xc5000.c 31.3 KB
Newer Older
1 2 3 4
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
5
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
26
#include <linux/videodev2.h>
27 28 29 30 31 32 33
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
34
#include "tuner-i2c.h"
35 36 37 38 39

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

40 41 42 43 44 45
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
	"\t\t1 keep device energized and with tuner ready all the times.\n"
	"\t\tFaster, but consumes more power and keeps the device hotter");

46 47 48
static DEFINE_MUTEX(xc5000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

49
#define dprintk(level, fmt, arg...) if (debug >= level) \
50 51
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

52
struct xc5000_priv {
53 54
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
55

56
	u32 if_khz;
57
	u32 xtal_khz;
58 59 60 61
	u32 freq_hz;
	u32 bandwidth;
	u8  video_standard;
	u8  rf_mode;
62
	u8  radio_input;
63

64
	int chip_id;
65 66
};

67
/* Misc Defines */
68
#define MAX_TV_STANDARD			24
69 70 71 72 73 74 75 76 77 78 79 80 81
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

82 83 84 85
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x1388

86 87 88 89 90 91 92 93
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
94
#define XREG_POWER_DOWN   0x0A /* Obsolete */
95 96
/* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
#define XREG_OUTPUT_AMP   0x0B
97 98 99
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
100
#define XREG_FINERFREQ    0x10
101 102 103 104 105 106 107 108 109 110 111 112
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09
113
#define XREG_BUILD        0x0D
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
148
struct XC_TV_STANDARD {
149
	char *Name;
150 151
	u16 AudioMode;
	u16 VideoMode;
152
};
153 154

/* Tuner standards */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22
178
#define FM_Radio_INPUT1_MONO	23
179

180
static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 182 183 184 185 186 187 188 189 190 191 192 193
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
194
	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 196 197 198 199 200 201 202
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
203 204
	{"FM Radio-INPUT1",   0x0208, 0x9002},
	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
205 206
};

207 208 209 210 211 212

struct xc5000_fw_cfg {
	char *name;
	u16 size;
};

213
static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
214 215 216 217
	.name = "dvb-fe-xc5000-1.6.114.fw",
	.size = 12401,
};

218 219 220
static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
	.name = "dvb-fe-xc5000c-41.024.5.fw",
	.size = 16497,
221 222
};

223
static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
224
{
225
	switch (chip_id) {
226
	default:
227
	case XC5000A:
228
		return &xc5000a_1_6_114;
229
	case XC5000C:
230
		return &xc5000c_41_024_5;
231 232 233
	}
}

234
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
235
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
236
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
237
static int xc5000_TunerReset(struct dvb_frontend *fe);
238

239
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
240
{
241 242 243 244 245 246 247 248
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
		return XC_RESULT_I2C_WRITE_FAILURE;
	}
	return XC_RESULT_SUCCESS;
249 250
}

251
#if 0
252 253 254
/* This routine is never used because the only time we read data from the
   i2c bus is when we read registers, and we want that to be an atomic i2c
   transaction in case we are on a multi-master bus */
255
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
256
{
257 258 259 260 261 262 263 264
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
		return -EREMOTEIO;
	}
	return 0;
265
}
266
#endif
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
		printk(KERN_WARNING "xc5000: I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return XC_RESULT_SUCCESS;
}

288
static void xc_wait(int wait_ms)
289
{
290
	msleep(wait_ms);
291 292
}

293
static int xc5000_TunerReset(struct dvb_frontend *fe)
294 295 296 297
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

298
	dprintk(1, "%s()\n", __func__);
299

300 301
	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
302 303
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
304
					   DVB_FRONTEND_COMPONENT_TUNER,
305
					   XC5000_TUNER_RESET, 0);
306
		if (ret) {
307
			printk(KERN_ERR "xc5000: reset failed\n");
308 309 310
			return XC_RESULT_RESET_FAILURE;
		}
	} else {
311
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
312 313 314
		return XC_RESULT_RESET_FAILURE;
	}
	return XC_RESULT_SUCCESS;
315 316
}

317
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
318
{
319
	u8 buf[4];
320
	int WatchDogTimer = 100;
321 322 323 324 325 326 327
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
328
	if (result == XC_RESULT_SUCCESS) {
329 330
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
331
			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
332
			if (result == XC_RESULT_SUCCESS) {
333 334
				if ((buf[0] == 0) && (buf[1] == 0)) {
					/* busy flag cleared */
335
					break;
336 337 338
				} else {
					xc_wait(5); /* wait 5 ms */
					WatchDogTimer--;
339 340 341 342 343 344 345 346 347 348
				}
			}
		}
	}
	if (WatchDogTimer < 0)
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

