and Broadcom tag matching */
		reg = rxchk_readl(priv, RXCHK_CONTROL);
		reg &= ~(RXCHK_BRCM_TAG_MATCH_MASK <<
			 RXCHK_BRCM_TAG_MATCH_SHIFT);
		for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
			reg |= BIT(RXCHK_BRCM_TAG_MATCH_SHIFT + i);
			i++;
		}
		reg |= RXCHK_EN | RXCHK_BRCM_TAG_EN;
		rxchk_writel(priv, reg, RXCHK_CONTROL);
	}

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	/* Make sure RBUF entered WoL mode as result */
	do {
		reg = rbuf_readl(priv, RBUF_STATUS);
		if (reg & RBUF_WOL_MODE)
			break;

		udelay(10);
	} while (timeout-- > 0);

	/* Do not leave the UniMAC RBUF matching only MPD packets */
	if (!timeout) {
2691
		mpd_enable_set(priv, false);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
		return -ETIMEDOUT;
	}

	/* UniMAC receive needs to be turned on */
	umac_enable_set(priv, CMD_RX_EN, 1);

	netif_dbg(priv, wol, ndev, "entered WOL mode\n");

	return 0;
}

2704
static int __maybe_unused bcm_sysport_suspend(struct device *d)
2705 2706 2707 2708
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
2709
	int ret = 0;
2710 2711 2712 2713 2714
	u32 reg;

	if (!netif_running(dev))
		return 0;

2715 2716
	netif_device_detach(dev);

2717 2718
	bcm_sysport_netif_stop(dev);

2719
	phy_suspend(dev->phydev);
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	/* Disable UniMAC RX */
	umac_enable_set(priv, CMD_RX_EN, 0);

	ret = rdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "RDMA timeout!\n");
		return ret;
	}

	/* Disable RXCHK if enabled */
2731
	if (priv->rx_chk_en) {
2732 2733 2734 2735 2736 2737
		reg = rxchk_readl(priv, RXCHK_CONTROL);
		reg &= ~RXCHK_EN;
		rxchk_writel(priv, reg, RXCHK_CONTROL);
	}

	/* Flush RX pipe */
2738 2739
	if (!priv->wolopts)
		topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

	ret = tdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "TDMA timeout!\n");
		return ret;
	}

	/* Wait for a packet boundary */
	usleep_range(2000, 3000);

	umac_enable_set(priv, CMD_TX_EN, 0);

	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);

	/* Free RX/TX rings SW structures */
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	bcm_sysport_fini_rx_ring(priv);

2759 2760 2761 2762 2763
	/* Get prepared for Wake-on-LAN */
	if (device_may_wakeup(d) && priv->wolopts)
		ret = bcm_sysport_suspend_to_wol(priv);

	return ret;
2764 2765
}

2766
static int __maybe_unused bcm_sysport_resume(struct device *d)
2767 2768 2769 2770 2771 2772 2773 2774 2775
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	int ret;

	if (!netif_running(dev))
		return 0;

2776 2777
	umac_reset(priv);

2778 2779 2780 2781 2782
	/* We may have been suspended and never received a WOL event that
	 * would turn off MPD detection, take care of that now
	 */
	bcm_sysport_resume_from_wol(priv);

2783 2784 2785 2786 2787
	/* Initialize both hardware and software ring */
	for (i = 0; i < dev->num_tx_queues; i++) {
		ret = bcm_sysport_init_tx_ring(priv, i);
		if (ret) {
			netdev_err(dev, "failed to initialize TX ring %d\n",
2788
				   i);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
			goto out_free_tx_rings;
		}
	}

	/* Initialize linked-list */
	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);

	/* Initialize RX ring */
	ret = bcm_sysport_init_rx_ring(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize RX ring\n");
		goto out_free_rx_ring;
	}

	/* RX pipe enable */
	topctrl_writel(priv, 0, RX_FLUSH_CNTL);

	ret = rdma_enable_set(priv, 1);
	if (ret) {
		netdev_err(dev, "failed to enable RDMA\n");
		goto out_free_rx_ring;
	}

2812 2813
	/* Restore enabled features */
	bcm_sysport_set_features(dev, dev->features);
2814 2815 2816 2817

	rbuf_init(priv);

	/* Set maximum frame length */
2818 2819 2820 2821
	if (!priv->is_lite)
		umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
	else
		gib_set_pad_extension(priv);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

	/* Set MAC address */
	umac_set_hw_addr(priv, dev->dev_addr);

	umac_enable_set(priv, CMD_RX_EN, 1);

	/* TX pipe enable */
	topctrl_writel(priv, 0, TX_FLUSH_CNTL);

	umac_enable_set(priv, CMD_TX_EN, 1);

	ret = tdma_enable_set(priv, 1);
	if (ret) {
		netdev_err(dev, "TDMA timeout!\n");
		goto out_free_rx_ring;
	}

2839
	phy_resume(dev->phydev);
2840 2841 2842

	bcm_sysport_netif_start(dev);

2843 2844
	netif_device_attach(dev);

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	return 0;

out_free_rx_ring:
	bcm_sysport_fini_rx_ring(priv);
out_free_tx_rings:
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	return ret;
}

static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
		bcm_sysport_suspend, bcm_sysport_resume);

2858 2859 2860 2861 2862 2863
static struct platform_driver bcm_sysport_driver = {
	.probe	= bcm_sysport_probe,
	.remove	= bcm_sysport_remove,
	.driver =  {
		.name = "brcm-systemport",
		.of_match_table = bcm_sysport_of_match,
2864
		.pm = &bcm_sysport_pm_ops,
2865 2866 2867 2868 2869 2870 2871 2872
	},
};
module_platform_driver(bcm_sysport_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
MODULE_ALIAS("platform:brcm-systemport");
MODULE_LICENSE("GPL");