349
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
350 351 352 353 354
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
355
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
356

357 358 359 360
	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
361
		if (len == 0x0000) {
362
			/* RESET command */
363
			result = xc5000_TunerReset(fe);
364
			index += 2;
365
			if (result != XC_RESULT_SUCCESS)
366 367 368 369 370 371 372 373 374 375 376 377 378 379
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
380 381 382 383
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
384
					nbytes_to_send = (len - pos + 2);
385 386 387
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
388
				}
389 390
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);
391

392
				if (result != XC_RESULT_SUCCESS)
393 394 395 396 397 398 399 400 401 402
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

403
static int xc_initialize(struct xc5000_priv *priv)
404
{
405
	dprintk(1, "%s()\n", __func__);
406 407 408
	return xc_write_reg(priv, XREG_INIT, 0);
}

409 410
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
411 412
{
	int ret;
413
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
414
	dprintk(1, "%s() Standard = %s\n",
415
		__func__,
416 417 418 419 420 421 422 423 424
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

425
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
426
{
427
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
428 429
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

430
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
431 432 433
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
434
			__func__);
435 436 437 438
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

439
static const struct dvb_tuner_ops xc5000_tuner_ops;
440

441 442 443
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
444

445
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
446

447 448
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
449 450
		return XC_RESULT_OUT_OF_RANGE;

451 452
	freq_code = (u16)(freq_hz / 15625);

453 454 455 456
	/* Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
457 458 459
}


460 461 462 463
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
464
		__func__, freq_khz, freq_code);
465

466
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
467 468 469
}


470
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
471
{
472
	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
473 474
}

475
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
476 477
{
	int result;
478
	u16 regData;
479 480
	u32 tmp;

481
	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
482
	if (result != XC_RESULT_SUCCESS)
483 484 485
		return result;

	tmp = (u32)regData;
486
	(*freq_error_hz) = (tmp * 15625) / 1000;
487 488 489
	return result;
}

490
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
491
{
492
	return xc5000_readreg(priv, XREG_LOCK, lock_status);
493 494
}

495 496 497
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
498
{
499
	u16 data;
500 501
	int result;

502
	result = xc5000_readreg(priv, XREG_VERSION, &data);
503
	if (result != XC_RESULT_SUCCESS)
504 505
		return result;

506 507 508 509
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
510 511 512 513

	return 0;
}

514 515 516 517 518
static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
{
	return xc5000_readreg(priv, XREG_BUILD, buildrev);
}

519
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
520
{
521
	u16 regData;
522 523
	int result;

524
	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
525
	if (result != XC_RESULT_SUCCESS)
526 527 528 529 530 531
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

532
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
533
{
534
	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
535 536
}

537
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
538
{
539
	return xc5000_readreg(priv, XREG_QUALITY, quality);
540 541
}

542
static u16 WaitForLock(struct xc5000_priv *priv)
543
{
544
	u16 lockState = 0;
545
	int watchDogCount = 40;
546 547

	while ((lockState == 0) && (watchDogCount > 0)) {
548
		xc_get_lock_status(priv, &lockState);
549
		if (lockState != 1) {
550 551 552 553 554 555 556
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

557 558 559
#define XC_TUNE_ANALOG  0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
560 561 562
{
	int found = 0;

563
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
564

565
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
566 567
		return 0;

568 569 570 571
	if (mode == XC_TUNE_ANALOG) {
		if (WaitForLock(priv) == 1)
			found = 1;
	}
572 573 574 575

	return found;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static int xc_set_xtal(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = XC_RESULT_SUCCESS;

	switch (priv->chip_id) {
	default:
	case XC5000A:
		/* 32.000 MHz xtal is default */
		break;
	case XC5000C:
		switch (priv->xtal_khz) {
		default:
		case 32000:
			/* 32.000 MHz xtal is default */
			break;
		case 31875:
			/* 31.875 MHz xtal configuration */
			ret = xc_write_reg(priv, 0x000f, 0x8081);
			break;
		}
		break;
	}
	return ret;
}
601

602
static int xc5000_fwupload(struct dvb_frontend *fe)
603 604 605 606
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;
607 608
	const struct xc5000_fw_cfg *desired_fw =
		xc5000_assign_firmware(priv->chip_id);
609

610 611
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
612
		desired_fw->name);
613

614
	ret = request_firmware(&fw, desired_fw->name,
615
		priv->i2c_props.adap->dev.parent);
616 617 618
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
619
		goto out;
620
	} else {
621
		printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
622
		       fw->size);
623 624 625
		ret = XC_RESULT_SUCCESS;
	}

626
	if (fw->size != desired_fw->size) {
627 628 629
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
630
		printk(KERN_INFO "xc5000: firmware uploading...\n");
631
		ret = xc_load_i2c_sequence(fe,  fw->data);
632 633
		if (XC_RESULT_SUCCESS == ret)
			ret = xc_set_xtal(fe);
634
		printk(KERN_INFO "xc5000: firmware upload complete...\n");
635 636
	}

637
out:
638 639 640 641
	release_firmware(fw);
	return ret;
}

642
static void xc_debug_dump(struct xc5000_priv *priv)
643
{
644 645 646 647 648 649 650 651
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
652
	u16 fw_buildversion = 0;
653 654 655 656 657

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
658
	xc_wait(100);
659

660 661
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
662

663 664
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
665

666 667
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
668 669 670
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
671
		&fw_majorversion, &fw_minorversion);
672 673
	xc_get_buildversion(priv,  &fw_buildversion);
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
674
		hw_majorversion, hw_minorversion,
675
		fw_majorversion, fw_minorversion, fw_buildversion);
676

677 678
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
679

680 681
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
682

683 684
	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
685 686
}

687
static int xc5000_set_params(struct dvb_frontend *fe)
688
{
689
	int ret, b;
690
	struct xc5000_priv *priv = fe->tuner_priv;
691 692 693
	u32 bw = fe->dtv_property_cache.bandwidth_hz;
	u32 freq = fe->dtv_property_cache.frequency;
	u32 delsys  = fe->dtv_property_cache.delivery_system;
694

695 696 697 698 699 700
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
			dprintk(1, "Unable to load firmware and init tuner\n");
			return -EINVAL;
		}
	}
701

702
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	switch (delsys) {
	case SYS_ATSC:
		dprintk(1, "%s() VSB modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_AIR;
		priv->freq_hz = freq - 1750000;
		priv->video_standard = DTV6;
		break;
	case SYS_DVBC_ANNEX_B:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
		priv->freq_hz = freq - 1750000;
		priv->video_standard = DTV6;
		break;
	case SYS_DVBT:
	case SYS_DVBT2:
719
		dprintk(1, "%s() OFDM\n", __func__);
720 721
		switch (bw) {
		case 6000000:
722
			priv->video_standard = DTV6;
723
			priv->freq_hz = freq - 1750000;
724
			break;
725
		case 7000000:
726
			priv->video_standard = DTV7;
727
			priv->freq_hz = freq - 2250000;
728
			break;
729
		case 8000000:
730
			priv->video_standard = DTV8;
731
			priv->freq_hz = freq - 2750000;
732 733 734 735 736
			break;
		default:
			printk(KERN_ERR "xc5000 bandwidth not set!\n");
			return -EINVAL;
		}
737
		priv->rf_mode = XC_RF_MODE_AIR;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
		if (bw <= 6000000) {
			priv->video_standard = DTV6;
			priv->freq_hz = freq - 1750000;
			b = 6;
		} else if (bw <= 7000000) {
			priv->video_standard = DTV7;
			priv->freq_hz = freq - 2250000;
			b = 7;
		} else {
			priv->video_standard = DTV7_8;
			priv->freq_hz = freq - 2750000;
			b = 8;
754
		}
755 756 757 758 759
		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
			b, bw);
		break;
	default:
		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
760 761 762
		return -EINVAL;
	}

763 764
	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
		__func__, freq, priv->freq_hz);
765

766 767 768 769 770 771 772
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
773

774
	ret = xc_SetTVStandard(priv,
775 776
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
777 778 779 780 781
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

782
	ret = xc_set_IF_frequency(priv, priv->if_khz);
783 784
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
785
		       priv->if_khz);
786 787 788
		return -EIO;
	}

789 790
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);

791
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
792

793 794
	if (debug)
		xc_debug_dump(priv);
795

796 797
	priv->bandwidth = bw;

798 799 800
	return 0;
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
	if (ret == XC_RESULT_SUCCESS) {
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
			ret = XC_RESULT_RESET_FAILURE;
		else
			ret = XC_RESULT_SUCCESS;
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
	return ret;
}

820
static int xc5000_set_tv_freq(struct dvb_frontend *fe,
821 822 823 824 825 826
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
827
		__func__, params->frequency);
828

829 830 831 832
	/* Fix me: it could be air. */
	priv->rf_mode = params->mode;
	if (params->mode > XC_RF_MODE_CABLE)
		priv->rf_mode = XC_RF_MODE_CABLE;
833 834 835 836 837 838 839

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
840
	if (params->std & V4L2_STD_MN) {
841 842 843 844 845
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

846
	if (params->std & V4L2_STD_PAL_BG) {
847 848 849 850 851
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

852
	if (params->std & V4L2_STD_PAL_I) {
853 854 855 856 857
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

858
	if (params->std & V4L2_STD_PAL_DK) {
859 860 861 862 863
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

864
	if (params->std & V4L2_STD_SECAM_DK) {
865 866 867 868 869
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

870
	if (params->std & V4L2_STD_SECAM_L) {
871 872 873 874
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

875
	if (params->std & V4L2_STD_SECAM_LC) {
876 877 878 879 880 881 882
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
883
		printk(KERN_ERR
884 885 886 887 888 889 890 891 892 893 894 895 896
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

897 898
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);

899
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
900 901 902 903 904 905 906

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

907 908 909 910 911
static int xc5000_set_radio_freq(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;
912
	u8 radio_input;
913 914 915 916

	dprintk(1, "%s() frequency=%d (in units of khz)\n",
		__func__, params->frequency);

917 918 919 920 921 922 923 924 925
	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
		dprintk(1, "%s() radio input not configured\n", __func__);
		return -EINVAL;
	}

	if (priv->radio_input == XC5000_RADIO_FM1)
		radio_input = FM_Radio_INPUT1;
	else if  (priv->radio_input == XC5000_RADIO_FM2)
		radio_input = FM_Radio_INPUT2;
926 927
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		radio_input = FM_Radio_INPUT1_MONO;
928 929 930 931 932 933
	else {
		dprintk(1, "%s() unknown radio input %d\n", __func__,
			priv->radio_input);
		return -EINVAL;
	}

934 935 936 937
	priv->freq_hz = params->frequency * 125 / 2;

	priv->rf_mode = XC_RF_MODE_AIR;

938 939
	ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
			       XC5000_Standard[radio_input].AudioMode);
940 941 942 943 944 945 946 947 948 949 950 951 952 953

	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

954 955 956 957 958 959
	if ((priv->radio_input == XC5000_RADIO_FM1) ||
				(priv->radio_input == XC5000_RADIO_FM2))
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);

960 961 962 963 964 965 966 967 968 969 970 971 972 973
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);

	return 0;
}

static int xc5000_set_analog_params(struct dvb_frontend *fe,
			     struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;

	if (priv->i2c_props.adap == NULL)
		return -EINVAL;

974 975 976 977 978 979
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
			dprintk(1, "Unable to load firmware and init tuner\n");
			return -EINVAL;
		}
	}
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		ret = xc5000_set_radio_freq(fe, params);
		break;
	case V4L2_TUNER_ANALOG_TV:
	case V4L2_TUNER_DIGITAL_TV:
		ret = xc5000_set_tv_freq(fe, params);
		break;
	}

	return ret;
}


995 996 997
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
998
	dprintk(1, "%s()\n", __func__);
999
	*freq = priv->freq_hz;
1000 1001 1002
	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010
static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);
	*freq = priv->if_khz * 1000;
	return 0;
}

1011 1012 1013
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1014
	dprintk(1, "%s()\n", __func__);
1015

1016 1017 1018 1019 1020 1021 1022
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1023
	u16 lock_status = 0;
1024 1025 1026

	xc_get_lock_status(priv, &lock_status);

1027
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1028 1029 1030 1031 1032 1033

	*status = lock_status;

	return 0;
}

1034
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
1035 1036
{
	struct xc5000_priv *priv = fe->tuner_priv;
1037
	int ret = 0;
1038

1039
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
1040
		ret = xc5000_fwupload(fe);
1041 1042
		if (ret != XC_RESULT_SUCCESS)
			return ret;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC5000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
1053
	xc_wait(100);
1054 1055 1056 1057 1058 1059 1060

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

1061 1062
static int xc5000_sleep(struct dvb_frontend *fe)
{
1063 1064
	int ret;

1065
	dprintk(1, "%s()\n", __func__);
1066

1067 1068 1069 1070
	/* Avoid firmware reload on slow devices */
	if (no_poweroff)
		return 0;

1071 1072 1073 1074
	/* According to Xceive technical support, the "powerdown" register
	   was removed in newer versions of the firmware.  The "supported"
	   way to sleep the tuner is to pull the reset pin low for 10ms */
	ret = xc5000_TunerReset(fe);
1075
	if (ret != XC_RESULT_SUCCESS) {
1076 1077
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
1078
			__func__);
1079
		return -EREMOTEIO;
1080
	} else
1081
		return XC_RESULT_SUCCESS;
1082 1083
}

1084 1085 1086
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1087
	dprintk(1, "%s()\n", __func__);
1088

1089 1090 1091 1092 1093 1094 1095
	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
1096 1097 1098 1099 1100 1101

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
1102 1103
	struct xc5000_priv *priv = fe->tuner_priv;

1104
	dprintk(1, "%s()\n", __func__);
1105 1106 1107 1108 1109 1110 1111 1112

	mutex_lock(&xc5000_list_mutex);

	if (priv)
		hybrid_tuner_release_state(priv);

	mutex_unlock(&xc5000_list_mutex);

1113
	fe->tuner_priv = NULL;
1114

1115 1116 1117
	return 0;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	struct xc5000_config *p = priv_cfg;

	dprintk(1, "%s()\n", __func__);

	if (p->if_khz)
		priv->if_khz = p->if_khz;

	if (p->radio_input)
		priv->radio_input = p->radio_input;

	return 0;
}


1135 1136 1137 1138 1139 1140 1141 1142
static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

1143 1144 1145
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
1146

1147
	.set_config	   = xc5000_set_config,
1148 1149 1150
	.set_params	   = xc5000_set_params,
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
1151
	.get_if_frequency  = xc5000_get_if_frequency,
1152 1153
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
1154 1155
};

1156 1157
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
1158
				   const struct xc5000_config *cfg)
1159 1160
{
	struct xc5000_priv *priv = NULL;
1161
	int instance;
1162 1163
	u16 id = 0;

1164 1165 1166
	dprintk(1, "%s(%d-%04x)\n", __func__,
		i2c ? i2c_adapter_id(i2c) : -1,
		cfg ? cfg->i2c_address : -1);
1167

1168
	mutex_lock(&xc5000_list_mutex);
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178
	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
					      hybrid_tuner_instance_list,
					      i2c, cfg->i2c_address, "xc5000");
	switch (instance) {
	case 0:
		goto fail;
		break;
	case 1:
		/* new tuner instance */
1179
		priv->bandwidth = 6000000;
1180 1181 1182 1183 1184 1185 1186
		fe->tuner_priv = priv;
		break;
	default:
		/* existing tuner instance */
		fe->tuner_priv = priv;
		break;
	}
1187

1188 1189 1190 1191 1192 1193 1194
	if (priv->if_khz == 0) {
		/* If the IF hasn't been set yet, use the value provided by
		   the caller (occurs in hybrid devices where the analog
		   call to xc5000_attach occurs before the digital side) */
		priv->if_khz = cfg->if_khz;
	}

1195 1196 1197
	if (priv->xtal_khz == 0)
		priv->xtal_khz = cfg->xtal_khz;

1198 1199 1200
	if (priv->radio_input == 0)
		priv->radio_input = cfg->radio_input;

1201
	/* don't override chip id if it's already been set
1202
	   unless explicitly specified */
1203 1204 1205 1206
	if ((priv->chip_id == 0) || (cfg->chip_id))
		/* use default chip id if none specified, set to 0 so
		   it can be overridden if this is a hybrid driver */
		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1207

1208 1209 1210
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
1211
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1212
		goto fail;
1213

1214
	switch (id) {
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		break;
	default:
1230 1231 1232
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
1233
		goto fail;
1234 1235
	}

1236 1237
	mutex_unlock(&xc5000_list_mutex);

1238 1239 1240 1241
	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	return fe;
1242 1243 1244 1245 1246
fail:
	mutex_unlock(&xc5000_list_mutex);

	xc5000_release(fe);
	return NULL;
1247 1248 1249 1250
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
1251
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1252
MODULE_LICENSE("GPL");